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Abstract— Wearable inertial sensors have undergone great devel-
opment offering an easy approach to track physical activity for
both athletes and for the general public. Their immense potential
to assess motion impairment in clinical practice is now fostering
research on evaluation protocols, sensor configurations, and sig-
nificant metrics that could be helpful to evaluate the condition of
patients with a motor disease. This systematic review provides
a clear picture of the current state-of-art in this research area,
outlining the dominant trends, promising opportunities for future
work and some guidelines to pursue them. We review Inertial Mea-
surement Unit-based systems that have been used to assess upper
limb kinematics in people with acquired neurological disease and
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neuromuscular disease, over the last 20 years. We evaluate the technological characteristics of the sensors and the
clinical contexts in which they have been applied. Finally, we study the biomechanical metrics analyzed in the reviewed
papers, focusing on those with clinical relevance to assess and evaluate the motor status of the patients.

Index Terms— Clinical environment, home-setting, Inertial Measurement Unit (IMU), neurological disease, neuromuscular

disease, upper limb

[. INTRODUCTION

OTION disorders, due to muscular dystrophy or neu-

rological disease, often result in long-term motor dis-
abilities that hinder the performance of daily living activities,
thus drastically impacting the quality of life of patients, their
families and caregivers. Recently there have been promising
advances in therapies for these diseases, which call for the
development of technological tools and methodologies to eval-
uate the response of individual patients to such new treatments.
Currently, the degree of motion impairment is assessed through
the application of motor functional scales by a physiotherapist
in a clinical environment, without any technological help. This
assessment method has some limitations, such as a possible
learning effect, reduced repeatability, and difficulty to detect
relevant changes in slowly progressing diseases. Standardized
measurment of the motor function of patients in real-life
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conditions is increasingly required in order to properly assess
the patients’ baseline condition and their response to therapies.

Looking for technologies to help with such standardized
measurement, human motion analysis stands out as a well-
established research field that aims at gathering quantitative
information about the mechanics of the musculo-skeletal sys-
tem during the execution of a motor task [1]. This field of
study encompasses a variety of techniques with multiple ap-
plications, ranging from surveillance systems to the evaluation
of athletic performance and medical diagnosis [2]. Visual-
based techniques have the longest tradition, whereby color
and/or depth cameras are used to record video, from which
human motion is extracted. Another video-based technique
widely used nowadays is optical motion capture, which relies
on infrared cameras that track markers placed on the skin.
Nevertheless, Inertial Measurement Units (IMUs), i.e., elec-
tronic devices that track movement of the body part where
they are attached, are quickly gaining popularity because of
their small size, light weight and the possibility of being used
outside the laboratory [3].

An IMU consists of an accelerometer and a gyroscope,
providing linear acceleration and angular velocity, respectively,
which combined yield the orientation of the attachment [4].
Since both accelerometer and gyroscope measurements suffer
from time-dependent biases and noises, the use of IMUs is
affected by drift problems caused by the integration of those
signals over time. The most recent sensor models include
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a magnetometer that, measuring the earth’s magnetic field,
improves the estimation of the IMU orientation, limiting the
drift [5], [6]. Due to environmental magnetic disturbances, the
use of the magnetometer is occasionally not possible. In this
case, the drift can be minimized by using correction algorithms
[71-[9].

Data acquired by an optical motion capture system is often
considered the gold-standard, against which the performance
of IMUs is experimentally tested [10]. A lot of work has been
done to prove the validity of inertial-based systems to obtain
the kinematics of the lower and upper limbs, demonstrating
good precision, fast applicability and accuracy [11]-[14]. Not
surprisingly, IMUs have attracted the attention of physiother-
apists and bioengineers, as they open up the possibility of
a quantitative and objective characterization of a patient’s
functional state, both in clinical and home environments,
thus complementing the use of scales and questionnaires to
overcome some of their limitations [15].

Literature reviews have already acknowledged the impor-
tance and the potential of IMU-based systems for motion
analysis. Nevertheless, some previous reviews focused on the
use of IMUs without considering their clinical application
and the challenges that can arise in such context [16], [17].
Others narrowed their analyses to only one specific motor
disorder, such as cerebral palsy [18], stroke [19], Duchenne
muscular dystrophy [20] or multiple sclerosis [21]. Finally,
one review considered the potential benefits and drawbacks
of using wearable sensors to assess motor disorders caused
by neurological diseases [22], without including muscular
dystrophies nor focusing on their clinical application.

The aim of this review is to provide an overview of the
use of IMU-based motion capture equipment in the clinical
field, focusing on the kinematic analysis of the upper limb
movement in people affected by a motor disorder caused by
a neurological or neuromuscular disease. Therefore, we seek
to answer the following research questions:

1. What clinical protocols are used to evaluate upper limb
kinematics in people with motor disorder using IMU-based
systems?

2. What are the technical characteristics and configurations
of inertial sensors that are most suitable for clinical applica-
tion?

3. What biomechanical metrics obtained from IMU-based
systems are useful for clinical practice?

Il. MATERIALS AND METHODS
A. Search Strategy

We looked for scientific articles published between 2000
and March 2023 in four online databases, using the following
search terms: ((wearable OR ”inertial motion unit* OR ”in-
ertial movement unit*” OR “inertial measurement unit*” OR
“inertial sensor*” OR magneto-inertial’) AND (”movement*
analysis” OR “motion analysis*” OR “motion track*” OR
“track* motion*” OR “motor function assessment” OR hu-
man joint measurement” OR ”limb movement “OR “measure-
ment system*” OR ”limb activity”’) AND ("upper limb*” OR
arm OR arms OR elbow* OR wrist* OR shoulder*OR hand*)

AND (’neuromuscular” OR neurologic*”OR ”clinical “OR
“disease)). The online databases considered were PubMed,
Web of Science, Scopus and IEEE Xplore. We found a total
of 687 articles: 66 in IEEE Xplore, 93 in PubMed, 197 in Web
of Science and 331 in Scopus.

After removing 244 duplicates, 443 publications were an-
alyzed based on their title and abstract, and 80 publications
were full-text assessed for eligibility. The research, screening
and eligibility check of the studies were all done by the same
two authors (i.e. Alessandra Favata and Roger Gallart-Agut).
In case of indecision, consensus was reached collaboratively
among all authors of the manuscript. Finally, 34 articles were
included in this review. The PRISMA flow diagram, presented
in Fig. 1, the analysis perfomed at each stage of the screening
process, where n represents the number of articles.
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Fig. 1. Flow diagram of the screening process according to PRISMA
guidelines.

B. Inclusion and exclusion criteria

We only included publications written in English, which
provided relevant information aimed on studying the use of
inertial motion capture systems and their application in the
clinical field, focusing on upper limb kinematic analysis.

To be included in the review, each article had to meet the
following conditions: (1) at least one IMU had to be used
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to assess upper limb kinematics, (2) the IMUs had to be
equipped at least with a 3-axis accelerometer and a 3-axis
gyroscope, (3) the inertial system had to be used in a clinical
application, (4) the study had to involve at least one participant
with a neurological or neuromuscular disease and (5) the study
had to be a journal article. All the studies were approved
by the local Ethics Committees. Studies were excluded based
on the following criteria: (1) the kinematic information was
obtained just based on accelerometer data, (2) the disease was
not categorized as neurological or neuromuscular, or (3) the
disease did not lead to upper limb functional impairment.

C. Approach

The information of each study was classified according to
the clinical aspects (i.e., study design and protocol design),
technical aspects (i.e., data pre-processing), and biomechanical
metrics.

In the Clinical Aspects section, we analyzed the informa-
tion regarding the patients involved in the studies and the
protocol (tasks movement, sensor placement and sensor-to-
segment calibration) implemented to perform the kinematic
analysis. The subjects involved in the studies were catego-
rized according to age, disease and sample size. The sensor
placement was described according to the number of inertial
sensors used and the considered body segments. The studies
were classified into four groups according to their type of
study: (1) experimental validation (experimental preliminary
evaluation of the device), (2) pilot study (small-scale test of the
methods or procedure), (3) observational study (study in which
individuals are observed or certain outcomes are measured.
i.e., descriptive study, cohort study, longitudinal study, cross-
sectional study, or pre-post study), and (4) experimental study
(researchers introduce an intervention and study the effects,
i.e., randomised control trial) [23].

In the Technical Aspects section, the sensors were classified
based on their main characteristics (i.e. wired/wireless or
with/without magnetometer, sampling frequency) that have
to be considered in the clinical practice. We also analyzed
the type of processing data algorithm used for the kinematic
analysis of the upper limb movement. In particularly, we
analyzed the filter and algorithm to limit the errors in the
acceleration and gyroscope data. Fig. 2 shows the main steps
to obtain kinematic information starting from the data coming
from the accelerometer, gyroscope and magnetometer.

Lastly, in the Biomechanical Metrics section, we categorized
the main outcome metrics of the kinematic analysis and
examined their potential correlation with disease progression.
We classified these metrics in five main groups: raw sensor
metrics (raw data obtained directly from accelerometer and
gyroscope), angular metrics, spatio-temporal metrics, temporal
metrics, and activity metrics.

[11. CLINICAL ASPECTS

This section reviews the main clinical aspects related to the
studies included. We will focus our analysis on the demo-
graphic analysis (age and disease) and clinical protocol (clin-
ical or home setting, purpose of the study, number of IMUs,
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Fig. 2. Work flow diagram to obtain kinematic information from IMU
measurements. The data coming from the 3-axis accelerometer and 3-
axis gyroscope are processed in order to reduce the errors and drift. A
sensor fusion algorithm (Kalman filter or Complementary filter) is then
used to merge the information from the accelerometer, gyroscope and
magnetometer (when present). From those data it is possible to obtain
kinematic information.

and body segment evaluated). Table I provides a summary of
the details covered in this subsection. The flowchart illustrated
in Fig. 3 summarizes the main aspects to consider when using
IMU-based systems for upper-limb kinematic analysis.

A. Aim of the study and Study design

Table I, Column 2, shows a detailed list outlining the
objectives of the reviewed studies. Due to their compact size,
user-friendliness, and suitability for use outside the laboratory,
IMUs have found extensive application in monitoring and
tracking human movement, including various clinical scenarios
[24]. Clinicians are becoming more interested in monitoring
the patients during their daily life. Analyzing data from real-
life conditions might help improve the assessment of patients’
level of independence and eventually increase their quality
of life. In this context, IMUs can help to obtain quantitative
information of everyday life motor activities [25]. We found
that the vast majority of the analyzed works (n = 32, 94.1%)
aimed to find relevant parameters to quantitatively characterize
the motor disease using an IMU-based system. Within this
majority, all studies found at least one kinematic parameter
that was useful to assess the motor status of the patient.
Furthermore, two works (5.88%) aimed to demonstrate that
home therapy using an IMU-based system is safe and can
also provide rehabilitative training [26], [27].

Eighteen studies (52.9%) aimed to quantitatively character-
ize the motor disease with an IMU-based system while the sub-
jects are performing the clinical scale. The majority of these
works found at least one kinematic parameter, obtained with
the IMU-based system, that showed a good correlation with
the clinical score, demonstrating the validity of the system.
Even when correlation was not detected, authors explained that
the metrics obtained with the IMUs offered valuable insights
that would have otherwise been difficult to detect solely by the
clinicians. This indicates the potential capability of the system
to offer complementary information. Interestingly, eight works
(23.5%) asked the patients to perform tasks related to daily
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Fig. 3. Flowchart to design an IMU-based system for upper-limb

kinematic analysis.

life activities, demonstrating the increasing interest to bridge
the gap between subjective clinical motor assessments and
quantitative kinematic analysis of the upper limb movements
during daily life [41]. Among these movements, reaching for
an object stands out as the most commonly requested one.
This trend can be attributed to the movement’s comprehensive
exploration of the upper limb’s overall function and to its
fundamental role in the daily life. Gaining insight into its
dynamics could significantly contribute to improving the re-
habilitation process [35], [42], [43]. See Table I Column 4 for
more information about the clinical scale and the movement
tasks analyzed in the reviewed articles.

Six works (17.6%) recorded the data in a home environment
to collect information about the actual upper-limb use during
daily living [28]-[33]. IMU-based systems can give informa-
tion on arm movements in a home environment, overcoming
the limitations related with the clinical environment (e.g.,

shorter periods and objectivity) [28], [35].

These findings show a growing interest and effort to in-
corporate IMU-based measurement systems into daily life
activities to acquire more insightful information about motor
diseases [28]-[30], [32], [34], [35]. Moreover, IMUs offer
the advantage of capturing kinematic parameters, such as
spatio-temporal parameters, which are challenging to quantify
through standard clinical observation alone. Those data can
provide a deeper insight of the upper limb use in natural
settings, helping the clinician to better tailor the intervention.

The aim of the study influences the study design and it
serves as a guide to the research approach. Among the four
groups of studies mentioned in Section II-C, the observational
study (n = 20, 58.8%) represented the most frequent study
design among the selected works, followed by pilot study
(n = 7, 20.6%), experimental study (n = 6, 17.6%), and
experimental validation (n = 1, 2.9%). The reduced number
of experimental studies may be attributed to the relatively
recent interest in utilizing inertial systems for analyzing the
kinematics of the upper body. Fig. 4 provides a distribution of
the four study types according to the year of publication. Since
2015, there has been an average annual publication of three to
four articles on IMU-based systems for the upper-limb kine-
matic analysis, reaching a peak in 2021. This coincided with
the post-pandemic period, demonstrating a constant interest in
IMU-based systems for clinical applications over recent years.
Table I, Column 2, includes a comprehensive guide, offering
insights into the objectives and methodologies of each study.
This categorization not only enhances the comprehension of
each study’s goals but also categorizes them based on their
research methodologies, enabling a deeper understanding of
the various approaches employed in the field.
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Fig. 4. Number of publications by year and type of study. The types of
study are: experimental validation (EV), pilot study (PS), observational
study (OS), and experimental study (ES).

B. Patient Clinical Information

Table I, Column 3, shows a detailed list of the patients
clinical information. The average number of participants in
the included studies was 26.1, ranging from a minimum of 1
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participant in [44] to 140 participants in [45]. Only 3 studies
analyzed patients with age below 18 years old, defined as
children. The rest of the studies involved adults over 18 years
old. Three studies recruited a group of people involving both
children and adults, ranging from 5 years old to 30 years old.

Fig. 5 represents the percentage of the pathologies analyzed
in the studies. Stroke, one of the leading causes of disability
worldwide, was the most studied disease (n = 16, 47.0%) [46].
The second one was Parkinson disease (PD) (n = 8, 23.5%),
followed by Spinal Cord Injury (SCI) (n = 3, 8.8%). Just a few
works focused on diseases that affect people during early life,
like Duchenne Muscular Dystrophy (DMD) (n = 1, 2.9%),
Spinal Muscular Atrophy (SMA)(n = 1, 2.9%), or Cerebral
Palsy (CP) (n = 5, 14.7 %).

Throughout the examined studies, it is clear that IMUs can
be applied across a broad age range, to both children and
adults, as well as in the assessment of different motor diseases.
This underscores the versatility of IMUs, highlighting their
suitability for various subjects.

— MS (n=1, 3.0%)
PD (N=8, 23.0%) ~ J

Fig. 5. Number of studies by disease type: Stroke (STK), Parkinson
Disease (PD), Cerebral Palsy (CP), Spinal Cord Injury (SCI), Duchenne
Muscular Dystrophy (DMD), Spinal Muscular Atrophy (SMA) and Mul-
tiple Sclerosis (MS). *The works total number is 35: Newman et al.
[35] conducted analyses on both children with Stroke and with Cerebral
Palsy.
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C. IMUs Sensor Placement

In this section we categorized the reviewed articles accord-
ing to the number of IMUs used, the body segments to which
each IMU was attached, and the position of the IMU within
the segment (i.e., closer to the proximal or the distal joint).
The body segments have been defined according to the criteria
described in [47]. The number of sensors comprises a single
side of the upper body (i.e., the torso and a single arm) even
when the article used a symmetric bilateral sensor setup. For
example, if an article described a setup with 7 sensors in the
upper body with 3 sensors in each arm and 1 sensor in the
torso, in this review it is considered as a system of 4 IMUs.
Fig. 6 shows the relation between the studied diseases and the
number of IMUs used. Fig. 7 summarizes the body segments
and locations where the IMUs are placed in the reviewed
studies. This representation offers a clear overview of the
sensors placement strategies employed in the works reviewed.

Eleven different studies (32.3%) analyzed the movement of
the upper body using a single IMU. In ten of these works
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Fig. 6.  Number of studies by disease and number of IMUs used.
Diseases: Stroke (STK), Parkinson Disease (PD), Cerebral Palsy (CP),
Spinal Cord Injury (SCI), Duchenne Muscular Dystrophy (DMD), Spinal
Muscular Atrophy (SMA) and Multiple Sclerosis (MS). *The works total
number is 35: [35] conducted analyzes on both children with stroke and
with Cerebral Palsy.
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Fig. 7. Lateral view of the upper limb body part. Four body segments
are analyzed: hand (green), forearm (blue), upper arm (red) and torso
(yellow) . The position of the IMU is also shown: proximal (circle), distal
(triangle), square (sternum level), rhombus (shoulder level), star (middle
back) and pentagon (waist level). Inside the shapes are shown the
number of works that analyze the body segment. * [49] utilized one IMU
but with two different placements.

(29.4%), the IMU was placed on the forearm, at the wrist
level. As shown in Fig. 7, this placement was the most
commonly utilized and this tendency could be associated
with the characteristics of wrist-worn sensors, which allow
to capture movement quality metrics, such as peak velocity
and trajectory smoothness [48]. In just one case (2.9%), the
sensor was placed on the hand [49]. Interestingly, this study
employed two different configurations tailored to two different
tests: Finger-to-Nose Test and Dysdiadochokinesia Test. In the
former, the sensor was attached to the subject’s dorsal surface

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3436532

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

of the hand and, while in the latter, the sensor was attached at
wrist level. Just one work (2.9%) used a single IMU attached
to the torso, at the sternum level, to enhance the understanding
of trunk control in children with CP. Overall, employing a
single IMU in a protocol offers the advantage of simplifying
the measurement system, resulting in reduced setup time and
user inconvenience [44].

Six studies (17.6%) analyzed the kinematics of the upper
body part using two IMUs, considering this setup as a vi-
able option due to its simple implementation and ability in
providing valuable data [29], [33], [35], [45], [50], [51]. It
should also be underlined that a minimum of two IMUs in
consecutive segments is required to build a kinematic model
and obtain the kinematic information of the corresponding
joint. In that regard, only Oubre et al. placed the sensors
in two non-consecutive body segments. In [51], the authors
placed the sensors on the forearm and the torso, using the IMU
on the torso as reference, to subsequently extract kinematic
features from the IMU placed on the wrist. Khaksar et al.
encountered a specific issue when the sensors placed on the
hand and forearm came into contact due to the participants’
small hands, resulting in increased noise [45]. In that regard,
Wirth et al. propose maintaining a minimum distance of 3 cm
between forearm and hand sensors during the capture process
to mitigate these issues [52].

Eight works (23.5%) analyzed the kinematics of the upper
limb with four IMUs. Four studies analyzed the same body
segments (torso, upper arm, forearm and hand), but placing
the sensor on the torso at different heights [43], [44], [53],
[54]. Serrano et al. placed one IMU on the upper arm, two
on the forearm (at elbow and wrist level), and one on the
hand [55]. Lastly, Cavallo et al., and Rovini et al., employed
the same wearable system (SensHand) with one IMU on the
forearm and three more on the hand, on the distal phalanges
of the thumb, index and middle finger [56] [57]. The wide
array of sensor configurations underscores the versatility and
flexibility of IMUs in capturing upper limb kinematics in
various research settings.

Five works (14.7%) implemented a configuration with five
IMUs. Di Biase at al. analyze the upper arm, the forearm
and the hand, placing 3 IMUs on the hand and 1 IMU on
each of the other segments [58]. The IMUs on the hand were
placed on the index finger, distal phalanx of the thumb and
the metacarpus because the authors wanted to identify the best
placement where to locate sensors. Their findings revealed
that a distal location, such as on the index finger, is preferred
for capturing kinematic characteristics specific to Parkinson’s
patients. Moreover, Held et al., recorded the data with a 14
IMU-based system full-body motion capture system, even if
only five sensors were used to analyze the upper limb. These
five were placed on the forearm, upper arm, and torso. In this
case, according to the authors, the setup was obtrusive and not
suitable for long-term recording [32].

One work (2.9%) used 6 IMUs to analyze the upper limb
kinematics [61]. The authors used a full-body motion capture
system with sensors placed on hand, forearm, upper arm and
torso. In this work, authors stated that the high number of
sensors, the cables and the straps may have had an impact on

the movements exhibited of the patients under study.

The analyzed system with the highest number of sensors
placed on the upper limb (8 IMUs) is developed by Schwarz
et al., and Bhagubai et al. [62] [63]. In both cases, the body
segments analyzed were 4: torso (with IMUs at sternum level
and on the scapula), upper arm, forearm and hand (with one
IMU on the dorsal side of the hand and three on the fingers).

It can be concluded that, a setup with just one sensor
allows the subject to move more freely and, at the same
time, to collect data about that specific body segment. This
is for instance the case of the IMUs placed on the wrist
that are easily attached to the forearm with a watch-like
band. However, the limitation of a single-IMU setup lies
in the necessity of using two or more sensors to construct
a kinematic chain. Even in setups with only two sensors,
the information gathered remains restricted to just one joint.
Finally, using a system with at least three IMUs enables the
assessment of the inter-joint kinematics (relationship among
one ore more joints), enhancing the precision of the upper
body kinematics evaluation and improving the overall accuracy
of the assessment.

D. Sensor-to-segment Calibration

A proper calibration of the IMUs is necessary to establish
the relation between the sensor coordinate system and the
corresponding human segment on which it is placed [64]. Four
categories of sensor-to-segment calibration methods have been
described in the literature [65]: (1) Assumed Alignment (AA)
Method: manually aligning the IMU’s axes with the segment
axes; (2) Functional Alignment (FA) Method: aligning IMU’s
axes based on subjects’ known movement(s) or pose(s); (3)
Model Based (MB) Method: estimating body segment anatom-
ical axes using either a kinematic model or a statistical model
of the joint; and (4) Augmented Data (AD) Method: using
information from another source (e.g. optical motion capture)
to determine the relationship between the IMU’s frame and
the body segment frame. Many studies have been working on
developing efficient calibration methods for the upper body in
healthy subjects. However, in the case of people affected by
a motor disease who are incapable of performing a functional
or pre-determined pose, the methods described above could be
difficult to implement [66].

In this review, seven works (20.6%) employed a FA method.
In three studies (8.8%), the sensor-to-segment calibration
method used was based on performing just a static pose
[26], [40], [44]. In the other four works (11.8%), the setup
calibration was performed not only with a static pose but also
including functional movements (e.g. abduction and flexion
movements) to enhance the accuracy of the calibration [35],
[41], [62], [63]. In all these cases, the clinicians had to help the
patients to perform the calibration movement. For one work
(2.9%), the calibration procedure consisted in standing in a
neutral position and walking for a few meters, as explained in
the user manual of the manufacturer [41].

Unfortunately, the majority of the studies (n=27, 79.4%)
do not clearly describe the procedure followed to perform the
sensor-to-segment calibration, even if it is crucial to estimate
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the body segment orientations and each sensor-to-segment
calibration can lead to different results [67].

V. TECHNOLOGICAL ASPECTS

This section analyzes the main technical features of the
inertial sensors used in the included studies. We describe
the components of the different IMUs and the algorithms
implemented to process the measured data. We also specify
which sensors are available on the market and which are not.
See Table II, Column 2, to have more information regarding
the type of sensor used in the reviewed studies.

A. General characteristics

Twenty-one of the works reviewed (61.8%) opted to use
commercial devices, while twelve (35.3%) used prototypes
or custom self-built devices (one work did not mention the
IMU used). Among the commercial brands, the most used was
Xsens (n=7, 20,6%), followed by Shimmer Research, Sysnav
and Captiks (with n=2, 5,9% for each brand).

Using commercial wearable IMUs greatly simplifies data
collection as they undergo thorough testings and quality
controls during their production. This typically makes them
more robust and reliable,compared to self-built devices. Com-
mercial IMUs also offer additional off-the-shelf advantages
to researchers, by either supplying the orientation of the
sensor in form of quaternions or Euler angles (along with
the raw inertial data) or providing a post-processing software
with a biomechanical model. Some researchers may choose
to implement their own sensor fusion algorithm and pre-
processing techniques rather than using the ones supplied by
the device manufacturer [16]. It is important to remark that
there also exist IMU modules that greatly simplify the process
of designing and building a custom wearable sensor [43], [45],
[49].

All the studies included in the review used IMUs equipped
with a 3-axis accelerometer and a 3-axis gyroscope to measure
the linear acceleration and angular velocity, respectively. Eigh-
teen works (52.9%) made use of IMUs with a magnetometer,
while fifteen works (44.1%) either chose a device without a
magnetometer or simply did not use it. The magnetometer
provides the orientation relative to the Earth’s magnetic field,
which can be used to correct the data drift; however, magnetic
measurements are sensitive to magnetic field disturbances [68].
Most of the reviewed works using IMUs with magnetometer
(n=17, 50.0%) did not report any issues related to magnetic
interference; but it is worth taking into account that twelve of
them (35.3%) were being used in a controlled environment and
for relatively short periods of time, which reduces the chances
of disturbances. Just one study (2.9%) addressed problems
with the environmental factors (i.e., electronic devices at
home) [32].

Based on this evidence, it appears that researchers might
prefer to use commercial sensors because of their robust algo-
rithm to process the data collected (i.e., the fusion algorithm).
As for the magnetometer’s presence, drawing a definitive
conclusion is challenging; the majority of studies using a mag-
netometer have been conducted in controlled environments,
requiring further analysis for conclusive insights.

B. Connectivity and usability

The wearable IMU systems used in the reviewed articles
can be grouped in two main categories: (1) wired systems
and (2) wireless systems. Wired systems usually consist of
a set of small IMUs placed on the body and physically
connected with cables to a hub device, which is usually
located on the back or the waist of the patient [53], [55],
[61]. This hub device is responsible for collecting and pre-
processing all the data, as well as supplying power to the
sensors. These centralized systems enable smaller sensor units,
without power supplies or communication systems, providing
battery autonomy and processing capabilities. However, the
wires connecting sensors to the hub and the size of the hub
itself can be cumbersome, restricting these systems to short
captures in controlled environments. Sometimes the cables are
integrated into a suit to increase the comfort and mobility.
This type of architecture is also common when monitoring
the movement of the fingers, with the hub located at the wrist
level [56], [57].

On the contrary, wireless systems consist in a set of inde-
pendent sensors that can be controlled wirelessly from a host
device [28], [50], [69]. This hardware setup requires each IMU
device to integrate at least a microcontroller, a connectivity
module (e.g., Bluetooth or radiofrequency), an internal mem-
ory storage (e.g., microSD or SSD) and a rechargeable battery.
These systems tend to be more comfortable for the patients,
particularly in non-controlled environments and during daily
live activities; but they remain more limited in terms of auton-
omy and processing power. Nevertheless, the improvement in
wireless communication protocols (e.g., BLE Bluetooth Low-
Energy) and battery technologies are increasing the autonomy
of such systems.

One crucial point, especially when dealing with long-term
motion capture in uncontrolled environments, is to reduce as
much as possible the movement of the sensors with respect
to the body segment to which they are attached [70]. Only
sixteen (47.1%) of the reviewed articles explicitly mention
the method used to attach the sensors to the body. Some of
the most referenced ways to attach the sensors to the upper
limbs are Velcro® straps [41], [44], [60], [61], silicone straps
[33], and elastic bands [59]. Some authors reported the use of
medical tape to attach the sensors to the body as an alternative
to straps [41], [62], [63]. Lastly, for the shoulder and sternum
sensors, VanMeulen et al. chose a small unobtrusive harness
[61].

Ensuring the comfort of the user while wearing the sen-
sors is also important to get reliable results and long-term
adherence to the technology. Bai et al. added under the
Velcro® strap a piece of Velfoam®, a foam covered with hook-
sensitive material on one side and nylon on the reverse side, to
reduce the discomfort of sensor attachment and minimize the
relative movement of the sensors with respect to the limb [44].
VanMeulen et al. instructed patients to walk around before
recording data to adjust strapping and wiring to not obstruct
their natural movements [61]. Lee et al. performed a survey
among several stakeholders to gather feedback with the objec-
tive of identifying the most comfortable wristband mechanism
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[27]. Two types of slap bracelets have been identified as the
easiest to be worn for the self-application to the wrist.

C. Data capture and pre-processing

When the magnetometer is absent, the orientation of the
sensor is based solely on the data coming from the accelerom-
eter and the gyroscope. However, accelerometer and gyroscope
data are prone to errors [31], [44]. The accelerometer might
be affected by vibration and rapid movement, while a small
offset in measured angular velocity results in increasing inac-
curacy in the estimated orientation [71] [64]. To overcome
these issues, common practices involve applying low-pass
filtering to the acceleration data, while algorithms like the
zero-velocity update (ZUPT) are employed to reduce angular
velocity drift. The ZUPT algorithm is commonly used in gait
analysis and relies on accurately identifying intervals of zero
velocity, which may not easily recognized for general upper
limb movements. However, for certain upper limb assessment
tests, specific events are known when limb segments remain
stationary, allowing the ZUPT algorithm to be effectively
applied. Bhagubai et al. and Schwarz et al. considered the
sensors stationary when the angular velocity was lower than
a threshold (e.g., 3 deg/s) [62], [63]. The other authors asked
the subjects to perform repetitive tasks, allowing them to use
the algorithm step-by-step (similar to a gait analysis).

Lastly, a sensor fusion algorithm is used to merge the infor-
mation from the accelerometer, the gyroscope and the magne-
tometer (when present) to obtain the sensor orientation. The
sensor fusion algorithms implemented in the reviewed studies
can be grouped in two main classes: (1) Kalman filter (KF);
and (2) Complementary filter (CF), e.g., Madgwick (MAD)
and Mahony (MAH) filters [72]-[74]. The KF estimates the
error following a prediction-correction scheme, while the CF
combines the information from two or more sources (e.g.,
accelerometer and gyroscope) [9], [75]. Eight of the reviewed
studies (23.5%) implemented the Kalman filter [32], [40],
[44], [48], [51], [54], [76], while eight studies (23.5%) used
complementary filters as a sensor fusion algorithm [26], [31],
[33], [50], [62], [63]. Seven of these studies used a Madgwick
filter (MAD). This filter showed a higher accuracy compared
to other common sensor fusion algorithms like the Kalman
filter, but with less computational load [77]. Unfortunately, the
majority of the analyzed works (n=21, 61.8%) did not report
the type of sensor fusion algorithm implemented to obtain the
orientation of the sensors.

Only twenty-one of the reviewed works (61.8 %) mention
the sampling frequency used, which ranges from 20 Hz to 256
Hz, with 50Hz being the most common one (n=9, 26.5%).
It is worth nothing that depending on the article and on
the type of device used, this value might refer either to
the sampling rate used to capture the data by a component
(i.e., gyroscope, accelerometer or magnetometer) or to the
output rate of the pre-processed data supplied to the user.
In wireless systems, the maximum output rate allowed might
be limited by the wireless communication bandwidth or by
the internal memory storage, among others. For instance, in
the Xsens MTw used by Oubre et al. and VanWonterghem

et al. the data from the accelerometer and gyroscope are
captured at a sampling frequency of 1000 Hz and internally
low-pass filtered at a bandwidth of 184 Hz [51], [78]. Then,
the user can choose an output rate whose maximum value is
limited by the number of sensors used. However, the minimum
sampling frequency needed to record upper-limb motion in
individuals with neuromuscular disorders is relatively low, as
their capacity for rapid movements is often restricted. Indeed, a
few of the reviewed articles (see Table II) indicate that inertial
data were low-pass filtered using cut-off frequencies between
5 Hz and 12 Hz for general movement analysis, and between
15 Hz and 20 Hz for tremor analysis.

D. Tracking Accuracy

In IMU-based motion tracking, accuracy has generally been
quantified by comparison with an optical system, considered
the gold standard because of its high measurement precision in
position [52]. Generally, the quantities reported are root mean
squared error (RMSE), correlation coefficients and Bland-
Altman limits of agreement [14], [79].

Six of the reviewed articles (17.6%) evaluated the accuracy
of the IMU-based system used [44], [35], [45], [59]- [61].
Bai et al. analyzed the error of position tracking, reporting an
error of 2 mm and a 99% correlation between the IMU-based
system and the optoelectronic system [44]. VanMeulen et al.
evaluated the differences in hand-reaching distances using both
systems [61]. The mean error recorded was up to 35 mm, with
a standard deviation of 34 mm, with higher errors in higher
reaching distances. The authors suggest that these differences
are due to the incapacity of the IMU sensors to fully track the
shoulder protraction and retraction, and the trunk movements
during these tasks. The other articles reported an average error
of 1.80° with respect to the gold standard, when evaluating
shoulder angles during a standard task (i.e., abduction and
elevation) [35]. Lastly, in one case, the accuracy of the system
was assessed by comparing the peak angles using wearable
sensors with those obtained using a robotic device in the
sagittal plane (i.e., flexion/extension), reporting a mean error
ranging from -2.63° to 0.54°, at high speed (90°/s). Mean
errors ranging from -0.92° to 2.90° were observed at lower
speed (30°/s) [45]. Generally, these findings indicate that
the data accuracy of IMU-based systems is sufficient for
monitoring the kinematics of the upper limbs in individuals
with motor impairments. Despite certain limitations, especially
in reaching tasks, exist, these systems have proven to be a
valuable equipment for evaluating and comprehending upper-
limb motion in both clinical and research contexts. Ongoing
enhancements and adjustments may further improve their
efficacy across a range of applications.

V. BIOMECHANICAL METRICS

All the reviewed articles analyzed the kinematics of the
upper body part. It is possible to group the kinematic outcome
metrics into five main categories: raw metrics, spatio-temporal
metrics, angular metrics, temporal metrics and activity metrics.
All the reported parameters have shown clinical meaning
and importance related to the disease analyzed. In the next

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3436532
FAVATA et al.: IMU-BASED SYSTEMS FOR UPPER LIMB KINEMATIC ANALYSIS IN CLINICAL APPLICATIONS: A REVIEW 9

sections, we discuss how these metrics can be related with the
clinical practice. In Fig. 8 we show the relationship between
the biomechanical metrics and the analyzed diseases.

A. Raw sensor metrics

Raw sensor metrics are features directly obtained from
the gyroscope (i.e., angular velocity) and accelerometer (i.e.,
linear acceleration) data, typically after some pre-processing to
reduce noise and drift (see section IV-C). These are the most
straightforward metrics to work with as they do not require
any biomechanical model and can be obtained even with a
single IMU. Among the studies reviewed, several authors im-
plemented raw sensor metrics combined with machine learning
techniques to classify between healthy subjects and patients
[40], [45], [49], [56], [57], [59]; to predict the clinical score
of patients undergoing an assessment scale [48], [51]; and to
identify activities of daily living (ADL) in patients with tremor
[55], [69].

Each IMU sensor generates six time-series (for 3-axes
gyroscopes and 3-axes accelerometers). Additional time-series
can be derived by calculating the first and second derivatives
of the angular velocity (angular acceleration and angular jerk)
and the first derivative of the linear acceleration (jerk). A
large variety of features can be obtained by analyzing these
data either in the time domain or the frequency domain.
Typical time domain features include minimum/maximum val-
ues, mean, median, standard deviation, percentiles, root mean
square value (RMS), skewness and kurtosis. Other features can
be obtained in the frequency domain from the power spectral
density (PSD) of the signal, such as the total power, the power
in a specific frequency band or the amplitude and phase shift
of specific harmonics.

Eight works (23.5%) analyzed the angular velocity, col-
lected through the IMU’s gyroscope, to evaluate the upper
limb motor control [28], [34], [35], [58]-[60], [76], [78].
LeMoing et al. found that the angular velocity obtained
from a wrist-worn sensor in children with DMD could be a
promising metric to assess their upper limb motor function
[76]. Vanmechelen et al. and VanWonterghem et al. analyzed
children with CP during a reaching task and observed higher
values of the angular velocity,compared to a control group
[34], [78]. The authors linked these results to a motor pattern
characterized by poor control and involuntary movements.

DiBiase et al. obtained the total power from PSD of the
angular velocity [58]. The authors found out that by analyzing
an arm prono-supination in a group of PD, they were able
to distinguish between PD with and without medication, and
PD and healthy subjects, based on the total power analysis.
The total power is able to catch the progressive reduction in
speed and amplitude that characterizes PD during repetitive
movements. For this reason, it represents a good candidate to
monitor PD motor symptoms. Ricci et al. analyzed a group
of PD subjects and obtained different features related to the
angular velocity (i.e., peaks, variation of amplitude), known
indicators of rhythm and asymmetry of movement, which are
characteristics of the analyzed disease [59], [60]. In [59], they
analyzed a de novo group not influenced by any therapeutic

intervention, with respect to a group of healthy subjects. In
[60], they analyzed a group of PD patients treated with a
pharmacological therapy. In the first case, those features have
been found to be significantly different in PD compared to
healthy subjects, demonstrating to be relevant to assess the
motor status of the patient. The second work confirms this
result demonstrating that these features are able to track the
change of the therapy. Compared with the clinical score of the
UPDRS, these features showed partial accordance. However,
some features are not easily detectable to the examiner’s eye.
Those results demonstrate that using an IMU-based system
may be a valid support in assessing PD in the early stage
and along the therapy, helping to adjust the therapy for each
patient.

Krishna et al. successfully trained a Linear Discrimant
Analysis model to classify patients with cerebellar ataxia
according to the disease severity, while performing two tasks,
i.e., the Finger-to-Nose test (FNT) and the Dysdiadochokinesia
Test (DDK) [49]. The researchers observed that during the
FNT task, which is a predominantly translational movement,
the frequency domain features (RF: resonant frequency and
MR: magnitude of the resonant frequency) of the angular
acceleration along the forearm axis gave the best classifica-
tion results. On the contrary, for the DDK task, which uses
predominantly rotational movements, the RF and MR features
of the linear acceleration gave the best results.

Two studies (5.9%) used the angular jerk to evaluate the
upper limb movement smoothness in children with CP [34]
and stroke survivors [54], demonstrating that patients adopt
different coordination strategies.

Four articles (11.8%) examined the linear acceleration as a
way to quantify the upper limb motor function [28], [34], [76],
[78]. Annoussamy et al. showed that the mean value of the
linear acceleration of the wrist in children with SMA, collected
in an home-environment, significantly decreased after 6 and
12 months of observation. This metric could be used to track
the progression of the illness [28]. VanWonterghem et al.
measured the acceleration (range and peak) of the trunk in
children with CP, during a reaching task, and obtained higher
values in comparison to the control group, due to a poorer
trunk control of the patients [78]. Similar conclusions were
drawn when analyzing the peak linear acceleration of the hand,
forearm and upper arm in children with CP [34].

To assess the smoothness of the movement, two papers
(5.9%) evaluated the jerk, as a measure of fluency [34], [35].
Vanmechelen et al. obtained the jerk from the acceleration data
of the IMUs placed on the hand, forearm and upper arm [34].
They analyzed children with CP while performing reaching
tasks. In comparison to the healthy group, they revealed
that children with CP had significantly higher maximal jerk,
which is linked to more uncontrolled movement. Newman et
al. computed the normalized jerk from the acceleration data
recorded by the IMU placed on the upper arm, where the
jerk metric was normalized by the maximum linear velocity
[35]. They found that during a reaching task, the normalized
jerk of the paretic upper arm in children with CP was higher
in comparison with the non-paretic one. This variable allows
to objectively quantify that the paretic limb movements were
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less fluid due to inefficient motor control. It is worth noting
that no correlation was found between this variable and the
MA’s clinical score. However, since the authors stated that this
metric might capture features of movement that the human eye
cannot evaluate, its clinical relevance is not diminished [35].
It is possible to conclude that raw metrics, easily obtained
directly from the sensor, are ideal candidates for machine
learning analysis. Their lack of clear biomechanical interpre-
tation can be addressed through machine learning processes,
enabling the discovery of insights not easily detected in initial
analyses. Additionally, these metrics provided valuable infor-
mation regarding the status of patients with motor diseases.

B. Angular metrics

An effective way to evaluate the function of the upper limbs
is quantifying the angular kinematics of upper body joints [80].
For instance, the Range of Motion (ROM), obtained from the
joint angles might be a useful clinical outcome, as individuals
may experience impaired joint mobility due to a health issue
or injury [81], [82]. In this review, joint angles resulted the
most analyzed variables. Thirteen studies (38.2%) calculated
them to quantify the joint mobility. In [41], [43], [62], [63],
the authors analyzed the angular kinematics of the upper
limb in stroke survivors to quantify pathological synergies.
Bhagubai et al. evaluated shoulder, elbow and wrist angles
while the subjects were performing four items of the FMA
clinical scale [63]. They found out that the shoulder flexion,
which according to the clinical scale has to be performed with
the elbow totally extended, was accompanied by involuntary
shoulder abduction and elbow flexion. For both the most
and less affected subjects, the joint angles were found to be
closely correlated with the FMA score. In other cases, the
relationship between metrics and clinical scores was unclear,
possibly due to the finer grain scale of the IMU-based system
compared to the discrete clinical scale (ranging from O to
2). Schwarz et al. analyzed the trunk angular variation and
the shoulder, elbow, wrist, and fingertip ROMs since those
variables were expected to describe the interjoint coordination
and pathological compensation during a reaching task. The
authors were able to quantify the characteristics of movement
impairments and the strategies of inter-joint coordination [62].
They found that the weakness of the shoulder and the elbow
muscles was compensated by a higher trunk ROM.

To quantify the relationship between shoulder and elbow
kinematics and to evaluate inter-joint coordination of stroke
survivors, Schwarz et al. defined a shoulder-elbow correlation
coefficient [41]. A strong correlation was found between
this parameter and the FMA score, suggesting that it might
quantify the same characteristic of the inter-joint coordination
evaluated during the clinical assessment. This parameter also
showed statistical discriminability between movement of the
affected upper limb with respect to the less affected side.
In order to assess the upper limb motor function in stroke
patients, Pan et al. measured the shoulder range of motion
and the highest value of the torso’s angle during a reaching
task [43]. Severe loss of motor function was associated with
lower ROM of the shoulder and increased torso angle. This

result is further confirmed by the finding that both the torso’s
angle and the shoulder ROM significantly differed between
the stroke and control groups.

Leunberger et al. analyzed the elevation angle of the
forearm, defined as the angle of that segment with respect
to the horizontal plane, recorded during 48h to assess arm
functionality in a home environment [33]. The authors found
out that the paretic and non-paretic forearm elevation dis-
tribution correlated with the clinical score, supporting the
initial hypothesis that the elevation angle could be a clinically
relevant metric of arm impairment.

Repnik et al. analyzed the maximum angular value of
the trunk with respect to the initial position, a parameter
implemented in previous studies for clinical assessment of the
motor function in stroke survivors [54]. They demonstrated
how this metric might discriminate between stroke survivors
and healthy participants. It is important to underline that
even though the authors did not find any correlation between
this parameter and the clinical outcome, its usefulness for
clinical purposes was not diminished. There are aspects of the
upper limb kinematics that cannot be easily determined from
visual observations during a clinical assessment and, therefore,
discrepancy can be registered with respect to the clinical score.

Delrobei et al. obtained the joint angles of shoulder, elbow
and wrist during a repetitive pronation-supination task to
evaluate the bradykinesia of a group of subjects with PD. The
authors combined different angular metrics (i.e., standard de-
viation of the angles, angular velocity, and variability in terms
of both time and amplitude) to derive a dimensionless index.
These metrics have been proven to be descriptors of bradyki-
nesia, with milder cases exhibiting consistent amplitudes and
frequencies, while patients with severe bradykinesia tend to
display lower and less uniform amplitudes and frequencies
[53].

This analysis confirms the hypothesis that angular metrics
(e.g., ROM) can quantify the degree of motor impairment
in individuals with motor diseases, as evidenced by the cor-
relation found with clinical scores. Furthermore, additional
analysis is required when these metrics do not correlate with
clinical scores, as they may provide valuable information not
detectable through visual observation by clinicians.

C. Spatio-temporal metrics

Spatio-temporal metrics are commonly employed in the
analysis of gait for both healthy individuals and patients.
Nevertheless, they may also be applied for the assessment
of upper limb kinematics, offering quantitative insights into
the spatial positioning of joints or specific points on a body
segment. A homogeneous transformation matrix can be used
to solve the forward kinematics and obtain the linear joint
kinematics, when the orientation of a body segment and
the coordinates of a point belonging to it are known [66].
Five works (14.7%) defined a kinematic model, based on the
orientation of the sensor and the segment length, and tracked
the position of the IMU attached to a body segment to obtain
biomechanical metrics related to the upper limb control in
people with disability [32], [41], [43], [44], [61].
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Bai et al. examined the position of an IMU attached to
the hand during a NHPT, with the aim of comparing the
upper limb control of 10 healthy volunteers against a patient
with brain disability [44]. Analyzing the position of the hand
during the task, the authors found out that the healthy controls
find easier to return to the center of the peg than the patient.
This discovery implies that healthy subjects had better control
of the upper limb than the patient during the NHPT test.
In [32], [61], the authors aimed to examine the daily-life
reaching performance of stroke patients through the analysis
of position data obtained from an IMU attached to the hand.
Specifically, the researchers monitored the position of that
IMU relative to the pelvis in the transverse plane, and obtained
the reaching area and workspace. Furthermore, they visualized
the distribution of the hand’s position in the transversal plane
using a color map. These metrics proved to be effective in
objectively evaluating the motor performance of stroke patients
during their engagement in activities of daily living. It has to
be noted that VanMeulen et al. primarily focused on daily-life
reaching performance after stroke, while Held et al. examined
upper-limb kinematics in stroke patients in both clinical and
home environments.

Schwarz et al. analyzed the kinematics of the upper limb
while the subjects were performing four different movement
tasks (shoulder flexion, pointing ahead, grasp a glass and key
insertion) to study the inter-joint coordination in stroke pa-
tients. They analyzed the data of the IMU placed on the trunk
(attached to the sternum) to compute the trunk displacement.
Their findings indicated that the trunk compensation increases
with the increase of task complexity.

Only one study uses the linear velocity of a joint as a
metric. Pan et al. calculated the linear velocity of the elbow
to reflect its efficiency during a task and to evaluate the upper
limb motor function [43]. They computed the elbow joint
velocity as the first derivative of the elbow position, obtained
according to the kinematic model, and calculated the peak
and average speeds during a movement task. The study found
significant differences on this metric between stroke and con-
trol groups, denoting a poor motor functionality. Furthermore,
they observed high Spearman correlation coefficients between
the elbow joint speed metric and the FMA scale, proving the
validity of this metric.

In conclusion, spatio-temporal metrics offer insights into the
progression of motor diseases. Moreover, they offer valuable
information about upper limb control in individuals affected
by such motor diseases.

D. Temporal metrics

A common kinematic parameter used to describe the degree
of difficulty in performing a motor task is the duration [83].
By using motion capture systems, it is possible to analyze not
only the entire duration of a movement but also its various
phases [54], [84].

Six works (17.6%) analyzed temporal metrics to obtain
quantitative information to assess the upper limb motor func-
tion [35], [43], [44], [54], [58], [84]. DiGiovanni et al. focused
on the analysis of time variables, based on the hypothesis that

the cycle time, as in the case of FNT, can be considered as
a reliable quantitative outcome [84]. They discovered that,
compared to healthy subjects, the FNT test done by MS
patients took noticeably longer to be completed. Interestingly,
they found out that the patients needed more time only during
the adjusting phase (i.e., total time of the FNT, time to locate
the tip of the nose). Since the test was conducted with eyes
closed, the source of feedback came from the proprioception
sensory system, and MS patients required longer time than
healthy people for the sensory feedback to integrate. Repnik
et al. analyzed a group of stroke patients during an ARAT to
quantify arm functionality after a stroke. The findings demon-
strated a significant association between time movement and
ARAT score, enabling a quantitative and objective distinction
between patients with various motor functions [54].

In a group of children with CP, Newman et al. examined
the duration of a reaching task, since it was previously used
to quantify the arm usage. By analyzing the task’s duration,
they discovered a statistically significant difference between
the paretic and the non-paretic arm. The authors also found
a good correlation between the duration and the MA score,
demonstrating that the movement’s duration might be consid-
ered as a global marker of movement performance [35].

Bai et al. studied the kinematics of a stroke survivor, mea-
suring the time required to complete a NHPT and compared it
with a healthy group. The test required less time in the case of
the healthy subject, inferring that this metric presents a good
correlation with the motor control of the upper limb [44].

DiBiase et al. calculated the total time needed, by subjects
with PD to complete two tasks, finger-tapping and prono-
supination, to quantify the characteristic slowness of voluntary
movement of patients with PD. This metric is able to discrim-
inate not only PD subjects with and without medication, but
also PD without medication and healthy subjects [58].

Based on this evidence, it appears that time metrics are
good indicators to assess the motor function of patients with
motor disease. In fact, in general the authors found that
patients required more time, with respect to healthy subjects,
to complete the same tasks.

E. Activity Metrics

Quantifying information about the upper limb motor activity
during the everyday life could help clinicians in monitoring
progress and evaluating the effectiveness of the treatment,
thereby overcoming the limitations of the standard clinical
assessment (i.e., fluctuations in patient sympotoms over time)
[25]. Six works (17.6%) focused on activity metrics to evaluate
and assess arm use and functionality in a home environment.

Three works (8.8%) analyzed the activity count (AC),
obtained from accelerometer data of the sensor placed on the
forearm at wrist level, to estimate daily arm use [29], [30],
[33]. Leuenberger et al. recorded the kinematics of stroke
survivors for 48h to quantitatively assess the arm use in their
home environment. They found out that the AC of the 2-
day recording had a strong correlation with stroke survivors’
clinical scale (BBT) scores [33]. To obtain a more accurate
result, they excluded the walking phase from the study, which
was measured by another sensor placed on the shank.
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Brogioli et al. analyzed the AC during a 3-day recording in a
group of SCI patients to monitor their independence in a home
environment [30]. A significant correlation between the AC
and the clinical scale used to assess daily activity was found,
demonstrating the reliability of the IMU to evaluate upper limb
activity outside of the clinical setting. Therefore, the use of
IMUs can provide a quantitative analysis of the functionality of
the upper limb outside the controlled environment, providing
novel insights into overall performance. Brogioli et al. also
evaluated the limb activity of SCI patients for 3-6 hours during
their daily routine. They analyzed the activity laterality”
defined as the ratio between the ACs of the right and left
upper limbs [29]. The activity laterality correlated with the
score of the clinical scale used to quantify independence in a
SCI patient. This finding suggests that the more one side is
affected compared to the other, the less independent the patient
is in daily life.

Two studies (5.9%) examined the Gross Movement score
(GM), a binary score based on forearm orientation, imple-
mented to evaluate functional arm use [31], [33]. The IMU
data collected at the wrist level was used to calculate the score.
The arm movement is counted (GM=1) if it occurs within a
range of functional movements (i.e., threshold of 30° for the
angle defined by the forearm axis and the horizontal plane).
They compared the GM against the results of the BBT, clinical
scale sensitive to arm and hand function, which is usually
implemented to evaluate gross dexterity. Leuenberger et al.
identified a significant correlation between the GM score and
the BBT score, suggesting that the former may provide insights
into the performance of stroke patients, both in clinical and
home environments [33].

Based on the position of the hand, one work (2.9%) ob-
tained the reaching counts of the hand (counts of the hand
displacements of more than 10 cm away from the resting hand
position). Held et al. compared this parameter and the FMA’s
clinical score at different time-points (every 2 weeks for one
month), and observed a difference between the reaching counts
and the score. The parameter showed an increase over time
while the clinical score remained constant, demonstrating that
this metric might provide supplementary information to the
traditional clinical evaluation [32].

To conclude that activity metrics yield findings that are not
only clinically helpful, but might provide additional informa-
tion about the long-term evolution of patients during recovery
and their independence in a home environment.

VI. CONCLUSION

In this study, we conducted a comprehensive review of
IMU-based wearable systems designed for monitoring upper
limb kinematics in individuals with neurological and neuro-
muscular diseases. Our evaluation encompassed both technical
and clinical perspectives. From the analysis of the IMU-based
systems examined, we derived the following key advantages
and disadvantages:

Advantages:

o Compact dimensions and lightweight design, minimizing
physical burden on users (dimensions <35 mm x 60 mm
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Fig. 8. Bar plot to describe the biomechanical metrics used according
to the disease. Vertical axis represents the number of papers analyzed.

x 15 mm; weight<36 gr) [29], [35], [40], [50], [54], [56],
[57], [84].

o Cost-effectiveness [41], [50], [56], [57], [84].

e User-friendly interface for both patients and clinicians
[26], [56], [57], [84].

o Ability to directly obtain raw metrics from the system,
even with a single sensor [27]-[30], [33]-[35], [40], [48],
[49], [55], [56], [58]-[60], [76], [78], [84].

« Potential for comprehensive analysis of upper limb kine-
matics through kinematic modeling [32], [41], [43], [44],
[54], [61]-[63].

o High accuracy of the system [32], [35], [41], [44], [50],
[59], [60] .

« Non-intrusive system design that does not impede patient
movements [27], [30], [33], [35], [40], [48], [50], [51],
[56].

o Suitable for extended recording periods due to battery
autonomy [31], [33], [45], [76].

o Capability for use outside equipped laboratory settings
for motion analysis [27]-[31], [34], [35], [40], [45], [48]-
[50], [76], [84].

Disadvantages:

o Systems incorporating IMUs or wires that may hinder
patient movements [32], [44], [45], [54], [57], [59]-[61],
[76].

e Challenges in performing sensor-to-segment calibration
in subjects with motor diseases [35], [44], [62], [63].

« Insufficiency of IMUs for certain applications, leading to
limited information [31], [33], [35].

¢ Inaccuracy due to absence or presence of a magnetometer
[32], [50].

While the integration of IMU-based systems into clinical
practice presents significant promise, challenges persist, in-
cluding technical issues such as drift and magnetic interfer-
ence, as well as the absence of standardized protocols. Despite
these obstacles, considerable progress has been achieved over
the last two decades. We conclude this review paper by sum-
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marizing the primary findings related to each of the proposed
research questions.

A. What clinical protocols are used to evaluate upper
limb kinematics in people with motor disorder using
IMU-based systems?

Identifying standards for clinical practice to assess the upper
limb kinematics using IMU-based systems in individuals with
motor diseases is challenging. One of the major challenges
from the clinical point of view is the implementation of the
sensor-to-segment calibration in case of subjects with motor
impairment. This practice is crucial for the accuracy of the
data, but it is challenging to perform for a person with a motor
disease. Even if the majority of the authors do not clearly
explain the calibration process, it is possible to say that the
most feasible calibration method is the static pose. In fact, the
functional alignment would require the presence of a clinician
to assist the patient in performing the functional movements.

Another critical aspect concerning the use of IMU-based
systems in clinical practice is the choice of the number of
sensors. They should not restrict the patients’ movements
while provide enough kinematic information to evaluate the
motor status of the subject. The most used configuration
consisted in using a sensor setup of four IMUs. This tendency
may be attributed to the non-obstructive characteristic of a
four-IMU system, which provides comprehensive kinematic
information for one or more joints.

Regarding the placement of the IMUs, the majority of
the studies place one IMU on the forearm segment at the
wrist level. This placement allows capturing movement quality
aspects such as speed and smoothness of the trajectory, even
with just one sensor, which have been shown to be important
indicators of motor function [48].

Despite these issues, there seems to be a tendency to use
wearable IMU-based systems in the clinical practice, as they
are easy to implement and provide useful information about
the upper limb kinematics. Moreover, above all, the kinematic
analysis performed with IMU-based systems allows to record
the data in domestic and outdoor environments, thus collecting
information about the real daily life use of the upper limb.
This approach avoids the daily fluctuations of the patient (i.e.,
fatigue level, timing of the clinical assessment) and other
limitations of standard clinical evaluation.

B. What are the technical characteristics and
configurations of inertial sensors that are most suitable
for clinical application?

Even if the IMU technology has gained popularity in the
motion analysis field, its use in the clinical practice is still
limited. Indeed, the majority of the studies included in this
review have been conducted in a controlled environment. One
of the challenges in a clinic setting or in a less controlled
environment is the presence of ferromagnetic materials that
can cause interference with the magnetometer. Hence, one
option is to select IMUs without a magnetometer or exclude
magnetometer data and analyze the information derived from
the accelerometer and gyroscope. In fact, considering the

latest advances in sensor fusion algorithms, it is not possible
to definitively classify the magnetometer as a problematic
concern. Indeed, it is important to note that only one study has
addressed issues related to ferromagnetic interference, based
on the data within this review.

Another choice the researcher has to make is whether
to use IMU sensors with or without cables. The former
option offers higher memory storage and battery life, making
them well-suited for long-term recordings. Unfortunately, the
complicated setup with cables might be too obtrusive and limit
patients’ movements. On the other hand, wireless IMUs offer
limited-time captures but provide more ergonomic sensors
that are better suited for uncontrolled environments, thus
facilitating the recording of real daily-life movements. Hence,
the solution would be choosing and developing the system
according to the aim of study and the environment where the
analysis will take place.

Regarding the usability, the type of fixation used to attach
the sensor to the body segment represents a challenge, in
particular for long-recording in an uncontrolled environment.
It is necessary both limit the soft-tissue artefacts, to obtain
reliable data, to ensure the comfort of the user, and to capture
the real movement of the patient. For the sensor on the
forearm, a common solution is to employ a watch-like band,
which is both easy to wear and ensures a good fixation on the
body. For the other segments, the most-widely used solution
has been Velcro straps, a comfortable material that can be
adapted to all types of body segments.

To check the accuracy of the data, it is common to compare
the results with another motion analysis system. Generally, the
IMU-based system is compared with a marker-based optical
motion capture system, which is considered the gold standard.
This review concluded that the data accuracy of IMU-based
systems was sufficient to track the kinematics of the upper
limb in patients with motor diseases, provided an accurate
sensor-to-segment calibration had been performed.

To conclude, inertial tracking systems represent a feasible
solution to monitor the upper limb kinematics in people with
a motor disease in the clinical practice.

C. What biomechanical metrics obtained from
IMU-based systems are useful for clinical practice?

IMU-based systems can be used to obtain features directly
from accelerometer and gyroscope measurements (i.e., raw
sensor metrics), or features based on a biomechanical model
(e.g., angular or spatio-temporal metrics). The former are
easily obtained from few sensors (even when using a single
one), but usually lack an intuitive clinical interpretation. How-
ever, the simplicity to generate many motion features from
these metrics makes them good candidates for real-time and
machine learning applications. On the contrary, features based
on a biomechanical model align more closely with clinical
applications, but require an IMU-based system with at least
two sensors in consecutive segments to obtain at least a single-
joint kinematics.

Nevertheless, raw sensor metrics, angular metrics and
spatio-temporal metrics have all shown to be useful for the
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evaluation of the kinematics of the upper limb in people with
motor diseases. As a matter of fact, several of the reviewed
studies successfully used these types of metrics to correctly
distinguish between healthy subjects and people with motor
diseases, therefore being able to identify the distinctive motor
characteristics of the disease and assess the level of motor
function of the analyzed patients. In some cases, these metrics
were even able to provide additional information related to
the participant’s movements (e.g., compensatory movements),
which are otherwise not perceptible through the simple obser-
vation of a clinician. For this reason, these metrics enhance the
comprehensive evaluation of the patients. This might prove the
effectiveness of the IMU-based system in quantitatively and
objectively assessing the motor status of people with motor
diseases.

Temporal metrics, such as the time needed to complete a
task, can be a good indicator of a patient’s motor function
since longer duration of a task can be associated with poor
motor control. The use of the sensors can also help analyzing
the time needed for each sub-phase of a movement, enhancing
the comprehension of motor control during each phase.

Recording data outside of the laboratory for a long period
of time allows us to measure new parameters, such as activity
metrics. Those metrics could be more representative of the
patient’s daily-life activity and could help the clinicians to
better tailor the treatment and monitor the progression of the
disease.

In conclusion, in the future, the data collected with IMU-
based systems might represent a valid alternative to subjective
clinical evaluations, as they provide a quantitative assessment
of the patients’ motor status. They will also allow to continu-
ously monitor the patient during the whole day to obtain more
representative information of the motor disease in real life.
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DAILY LIVING: ADL; UNIFIED PARKINSON’S DISEASE RATING SCALE: UPDRS; FINGER TO NOSE: FTN; MINNESOTA TEST: MT; BOX AND BLOCK
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Clinical Scale
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[57] improve the understanding of the disease Adlll)m ‘,N?th Pa_rl;;)nson UPDRS 4 I}IIVI USI; fo:jear@ (dwrlitiéfvefi) hand
and assess the effectiveness of the interventions (PS) isease (m=40) (thumb, index and middle finger)
Investigate .the inter joint cuordmatlon of Adults Stroke survivors 8 IMUs- hand, forearm, upper
[62] the upper limb in stroke survivors across (m=10) FMA arm, and torso (shoulder level)
different movement tasks (OB) ’
Develop an automatic segmentation and
recognitiI:)n methodology l%) identify motor Adults Stroke survivors 5 IMUs- hand, forearm, upper
[41] . . oo . FMA, ADL arm, and torso (shoulder and sternum
pattern during activities of daily living in (m=26) level)
Parkinson disease patients (OB)
Evaluate metrics to des_crlbe dally—hfe arm Adults with Parkinson 4 IMUs- hand, forearm (proximal and
[55] movement performance in stroke subjects in Disease (m=13) NP distal part) and upper arm
a simulated daily-life setting (OB) )
[61] Quantitative assessment of trunk movement Adults Stroke survivors ADL 6 IMUs- hand, forearm ,upper arm,
in children with Cerebral Palsy (OB) (m=17) torso (sternum, shoulder and waist level).
Quantitative assessment of trunk movement Children and Adults with o
(78] in children with cerebral palsy (OB) Cerebral Palsy (m=20) ADL 1 IMU- torso (sternum level)
(34] Quantitative assessment of upper limb Children and Adults with ADL 3 IMUs- on the hand, forearm
movement in individuals with cerebral palsy (OB) Cerebral Palsy (m=18) and upper arm
48] Estimation of clinical score of upper limb Adults Stroke survivors ARAT 1 IMU on the forearm- at wrist
movement in stroke survivors (ES) (m=21) level
Investigate the feasibility of self-directed Adults Stroke survivors 3 IMUs- on the forearm, at wrist
[26] home training with an platform based on ) ) ’ FMA level, on the upper arm and on

IMU (ES)

(m=11)

the torso (at sternum level).
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TABLE II
TABLE OF THE TECHNICAL ASPECTS OF THE IMU-BASED SYSTEM AND THE BIOMECHANICAL METRICS OBTAINED. THE BRAND AND THE COMPANY
OF THE IMU WAS REPORTED IN THE TABLE, WHEN THIS DATA WAS DECLARED IN THE ARTICLES. WHEN A SELF-BUILT CUSTOM DEVICE IS USED,
THE SENSOR CHIPS USED ARE INDICATED IN BRACKETS. ABBREVIATIONS: W/M (MAGNETOMETER USED); W/OM (MAGNETOMETER ABSENT OR
NOT USED); FS (RECORDING SAMPLING FREQUENCY); BPF/LPF/HFP (BAND / Low / HIGH-PASS FILTER); KF/CF/MAD (KALMAN /
COMPLEMENTARY / MADGWICK FILTERS); RSM/ANM/STM/TEM/ACM (RAWSENSOR / ANGULAR / SPATIO-TEMPORAL / TEMPORAL / ACTIVITY

METRICS); TD/FD (TIME / FREQUENCY DOMAIN)

Article IMU Data CO“QCUOP and Blomecl}amcal General Remarks
Pre-processing Metrics
. Changes in the motor assessment detected over 6 months in
[28] Actymio (Sysnav, Vernon, FR) w/M. N/A RSM(TD) children with SMA, in real-life settings
_ Provides additional information on the clinical recovery of
[44] MTx (Movella, Enschede, NL) w/M. Fs = 120 Hz, Xsens KF STM stroke survivors while performing the NHPT
g Fs = 200/100 Hz (gyr/acc), The IMU-based system shows high potential to objectively
(631 Custom [ST-LSM330DLC] w/o M. CF(MAD), ZUPT ANM assess motor function of the upper extremity of stroke patients
[69] Shimmer-9DoF (Shimmer, Dublin, IE) Fs = 50 Hz, BPF (0.1-12 RSM(TD) The detection of typical arm movement can provide an
w/o M. Hz) indication of rehabilitation progress of stroke survivors
[50] MelaMot19nR (MBientLab, San CF(MAD) ANM Used as tool tg Ob]CCFth’,ly onmtor‘the shoulfigr movement of
Francisco, US) w/o M. patients with cervical spinal cord injury
[29] Custom “Resense” w/o M [ADXL-345, Fs = 50Hz ACM Activity metrics be me clinically relevant to gain insights in
TDK-ITG3200] c T the long-term evolution of patients in the home environment
Custom “Resense” w/o M [ADXL-345, _ Data collected in home environment can be used to track
(30] TDK-ITG3200] Fs = 50Hz ACM clinical outcomes during rehabilitation in patients with SCI
Fs = 100 Hz, LPF (5Hz)
[56] Custom “SensHand V1” w/M for repetitive exercises, RSM(TD,FD) Data collected in home environment can be used to track
[L3G4200D, LSM303DLHC] BPF (0.5-15/20Hz) for ’ clinical outcomes during rehabilitation in patients with SCI
tremor, ZUPT
[40] BWT901CL (Witmotion, Shenzen, CN) Fs = 50 Hz, LPF (20Hz), RSM(TD.FD) Task with hand mov_emen} ha§ satlsfactf)ry classification for
w/o M. KF Parkinson’s Disease patients
[31] Custom IMU w/o M [MPU9250] CF(MAD), Median Filter ACM The IMU-based system is a feasible method to measure
relative arm use in hemiparetic patients at home
1GS-180 (AIQSynertial, Brighton, GB) The bradykinesia index is a tool to assess objectively and
[53] N/A ANM e L . s .
w/M. quantitatively the bradykinesia in Parkinson’s Disease patients
HPF (1Hz), BPF (4-8 Hz) RSM(TD.FD) Analyzing the data from an IMU-bases system is possible to
[58] OPAL (APDM, Portland, US) w/M. for tremor, BPF (1-4Hz) TEM’ ’ obtain a quantitative analysis of bradykinesia and rigidity in
for bradykinesia patients with Parkinson’s Disease
84] 3-Space™ Wireless 2.4GHz (YostLabs, Fs = 200 Hz, KF, LPF TEM Quantitative analysis of bradykinesia and rigidity in patients
Ohio, US) w/M. (5Hz) for gyroscope data with Parkinson’s Disease
Xsens full-body suit (Movella, _ ANM, STM, Activity metrics derived from continuous measurement are
(321 Enschede, NL) w/M. Fs = 20 Hz, Xsens KF ACM more sensitive to changes compare with clinical assessments
[45] Custom IMU w/M [MPU9250] CF, Savitzky-Golay filter RSM(FD) Data from IMU-based Sysem can be used to classify CP
Custom “BioKinTM” w/o M _ Data from IMU-based system can be used to classify CP
[49] [MPU9250] Fs = 50 Hz, CF RSM(TD,FD) ovement
. The variables, obtained from the IMU-based device, well
(761 Actymio (Sysnav, Vernon, FR) w/M. KF RSM(TD) represent the movements performed by DMD children
Shimmer 6-axis IMU (Shimmer, _ Wearable sensor data can provide clinically-meaningful
(271 Dublin, IE) w/o M. Fs =256 Hz, LPF (10Hz) RSM(TD) indicators of the motor impairments in stroke survivors
Custom “Resense” w/o M [ADXL-345, Variables linked to arm function of stroke survivors can be
(331 TDK-ITG3200] CF(MAD), HPF (0.3 Hz) ACM monitored during daily life with and IMU-based device
[35] Physilog4 (GaitUp, Lausanne, CH) w/o N/A RSM(TD,FD), Assessment of the upper limb movement with parameters not
M. TEM easily quantified by standard clinical observation
[51] MTw Awinda (Movella, Enschede, NL) Fs = 100 Hz, Xsens KF, RSM(TD) IMU-based system can help estimating the impairment of
w/M. LPF (8 Hz) for acceleration stroke survivors performing minimally-burdensome task
Fs = 50 Hz, Hierarchical ANM, STM, Can help in evaluating the motor status of stroke patient and
[43] Custom IMU w/M [MPU9150] information particle filter TEM supporting the rehabilitation process
RSM(TD), Quantification with IMU-based system during ARAT
(541 Reference N/A, wiM. KF ANM, STM assessment can provide better insight into arm motor function
. . _ RSM(TD,FD), Wearable device can be a valid support to assess a correct
[59] Movit G1 (Captiks, Rome, IT) w/o M. Fs = 50 Hz, LPF (10 Hz) ANM evaluation of PD in its carly stage
. . _ RSM(TD,FD), Can provide an objective way to monitor patients’ response
(601 Movit G1 (Captiks, Rome, IT) w/o M. Fs = 50 Hz ANM and to personalize the therapy based on measurable outcomes
(57] Custom “SensHand” w/M Fsig;]:l(%osﬁzs’/;(f}fzﬁsgf)! RSM(TD,FD) IMU-bases system can distinguish between healthy subject
[L3G4200D,LSM303DLHC] : R ’ and Parkinson Disease patient
tremor analysis, ZUPT
Fs = 100/200 Hz (acc/gyr), . . . . . .
[62] Custom IMU w/o M [ST-LSM330DLC] CF(MAD), LFP (10Hz), ANM. TEM Can provide additional information régardlng the functional
status of stroke patients
ZUPT
. Shows the importance to assessing different movement tasks
[41] MVN Awinda (M‘;)J;}la’ Enschede, NL) Fs = 60 Hz, Xsens KF STM, ANM of the real world to get a more complete picture of
) post-stroke patients
[55] Technaid (Technald,' Madrid, ES); Fs = 100 Hz RSM(TD) Aut(?matlc labelling (?t contmqous upper hmp activity. Tool to
magnetometer info N/A interpret tremor in PD patients and monitor treatment
[61] MVN Biomech (Movella, Enschede, Fs = 120 Hz STM Metrics of hand movements can be usgd to objectlyely assess
NL) w/M. performance of arm movement in stroke patients
First step to better individualize evaluation and treatment for
[78] MTw (Movella, Enschede, NL) w/M. Xsens KF, LPF (5Hz) RSM(TD) trunk control in Dyskinetic CP children
MTw Awinda (Movella, Enschede, NL) The pathological movements of individuals with Dyskinetic
(34] w/M. N/A RSM(TD) CP can be captured with IMU-based system.
48] ZurichMove (ZurichMove, Zurich, CH) Fs = 50 Hz, Analytical RSM(TD,FD) It is feasible to obtain accurate estimates of the ARAT score
w/o M. solution of sensor fusion ’ with an IMU-based system
[26] MOﬁO“‘?I‘ﬁQ%vM‘?%@?EMBh%r%reati e Commons ARy 4.0 License.|For mopgNNgrmatior], see“ﬁ&?//@gg%m%%wimwlfm is safe and can
w/M.

provide rehabilitative training in a high dose




