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Abstract: In this paper, we present a nodal hydraulic head estimation methodology for
water distribution networks (WDN) based on an Unscented Kalman Filter (UKF) scheme with
application to leak localization. The UKF refines an initial estimation of the hydraulic state
by considering the prediction model, as well as available pressure and demand measurements.
To this end, it provides customized prediction and data assimilation steps. Additionally,
the method is enhanced by dynamically updating the prediction function weight matrices.
Performance testing on the Modena benchmark under realistic conditions demonstrates the
method’s effectiveness in enhancing state estimation and data-driven leak localization.
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1. INTRODUCTION

The appearance of leaks in water distribution networks
(WDN) results in a significant water loss of approximately
126 billion cubic meters per year worldwide (expressed
as non-revenue water), as indicated by Liemberger and
Wyatt (2019). For decades, water utilities have harnessed
software-based techniques for leak detection and localiza-
tion. Within the approaches that analyse the steady-state
of the WDN, three main categories emerge: model-based,
data-driven and mixed model-based/data-driven methods.

Model-based methods exploit a hydraulic model to emu-
late the behaviour of the WDN, calibrating both network
characteristics and nodal demands. The aim is to obtain
simulated hydraulic data that can be compared with ac-
tual measurements from the real network (Sophocleous

⋆ The authors would like to thank the Spanish national project
Project L-BEST under Grant PID2020-115905RB-C21 funded by
MCIN/ AEI /10.13039/501100011033. This work was also supported
by a grant of the Romanian Ministry of Research, Innovation and
Digitization, CCCDI - UEFISCDI, project number PN-III-P2-2.1-
PED-2021-1626, within PNCDI III and by the GAR2023 Research
Grant funded and managed by the Patrimony Foundation (Fundatia
”Patrimoniu”) of the Romanian Academy, from the Recurrent Fund
of Donors, Contract No. 260/28.11.2023

et al., 2019). Mixed model-based/data-driven methods
reduce the dependence on the model through machine
learning algorithms while maintaining the node-level accu-
racy (Capelo et al., 2021). Finally, data-driven approaches
remove the necessity of a hydraulic model, using algo-
rithms that exploit sensor data to provide leak location
areas. Within data-driven schemes, a well-established fam-
ily of methods relies on interpolating the complete hy-
draulic state from available measurements and topology, to
then perform leak localization through the reconstructed
schemes. State estimation has been successfully utilized
in WDNs with techniques such as Kriging interpolation
(Soldevila et al., 2020), graph neural networks (Xing and
Sela, 2022) and graph signal processing (Zhou et al., 2023).

This article introduces the next step of the interpola-
tion methodology presented in Romero-Ben et al. (2022a),
known as Graph-based State Interpolation (GSI), and its
subsequent evolution introduced in Irofti et al. (2023),
known as Analytical Weighting GSI (AW-GSI). In par-
ticular, a nodal hydraulic head estimation methodology
is proposed based on an Unscented Kalman Filter (UKF)
scheme with application to leak localization. The proposed
methodology uses the UKF scheme to improve the head
estimation from an input reconstructed state vector, lead-



ing to various improvements compared to the previous GSI
schemes:

The available pressure and demand information is fused.
Previous state estimation methods often rely on pressure
data due to the reduced cost and ease of installation of
pressure meters. The continuous upgrade of the urban
infrastructures leads to the rise of ”smart cities”, char-
acterized by advanced real-time metering capabilities (Ali
et al., 2022). Automated Metering Readers (AMR) play a
crucial role by measuring real-time consumption. Thus, a
state estimation strategy that neglects the processing of
demand data risks the loss of critical information.

The graph diffusion weights from the prediction function
are dynamically updated. These weights are not only con-
figured considering the WDN structure and the physics
governing its behaviour, but they are also adapted to
the current estimated state. This drastically improves the
state estimation performance in comparison to previous
methodologies.

The structure of the paper is as follows: In Section 2,
the methods that will be used to develop the proposed
approach are presented. In Section 3, this approach is
introduced. A case study is described in Section 4 accom-
panied by simulations in Section 5. Finally, Section 6 draws
the main conclusions and suggests future research paths.

2. PRELIMINARIES

Let us model the network topology by a graph G = (V, E),
where V is the node set (reservoirs and junctions), and
E denotes the edge set (pipes). An arbitrary node is
represented as vi ∈ V, whereas an arbitrary edge is
denoted as ek = (vi, vj) ∈ E . The latter represents the
link between nodes vi and vj , with vi as its source and
vj as its sink. The nodal hydraulic heads are selected as
representatives of the network states, gathered in h.

2.1 State interpolation

An initial attempt to estimate the hydraulic state of a
WDN was proposed in Romero-Ben et al. (2022a) through
GSI, which only requires hydraulic head data and struc-
tural information. This method estimates the complete
network state by solving the optimization problem

min
h

1

2

[
hTLdh+ αγ2

]
(1a)

s.t. B̂h ≤ γ, γ > 0, Sh = hs, (1b)

where Ld is a Laplacian-based matrix generated from the
WDN underlying graph, B̂ is an approximated incidence
matrix of G, γ is a slack variable and S and hs are the
sensorization matrix and the head measurement vector re-
spectively. Although the details are presented in Romero-
Ben et al. (2022a), let us highlight that Ld = (D −
W )D−2(D −W ), where W is the weighted adjacency
matrix of G, with wij = 1/ρk if ek = (vi, vj) ∈ E
and wij = 0 otherwise, and ρk is the length of the pipe
represented by edge ek. D is the degree matrix, a diagonal
array obtained as dii =

∑n
j=1 wij . Briefly, GSI pursues

the closest state vector to fulfill that h = D−1Wh, where
D−1Wh diffuses the state considering the structure of

G, while contemplating directionality and measurements-
related constraints.

Recently, a novel physical-based weighting process was
designed to improve GSI, leading to a new interpolation
method that is referred to as AW-GSI. This weighting
process is based on the linearization of the Hazen-Williams
equation (Sanz-Estapé, 2016), and yields a new weighted
adjacency matrix WAW as follows:

wAW
ij (h̃i, h̃j) = σ0.54

k

[
mkj(h̃i − h̃j)

]−0.46

, (2)

where σk = (µ1.852
k δ4.87k )/(10.67ρk) is the pipe conductiv-

ity (in S.I.) for ek, with µk and δk being the roughness
and diameter of the pipe respectively. Note that WAW

is richer in both structural and hydraulic information in
comparison to W , hence leading to an improvement in the
accuracy of the state estimation. Besides, mkj is the k-j

element of the incidence matrix M ∈ R|E|×n, defined as:

mkj =


1, h̃i ≥ h̃j (ek = (vi, vj) ∈ E);
−1, h̃i < h̃j (ek = (vj , vi) ∈ E);
0, if vi and vj are not adjacent

(3)

The characteristics of h̃ are introduced in Lemma 1 at
Irofti et al. (2023). Due to the ultimate goal of performing

leak localization, we selected h̃i = hnom
i and h̃j = hnom

j ,
with hnom being the leak-free reference, as most local-
ization techniques operate over pressure residuals, i.e.,
difference of pressure between leak and leak-free scenar-
ios. This selection of h̃ leads to the following quadratic
programming problem

min
∆h

1

2

[
∆hTLAW

d ∆h
]

s.t. S∆h = ∆hs. (4)

where ∆h is the residual vector to retrieve, ∆hs is
the residual vector of measurements, and LAW

d is an
analogue Laplacian-based matrix to the one used in GSI,
but obtained through (2).

2.2 Unscented Kalman Filter

The success of the Kalman filter to accurately estimate the
state of a linear system led to the development of exten-
sions to handle non-linear functions. The most notorious
example is the Extended Kalman Filter (EKF), which
exploits multivariate Taylor series expansions to linearize
the model around the current estimate. This method has
been successfully used in the past to estimate consumption
and detect bursts in WDN (Jung and Lansey, 2015).

The Unscented Kalman Filter (UKF) was designed to
address the limitations of EKF, mainly related to the lin-
earization precision. In EKF, only one point is considered
to approximate a new linear function from the non-linear
one, i.e., the mean of the Gaussian distribution which we
assume that represents the form of our data. In UKF, a set
of points known as Sigma Points are selected and mapped
into the target Gaussian after being passed through the
non-linear function. A process called Unscented Transfor-
mation helps recovering the approximated Gaussian after
the application of the non-linear function. In comparison
with EKF, UKF does not require the computation of the
Jacobian, and the approximations are more accurate in the
case of non-Gaussian inputs (Julier and Uhlmann, 1997).



The UKF algorithm is well-established and has been
implemented in several software platforms. Thus, we focus
here on the adaptation of UKF to improve an initial
estimation of the complete network state, represented by
the nodal hydraulic heads. For more details about the UKF
standard operation, see Van der Merwe and Wan (2001).

3. PROPOSED APPROACH

Let us start by outlining the required input/output infor-
mation, hyperparameters and the two key stages compos-
ing the UKF algorithm: prediction and data assimilation.

We discuss now the inputs and output of the estimation
process. First, h0 is the initial guess for the UKF, corre-
sponding to the state of the network, i.e., the complete
set of nodal heads. This first estimation may be retrieved
from interpolation processes like GSI or AW-GSI. Head
measurements are stored in hs from a set of ns pressure
sensors. Considering that the number of network nodes is
n = |V|, normally n >> ns. The demand measurement
vector ca is constructed from the points where AMRs are
installed. Again, if nca AMRs are used, normally n >>
nca. Finally, the output hUKF of the UKF operation is
a state estimation, obtained by fusing the information
from the initial guess, the prediction function and the
assimilation of the pressure and demand data.

Several configuration parameters must be settled before
applying the UKF strategy. Parameter K corresponds to
the total number of iterations of the UKF process. It must
be configured through an analysis of the studied network
(e.g. the selection of K = 50 presented in Section 5) or a
convergence criteria, e.g., a tolerance value of the estima-
tion change during a defined period. Also, Q is a positive
definite diagonal matrix denoting the covariance of the
process noise. It accounts for the model approximations
introduced by the prediction function. Finally, R is a pos-
itive definite diagonal matrix representing the covariance
of the measurement noise, enabling us to express the level
of confidence in the sensor data.

3.1 Prediction

This process leverages a function that describes the state
evolution from one time step to the next:

h[k+1] = f(h[k]) = αh[k] + (1− α)Φ−1Ωh[k] (5)

where h[k] is the UKF state at iteration [k] 1 , Φ and Ω
are respectively a degree matrix and a weighted adjacency
matrix, and α = nca

n . In this way, (5) yields a compromise
solution between preserving or diffusing the current state,
depending on the number of installed AMRs: if demand
information is abundant, the state remains similar from
one step to the next in terms of prediction, as most of the
information is provided at the data assimilation step; else
if demand information is scarce, the state information is
diffused over the network by means of Φ and Ω.

Besides, Ω can be defined by the user, with Φ obtained
as ϕii =

∑n
j=1 ωij . Possible selections for Ω are the 0-1

1 Note that index k serves a dual purpose: indicating an arbitrary
edge ek and the k-th iteration. To prevent confusion, k only repre-
sents iteration number if it is encapsulated using brackets as [k].

adjacency matrix of G, the GSI adjacency matrix W and
the AW-GSI adjacency matrix WAW (derived from (2)).

3.2 Data assimilation

This step uses a function that describes how the model
states are related to sensor measurements. We have de-
signed this function to account for the two available
sources of measurements.

First, the ns pressure sensors provide actual heads from

the network, i.e., states of the UKF process. Thus, y
[k]
h =

Sh[k] where y
[k]
h is the part of the measurement vector

corresponding to the head data at iteration [k].

Second, as nca demand measurements are available, we can
utilize the relation among nodal demands and hydraulic
heads to derive the required function. Starting with the
Hazen-Williams equation, we have that mkj(hi − hj) =
τkq

1.852
k , where mkj is analogue to (3), τk = 1

σk
, and qk

is the flow through the pipe represented by edge ek. This
can be posed as:

Mh = Tq(1.852), (6)

where q(1.852) = [q1.8521 q1.8522 ... q1.852|E| ]T and T ∈ R|E|×|E|

is a diagonal matrix, whose k-th diagonal value is τk.
Besides, the relation between nodal demands and flows
can be expressed as:

c = −MTq (7)

with c ∈ Rn denoting the vector of nodal demands. Manip-

ulating (6) and (7) we obtain y
[k]
d = −MT

a (T−1Mh[k])(0.54)

where y
[k]
d is the part of the measurement vector corre-

sponding to the demand measurements at iteration [k],
and Ma selects only the columns of M that correspond to
the nodes with AMRs. Then, the complete measurement

vector at iteration [k] is y[k] = g(h[k]) = [y
[k]
h y

[k]
d ]T .

If the WDN measurements are stored in y = [hs ca]
T ,

the measurement error for iteration [k], used by the data
assimilation process to update the current state, would be:

e[k] = y − y[k] = y − g(h[k]) (8)

3.3 Dynamic-weighting prediction step

In the past, the physics-based weight generation of AW-
GSI led to an improvement in the state estimation per-
formance. Therefore, these weighting mechanisms can be
used to enhance the capabilities of the proposed UKF-
based method, leading to dynamic update of the diffusion
matrices in (5). Thus, this function is updated to:

h[k+1] = f(h[k],Ω[k],Φ[k]) = αh[k]+(1−α)(Φ[k])−1Ω[k]h[k]

(9)
where static matrices Ω and Φ have been substituted by
their dynamic versions, i.e., Ω[k] and Φ[k], corresponding
to iteration [k]. Then, the computation of Ω[k] would
exploit the weighting generation of AW-GSI, via (2):

Ω[k] =

T (−0.54)
(
M [k]h[k]

)(−0.46)

, mod(k,Ku) = 0

Ω[k−1], otherwise.

(10)



Algorithm 1 UKF-GSI

Require: h0,y,Q,R,K
1: Initialize: h[0] = h0

2: for k = 0, ... ,K − 1 do
3: Correction (8): h[k] ←

(
y − g(h[k]),R

)
4: Prediction (5): h[k+1] ←

(
f(h[k]),Q

)
5: end for
6: return hUKF = h[K]

Algorithm 2 UKF-AW-GSI

Require: h0,y,Q,R,WAW
0 ,DAW

0 ,K,Ku

1: Initialize: h[0] = h0,Ω
[0] = WAW

0 ,Φ[0] = DAW
0

2: for k = 0, ... ,K − 1 do
3: Correction (8): h[k] ←

(
y − g(h[k]),R

)
4: Prediction (9): h[k+1] ←

(
f(h[k],Ω[k],Φ[k]),Q

)
5: AW update (11): [Ω[k+1],Φ[k+1]]←

(
h[k],Ω[k],Ku

)
6: end for
7: return hUKF = h[K]

ω
[k]
ij =

{
wAW

ij (h
[k]
i , h

[k]
j ), mod(k,Ku) = 0

ω
[k−1]
ij , otherwise.

(11)

whereKu denotes a user-defined iteration interval between
consecutive weight updates (configurable analogously to
K). A higher value for this parameter increases the num-
ber of iterations the UKF undergoes before reaching a
final steady-state estimation, but contributes to greater
stability before consecutive weight updates.

The initial guess of the state h0 and the weighted adja-
cency matrix Ω[0] can be retrieved from AW-GSI. More-
over, Φ[k] is obtained from Ω[k] as previously explained,
and M [k] is obtained through (2) with h̃ = h[k].

In order to complete the presented explanations, we
present Algorithm 1 and Algorithm 2, which respectively
summarize the operational flow of the UKF-based ap-
proach with static prediction weights, henceforth denoted
as UKF-GSI, and the upgraded version with dynamic
prediction weights, denoted as UKF-AW-GSI. Please note
that steps 3 and 4 from both algorithms represent the
UKF data assimilation and prediction steps respectively.
Please see Van der Merwe and Wan (2001) for additional
details about the related equations and the role of Q and
R in those steps. Also, in Algorithm 2, WAW

0 and DAW
0

correspond to the matrices used to derive h0 using AW-
GSI. Finally, from a leak localization perspective, we must
consider that most methods compare leak and leak-free
scenarios, and hence the presented algorithms should be
applied in both cases.

4. CASE STUDY

The proposed methodology is tested by means of the
Modena benchmark, which stands as a prominent, openly
accessible case study within the management of WDNs
(Bragalli et al., 2012). The network structure is repre-
sented in Fig. 1, whereas its main physical and hydraulic
properties are introduced in Table 1. Note that the bench-
mark models a real-world network, whose size and demand
correspond to a medium/large scale problem. The pres-
sure and demand sensors depicted in Fig. 1 are assumed
to be installed within the network. The pressure sensors

Fig. 1. Associated graph to the Modena network.

Table 1. Modena characteristics summary

Property Value

Junctions 268
Pipes 317

Reservoirs (water inlets) 4
Total pipe length 71.8 km

Total nodal demand ∼400 ℓ/s

include 4 metering devices at the network reservoirs and
16 at junctions. From the set of AMRs, 20 are located
alongside the pressure sensors, whereas the other 20 are
placed in additional locations. All these placements are
obtained through a fully data-driven sensor placement
technique, presented in Romero-Ben et al. (2022b).

Generation of evaluation data The presented benchmark
is implemented in EPANET 2.0 (Rossman, 2000) to obtain
hydraulic data from leak and nominal scenarios, enabling
the assessment of the method’s performance.

The conducted simulations span a 24-hour period, during
which the nodal demands evolve with a pattern that
changes every hour. A nodal extra demand of 4.5 ℓ/s
emulates the leak effects. We consider this leak size to be
adequate, regarding that it only accounts up for a ∼1.1%
of the average total inflow, as well as recent studies dealing
with the same benchmark consider similar or even larger
leak sizes (Alves et al., 2022). The leak size selection is also
justified by the included sources of uncertainty as follows.
First, the system relies on the accuracy of the measured
hydraulic values, i.e., pressure and consumption, within
a margin of ±1 cm and ±0.01 ℓ/s respectively. Second,
random uncertainty has been added to the pipes’ diameter
and roughness, which are typically difficult to measure in
WDNs. An uncertainty level of 1% with respect to the
noise-free values is included. Furthermore, daily demand
patterns are also affected by a 1% of uniformly random
uncertainty, including additional variability to the actual
consumption, and therefore the produced nodal pressures.

5. RESULTS AND DISCUSSION 2

2 Code and data: https://github.com/luisromeroben/UKF-AW-GSI



Table 2. UKF-based method parameters

Parameter ns nca K Ku Q R

Value 20 40 50 5 In 1e−4In

Fig. 2. State RMSE evolution comparison.

The efficacy of AW-GSI has previously been validated for
the presented case study, producing satisfactory state esti-
mations that led to successful leak localization. However,
performance issues emerged in certain leak scenarios, lead-
ing to deficient estimation and/or localization outcomes.

We showcase here state estimation and leak localization
results for a challenging leak case, illustrating the behavior
of the newly proposed methods in such a scenario that led
to degraded solutions through AW-GSI. Specifically, we
consider a leak at node 88, which can be seen in Fig. 1
(labeled as ”Leak”) to be positioned away from pressure
or demand sensors, which is challenging for the compared
methodologies. The configured parameters for the UKF-
based approaches are listed in Table 2 where In is the iden-
tity matrix of size n. The amount of sensors was selected
as part of the problem definition, as previously explained.
The rest of parameters was empirically configured.

5.1 State estimation

The state estimation performance is studied through the
degree of dissimilarity between the actual and recon-
structed hydraulic head vectors, i.e., h and hUKF . To
this end, we compute the root-squared-mean error as

RMSE(h,hUKF ) =
√

1
n (h− hUKF )T (h− hUKF ).

Fig. 2 shows the RMSE evolution through the UKF
iterations for a challenging time instant, which yielded
the worst AW-GSI estimation performance among all the
available ones, for different estimation methodologies and
configuration settings. In this way, the improvement of the
new methods through the iterations can be observed. We
use AW-GSI as a baseline (note that it does not iterate, so
its RMSE is depicted as a horizontal line) for comparison
with UKF-GSI and UKF-AW-GSI. Both methods improve
the AW-GSI estimation (used as h0), demonstrating the
suitability of the devised UKF-based scheme. Moreover,
UKF-AW-GSI performs better than UKF-GSI, specifically
yielding a significant refinement when mod(k,Ku) = 0,
enabling the AW update step in (11). Specifically, this
implies a RMSE reduction of 16.38% for UKF-GSI and
25.22% for UKF-AW-GSI with respect to AW-GSI.

Table 3. RMSE comparison summary (m)

Method µ(r)± σ(r) max(r) min(r)

AW-GSI 1.26 ± 0.59 2.06 0.35

UKF-GSI 1.06 ± 0.49 1.72 0.31

UKF-AW-GSI 0.95 ± 0.44 1.54 0.28

Fig. 3. Localization performance comparison between AW-
GSI-LCSM and UKF-AW-GSI-LCSM for the selected
leak scenario.

In order to underscore the importance of employing a
suitable initial guess, we perform the same experiment
with UKF-AW-GSI, first, with h0 = 0n, and second,
with a vector obtained as h0 = µ(hAW ) + σ(hAW )x,
with µ(hAW ) and σ(hAW ) being the mean and standard
deviation of the state vector retrieved from AW-GSI, i.e.,
hAW ; and x ∈ Rn is a random vector in [−1, 1]. The
simulations show an initial RMSE of 51.11m and 9.38m
respectively (k = 0) which is reduced at k = 50 to 11.42m
and 2.62m respectively. Both results do not even reach the
baseline RMSE from Fig. 2.

Finally, let us study the performance from a general
perspective, extending the previous analysis to a wide set
of time instants, thus achieving results in different network
conditions. Specifically, we select one hour out of every
two, leading to a total of 12 considered time instants, used
to ultimately compute the RMSE vector r. Table 3 shows
the performance RMSE-based results for AW-GSI, UKF-
GSI and UKF-AW-GSI through various statistics.

5.2 Leak localization

The presented state estimation methodology is proposed
in the context of fault isolation. Thus, analysing the lo-
calization result from a leak localization method using the
reconstructed states can illustrate the adequacy of the es-
timation approach. To this end, Leak Candidate Selection
Method (LCSM) has been chosen due to its data-driven
operation, as well as its satisfactory performance with GSI-
based estimation methods (Romero-Ben et al., 2022a).
It compares leak and leak-free (with similar boundary
conditions) states, deriving a distance-based metric that
serves as indicator of the leak likelihood.

The localization results for the studied leak scenario are
presented in Fig. 3, considering the same hydraulic data
as in Table 3. First, a colour map over the network graph
is depicted for AW-GSI-LCSM and UKF-AW-GSI-LCSM



in the left part of the figure. This graph provides a colour
to each node depending on their associated value of the
LCSM distance metric: the more yellow the node, the
higher the probability of being the leak location. Then,
a bar graph is presented for each method in the right
part of the figure. The x-axis denotes the node index,
but taking into account that only nodes with a positive
LCSM metric are represented, because this implies the
existence of a pressure drop. On the y-axis, we represent
the LCSM metric. The yellow bar indicates the leak node
(88), whereas the red bars represent its neighbours.

A preliminary analysis using the colour maps highlights
the challenging nature of this leak scenario. Although the
area around the leak has a medium-to-high probability
in both methodologies, the most probable locations are
rather far from the correct node (left part of the WDN).
However, the in-depth analysis shown through the bar
plots manifest the improvements of UKF-AW-GSI-LCSM.
The red horizontal dashed line indicates the maximum
value of the LCSM likelihood metric among the neighbours
of the leak node. Thus, in the case of AW-GSI-LCSM,
there are 40 nodes with a higher LCSM metric than the
best candidate among the set composed by the leak and
its first-degree neighbours, whereas in the case of UKF-
AW-GSI-LCSM, there are only 7 (corresponding to the
aforementioned left part of the network).

This shows the promising performance of the UKF-based
scheme, whose better state estimation helps to improve
the accuracy of the localization process. Note that UKF-
AW-GSI inherits the estimation of AW-GSI through the
initial guess, so the UKF-based approach demonstrates
itself capable of enhancing the estimation to the point
of reducing the importance given to incorrectly indicated
areas by AW-GSI-LCSM during the localization step.

6. CONCLUSIONS

This article has presented a nodal hydraulic head estima-
tion methodology for WDN based on an UKF scheme with
application to data-driven leak localization. This technique
leverages the state reconstruction capabilities of the UKF,
customizing the prediction and data assimilation functions
through information about the physics behind network
dynamics, its structure, and the available pressure and
demand measurements. An improved version is devised by
including a dynamic weighting approach that updates the
weights included in the prediction step. The performance
of the strategy is tested using the Modena benchmark. The
UKF-based schemes provided improvements over AW-GSI
in terms of estimation error and leak localization, showing
the adequateness of the methods.

Future work will include a deep analysis of the effects
of the parametrization on the performance, as well as
the degradation caused by uncertainty, designing new
mechanisms to reduce the effect of noise. Improvements
in the operational flow of the method will be researched,
trying to improve the head estimation. Additionally, the
estimation of other related hydraulic variables such as
demand or flow will be considered.
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