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Abstract— Human-Robot Collaboration (HRC) has evolved
into a highly promising issue owing to the latest breakthroughs
in Artificial Intelligence (AI) and Human-Robot Interaction
(HRI), among other reasons. This emerging growth increases
the need to design multi-agent algorithms that can manage
also human preferences. This paper presents an extension of
the Ant Colony Optimization (ACO) meta-heuristic to solve the
Minimum Time Search (MTS) task, in the case where humans
and robots perform an object searching task together. The
proposed model consists of two main blocks. The first one is
a convolutional neural network (CNN) that provides the prior
probabilities about where an object may be from a segmented
image. The second one is the Sub-prior MTS-ACO algorithm
(SP-MTS-ACO), which takes as inputs the prior probabilities
and the particular search preferences of the agents in different
sub-priors to generate search plans for all agents. The model
has been tested in real experiments for the joint search of an
object through a Vizanti web-based visualization in a tablet
computer. The designed interface allows the communication
between a human and our humanoid robot named IVO. The
obtained results show an improvement in the search perception
of the users without loss of efficiency.

I. INTRODUCTION

For thousands of years, mankind has relied on collab-
oration between individuals to perform tasks as optimally
as possible in a wide variety of situations. Actually, the
increasing use of robots in a wide variety of settings to
perform a multitude of tasks such as, for instance, in as-
sistive robotics [1] or educational robotics [2], enhances the
usefulness of improving Human-Robot Interaction (HRI) and
Human-Robot Collaboration (HRC) systems [3].

Social-aware robot navigation [4] and path planning algo-
rithms become requirements for HRC in cases where robot
navigation is involved. In these cases, the communication
between a robot and humans can be implicit or explicit and
the participants can take different roles to accomplish the
task. Side-by-side navigation [5], human-robot handover [6]
and object transportation [7] are typical cases that involve
implicit or explicit communication between agents.

However, there is a lack of HRC in most multi-agent
systems that play an essential role in areas like Search and
Rescue (SAR) [8], where a collaborative group of robots tries
to find a target in an environment. These environments can
require different types of robots like unmanned underwater
vehicles (UUVs) [9], unmanned aerial vehicles (UAVs) [10],
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Fig. 1: Human-Robot Collaborative Search with the IVO
robot. The left picture shows the IVO robot and a person
searching for an object. The right picture shows the tablet
computer interface with the search plans information and the
human participant’s preferences.

or unmanned ground vehicles (UGVs). Very few approaches
include this collaboration in the task [11], [12].

This work tackles the human-robot collaborative search of
an object in urban environments from the point of view of
Probabilistic Search (PS) and the Optimal Search Theory
[13]. To achieve this end, the approach presented in this
work is based on the Ant Colony Optimization (ACO) meta-
heuristic, used by [14] to solve the Minimum Time Search
(MTS) problem minimizing the Expected Time (ET) to find
an object. The human preferences in the task are taken
into account through a Human-Informed Robot Planning
system to obtain plans for all agents. Different approaches
to solving other tasks have demonstrated to benefit of this
type of planning [15], [16]. To simplify the problem in
this work, the implementation of the algorithm supposes the
same dynamical and sensorial capabilities for all agents but
different preferences.

The main novelties and contributions of this work are:
• A new version of an MTS-ACO algorithm has been

developed that takes into account learned human pref-
erences to create search plans and allows adaptation
to particular humans with a novel Human-Informed
Planning using sub-priors.

• A Probabilistic Map Predictor based on a Convolutional
Neural Network (CNN) has been developed that can
learn about the most likely areas where people would
look for lost objects using small datasets.

• A HRC system through an interface to ensure commu-
nication between multiple agents and devices(refer to
Fig. 1).

• An evaluation of a real case of HRC between a person
and a robot to test the viability of the proposed methods
and measure the participants’ perception.



The remainder of this paper is organized as follows. In
Sec. II, the related work is introduced. Sec. III describes
the theoretical approaches. In Sec. IV, the simulation results
are presented. In Sec. V, the real-life experiment results are
presented. Finally, in Sec. VI, the conclusions are provided.

II. BACKGROUND
In this section, the ACO meta-heuristic, which is used for

the approach presented here, is briefly explained.

A. The ACO Meta-heuristic
ACO is a bio-inspired meta-heuristic that was proposed by

M. Dorigo [17] to solve combinatorial NP-hard optimization
problems. It has been widely used to solve the Travelling
Salesman Problem (TSP), an NP-hard optimization problem.
The algorithm simulates the foraging strategy of ants through
a mathematical model. Ants try different routes in a graph,
G = (C,L), to find food in the set of nodes C and deposit
pheromones, τij , each time they take an arc (i, j) that
connects nodes i and j and compounds the set L. For each
ant, pheromones increase the probability of choosing the
shorter arcs so, arcs with more pheromones are going to be
more visited. After a while, most of the ants travel through
the shorter or optimal route. Also, there is a pheromone
evaporation rate, ρ, that allows to find new better routes.

τij ←− (1− ρ)τij ∀(i, j) ∈ L (1)

Additionally, ACO includes a heuristic ηij , to encourage
the best arcs during specific optimization processes. Taking
into account the pheromones and the heuristic, the probabil-
ity of an ant k to choose an arc (i, j) is:

pkij =
[τij ]

α[ηij ]
β

Ci∑
l=1

[τij ]α[ηij ]β
(2)

where Ci is the number of available nodes from node i
and the parameters α and β set the relative influence of the
pheromones and the heuristic.

There are different ACO algorithms [18] designed to
improve the optimization aspects. Some approaches, like Ant
System (AS), MAX-MIN Ant System (MMAS) [19], and
Ant Colony System (ACS) have been designed to optimize
in discrete spaces using graphs. Other approaches, such as
the ACO for continuous domains (ACOR) can be used in
continuous spaces. This work is centered on the MMAS
algorithm due to the promising results obtained with UAVs
[14].

Each approach has different equations to deposit
pheromones. The rule used to deposit pheromones after the
evaporation in MMAS is:

τij ←− τij + ∆τ bestij (3)

where ∆τ bestij = 1/Cb is the pheromone applied to the arcs
of the path with the minimum value for the cost function,
Cb. In each optimization iteration, a group of ants produces
different paths with different costs. The pheromone update
can be randomly performed using the best iteration cost or
the best-so-far cost.

III. RELATED WORK

In this section, an overview of the relevant topics related
to this work is provided. These topics are a description
of Probabilistic Optimal Search and different methods for
Human-Robot Collaborative Search.

A. PS algorithms

PS is an area that considers probabilistic maps of the
environment to find a target [13]. It has been broadly applied
for military purposes and in SAR to find lost people using
UAVs or UGVs. In [20], a Bayesian perspective with a
greedy algorithm is proposed for maritime environments.
Most models have adopted this Bayesian outlook using
different optimization algorithms [21], [22], [14], [23]. The
optimization utility functions used by these methods are
normally the ”cumulative” probability of detection or the
Expected Time (ET) to find the target. Sometimes other
functions as the expended energy or the collisions are also
used. When ET is the main criterion, the search is a MTS
problem.

B. Human-Robot Collaborative Search

Some approaches consider HRC to find objects or people.
In SAR, human-robot teams normally use these approaches
to search for lost people. In [24], a web interface is used
to manage the search task assignment for the teams. This
interface offers autonomous partitioning to assign tasks and
allows the users to change it. In [25], UAVs search for
people in disaster environments with 2 systems, one is
semi-autonomous and another one is totally autonomous.
In the semi-autonomous system, a Human-Informed Robot
Planning is performed where the human preferences can
modify the plan of the robot.

Specifically, in [12], a robot and a person share a task
representation through an interface in a smartphone [26] to
perform the search together. The approach uses different
Social Reward Sources to enable the HRI during the task.
These rewards are used to construct an objective function
optimized with a Monte Carlo Tree Search planner that uses
Rapidly Random Trees for each agent and it works online.
This approach considers only uniform probability maps and
does not consider segmented areas or the ET as a criterion.

Unlike our approach, the aforementioned methods do not
combine previous knowledge about where the object could
be lost, individual human preferences and the ET criterion.

IV. OUR APPROACH

A. Problem Formulation

This approach is focused on the human-robot collaborative
search for a lost object outdoors. The prior information used
to find the object is a segmented top-view image where
approximately equidistant nodes are sampled to build a graph
G, considering the map obstacles. To sample the nodes, the
space is divided into a grid of squares. The nodes are sampled
at the centroid of the squares if there is no obstacle within 40
cm, otherwise, they are sampled at the centroid of the area
not covered by the obstacle in that square or at a vertex of



the square. This method ensures better exploration close to
obstacle edges than uniform sampling. The segmented image
is used to obtain a prior probability map p(xt0) about the
target location in a 2D map, xt0 = (xt0, y

t
0), at the step k = 0.

During the search process, M agents are only able to move
in G, and a static target is considered so the probabilistic
Markov model for the target is p(xtk|xtk−1) = I. At each step
k, agents can perform an observation zk and the probability
map is updated using the Bayes’ rule and the previous
observations z1:k−1:

p(xtk|z1:k) =
p(zk|xtk)p(xtk|z1:k−1)∫
p(zk|xtk)p(xtk|z1:k−1)dxtk

(4)

where p(zk|xtk) is the observation model. To simplify the
problem, a circular ideal sensor model is supposed. In this
model, the probability of detecting an object in the step k
that is set in a location of the free space is:

p(zk = Dk|xtk) = IAw
H(Rw − rw) (5)

where Dk is a detection in the k step, H is the Heaviside
function, Rw is the considered visibility radius of the agent
w and rw is the Euclidean distance (ED) between the w
sensor and xtk. IAw is the indicator function for the agent w
in the not occluded area, Aw, delimited by Rw. The agent w
is defined as w = min{1 ≤ m ≤ M |IAm

(Rm − rm) > 0},
where rm is the ED between the m sensor and xtk.

This sensor model considers obstacles or occlusions
through IAm

. To compute Am, ray tracing is performed to
not consider the occluded area and the obstacle area in Am.

When some agents are humans, other models for object
detection that combine the human field of view [27] with an
estimation of how humans spin their heads while searching
could be considered to obtain more realistic results. This is
out of this work’s scope. For this reason, a circular detection
model is enough to evaluate how the approach proposed here
considers human preferences in simulated and real cases.

The goal of this approach is to find the optimal paths for
the agents in the graph that minimize the ET (solve the MTS
problem). This expectation is defined by:

ET =

∞∑
k=1

kpk (6)

where pk is the probability to find the object in the step k if
it has not been previously detected, z1:k−1 = D1:k−1, in the
2D map S. pk can be computed with p̃, the unnormalized
version of the probability map, as in [14]:

pk =

∫
S

p(zk = Dk|xtk)p̃(xtk|D1:k−1)dxtk ∀xtk ∈ S (7)

The ET computation has to be limited to a finite horizon
N . This approximation, applied to (6), does not guarantee
that an optimal path will be obtained if N is not enough to
reduce to zero the probability of the map. For this reason, a
different way to compute the ET, deduced in [13], is used to
obtain optimal paths in arbitrary horizons:

ET =

N∑
k=1

[1− P (t ≤ k)]∆t (8)

Fig. 2: System-Overview. The Segmented Map is used to
predict the Probability Map and generate the restricted areas.
These elements combined with the preferred areas are used
to obtain the optimal paths with the Sub-Prior MTS ACO in
a common representation for the IVO robot and Humans.

where P (t ≤ k) =
∑k
t=1 pt is the cumulative probability to

find the object during the steps t ≤ k and ∆t is the time
between steps, that is considered to be 1 in this formulation.

B. System Overview

The whole centralized model is shown in Fig. 2. There
are 2 main blocks explained in the next subsections: the
Probabilistic Map Predictor and the Sub-Prior MTS-ACO
algorithm.

The HRC is defined in this system through the next steps:
• Communication of preferred areas: The human pro-

vides the robot with the preferred areas.
• The robot provides the search plans: The robot

provides the plans that consider the preferred areas.
• Confirmation: The human can agree and confirm to

start the search or return to the first step to get another
plan.

C. Probabilistic Map Predictor

The model used to perform the prediction is a CNN with
dense blocks designed in [28] to predict occupancy grids.
As the first step, different patches, Xp are obtained in a
segmented bird’s-eye view image, Is, with 14 representative
semantic classes in urban environments. During the training
process, the CNN uses as ground truth a probability map
pGT (xt

0) associated with a segmented area and takes the
patches as inputs:

Yp = CNN(Xp) (9)

The output layer provides patches, Yp, where each pixel
is the output of a spatial softmax function and represents
the probability of finding a lost object. Then, the probability
map, p(xt

0), is reconstructed using the patches, considering
the average of the intersection.

To obtain a dataset to train the model, an interface using
the Tkinter Python library was designed to allow 16 people to
select areas in the interface for 22 segmented images where
they would look for the object (refer to Fig. 3). Since the



Fig. 3: Labelling Interface for Users. Participants select the
areas by marking the vertices of a polygon with the computer
mouse over the segmented image until the polygon is closed.
The semantic classes are shown in the image.

number of images is not very high, data augmentation is
carried out to obtain several patches that allow to train the
model and to obtain a low error in validation and testing.

The target considered is an object the size of a smartphone.
This specification is given to the participants at the beginning
and conditions the areas marked by the participants to this
type of object. Participants are encouraged to select only
the first areas in which they would search. They are not
asked to select a specific number of areas or to do so in
any order of preference. Nor are they limited in the size
of the areas they select. During the process, they can also
see in the interface the real top-view image corresponding
to the segmented image and the 14 classes. The average of
the selected areas for each map is normalized and used as
pGT (xt

0).

D. Sub-prior MTS-ACO

This model takes p(xt
0) and the segmented map as inputs

to generate the agents’ optimal paths. As distinct from [14],
restricted areas are considered for each agent depending on
their traversability limitations. To consider these areas, a
different spatial graph for each agent is built. These graphs
are constructed from the original graph (the one without
restricted areas) by removing the nodes that are in the
restricted areas for each agent.

Another difference from ACO algorithms, like the one
in [14], is that to consider individual preferences in the
search process without losing the common objective, here
it is considered a different probability map for each agent
m. This map is called sub-prior, pm(xt

0). All the sub-priors
are normalized to 1/M where M is the number of agents.
Then, the global probability map or prior distribution is the
sum of the sub-priors.

In Fig. 4 an example of sub-priors is presented. In this
case, a prior probability map with 2 2-D Gaussian functions
is divided between 2 agents into 2 sub-priors. The criteria
used to perform this division depends on the negotiation
process between the agents in the case of multi-agent systems
with humans.

Fig. 4: Gaussian sub-priors. The left image shows a prob-
ability map of 2 gaussian functions in blue. The white
lines inside the gaussians are obstacles where the probability
is zero. The right images are the 2 Gaussian functions
separately as sub-priors to allow the distribution of the search
task between 2 agents.

Fig. 5: Sub-prior MTS-ACO planning of 2 agents ex-
changing sub-priors. This figure presents the search plans
for 2 agents (red and blue) in 2 different cases for the same
map exchanging their sub-priors.

In contrast to the original ACO, as a consequence of hav-
ing a different graph and a different probability map for each
agent, this approach considers a different pheromone matrix
for each agent, τmij . This leads to the probabilities, pkmij ,
calculated with (2), depending on the agent m. A condition
is imposed in the optimization process to encourage paths
of similar length in a not very restrictive way. In each step,
an ant k has to choose between two options: The first one
is to choose a node for the agent with the shortest path.
The second option is to choose a node for another random
agent. The probability of choosing the first option is higher
than the second one. This condition is imposed because, in
the optimization process, it is supposed all the search agents
have the same dynamical and sensorial features.

Optionally, a heuristic matrix can be considered for each
agent, ηmij , in cases where the heuristic depends on the agent.
For example, it occurs when the MTS heuristic proposed in
[14] is used for this approach.

When an ant generates the agents paths, pk is computed
with the sub-priors for each agent, pm(xtk|D1:k−1):

pk =

M∑
m=1

∫
S

IAm
H(Rm − rm)p̃m(xtk|D1:k−1)dxtk (10)

The ET computed in this way, with the unnormalized sub-
priors, p̃m, can be called Expected Sub-prior Time (EST)
and it is normally different from the one computed in (8),
leading to different optimal paths in the optimization.

Intuitively, the sub-priors represent areas that guide the



(a) M1 Map 40x40 m (b) M2 Map 40x40 m

(c) Uniform map M2 (d) Gaussian map M2

Fig. 6: Simulation maps. M1 and M2 are shown respectively
in the top images from left to right. The bottom maps are the
uniform and gaussian probability maps of M2. The agents’
paths are in blue and red.

formation of the agents’ paths. The EST represents an ET
constrained to the condition each agent visits his or her sub-
prior.

In Fig. 5, an example of how the sub-priors guide the gen-
eration of the paths is shown. In that figure, different search
plans computed using the Sub-prior MTS-ACO (concretely,
using the MMAS algorithm) are represented for 2 agents in
the same map. When the upper-right gaussian is assigned to
the red agent, the Sub-prior MTS-ACO generates a red path
close to that area. When the central gaussian is assigned to
the red agent, the red path is around that area and the blue
path is around the upper-right gaussian.

The Sub-prior MTS-ACO has a computational complexity
of O(IC2). The cost depends on the number of iterations,
I , and the number of nodes, C. The number of agents only
affects the EST computation because the number of sub-
priors that are updated is the same as the number of agents.
For the same search map, more agents don’t add a significant
computational cost. On the other hand, the size of the map
increases a lot the number of nodes needed and supposes an
important limitation in the Computation Time (CT).

Although the algorithm supposes a static environment it
can be used in environments with people or other relatively
small elements that don’t cause significant occlusions if the
agents have capabilities for obstacle avoidance.

V. SIMULATIONS AND REAL-LIFE
EXPERIMENTS

A. Sub-prior MTS-ACO Results

The Sub-prior MTS-ACO model has been validated
through simulations in different maps using the MMAS
algorithm and 2 heuristic functions: The one used to solve
the TSP problem, ηTSP = 1/dij , that depends on the

TABLE I: ET, path distance (PD) and computation time
(CT) obtained in 400 generations of 10 ants using the 2
heuristics in M1 and M2 with the uniform (U) and the
gaussian (G) probability maps adding sub-priors (S).

Map ET(s) CT(s) PD(m)
TSP - MTS TSP - MTS TSP - MTS

M1/U 80.98 - 94.60 44 - 168 371.42 - 839.45
M1/U/S 84.14 - 116.95 47 - 184 361.05 - 730.43
M1/G 39.33 - 37.01 44 - 156 419.67 - 785.91

M1/G/S 38.77 - 35.15 48 - 184 416.46 - 828.24
M2/U 142.23 - 165.32 116 - 460 673.88 - 1202.69

M2/U/S 155.47 - 237.15 123 - 560 685 - 1129.86
M2/G 75.04 - 92.53 112 - 452 621.16 - 1098.57

M2/G/S 80.50 - 86.32 136 - 544 655.41 - 1176.21

distance between nodes and the one used in [14], ηMTS ,
that considers regions of probability in different directions.
The comparison between heuristics has been performed in 2
different maps, M1 and M2 (refer to Fig. 6). The metrics
used to compare the heuristics are the ET, the CT, and
the Path Distance (PD). The comparison is also performed
considering sub-priors and non-sub-priors.

The mean results of 10 trials (see Table I) show that the
TSP heuristic outperforms the MTS heuristic in uniform
probability maps in terms of ET. The MTS heuristic only
gives slightly better results in the case where the probability
is concentrated in 2 gaussians and the map has no obstacles
(M1). In all the cases, the CT is much lower for the
TSP heuristic because it is not necessary to compute the
heuristic for each optimization step and the PD is also lower.
For these reasons, the TSP heuristic is chosen to perform
real-life experiments. The results in CT are shown without
parallelization of the algorithm.

The sub-priors in the uniform probability map are
p(xt

0)/2. In the gaussian probability map, each sub-prior
is a 2D gaussian assigned to the closest agent. When the
sub-priors are used, the results show a small increase in
ET and CT. In the case of the 2 gaussians in M1, the
ET is lower because the gaussians are associated with the
closest agent. If the agents’ sub-priors are exchanged the ET
increases a lot. These cases are sub-optimal compared to use
only the MMAS due to the optimal is conditioned and the
optimal EST is not exactly the optimal ET. Nevertheless, the
sub-priors enable to take humans preferences into account
without affect too much the performance.

B. Real-life Experiments

To check the feasibility of this approach in a real system
and the ability to manage human preferences in a searching
task, real-life outdoor experiments have been performed. The
experiment is a searching task between our humanoid IVO
robot and a person where they have to find a figure made
up of 3 Parcheesi tiles in the ground, as in [12]. IVO is
an urban land-based robot designed to interact with humans
in tasks that involve object manipulation and navigation.
To navigate, IVO uses four omnidirectional wheels, a 3D-
LiDAR, 2 2D-LiDAR, and a RealSense stereo camera to



detect holes and ramps. IVO also possesses a touchable
screen to communicate with people.

To enable communication between IVO and the person
during the search process, a web-based visualization tool for
Robot Operating System (ROS) called Vizanti 1 is used. This
visualization is a user-friendly version of RVIZ that can be
opened in a browser so, it can be used in multiple devices
connected to the same local network.

Using Vizanti and the Sub-prior MTS-ACO algorithm, a
ROS implementation has been built with 3 main nodes:
• Search Planner: This node computes an ordered node

list using the MMAS and the sub-priors.
• Goal Sequencer: This node takes the node lists to

generate waypoints as successive goals used for the
ROS Navigation Stack.

• Aco Gui Manager: This node launches the Vizanti
interface and communicates with the search planner
node to send the user preferences, draw the paths, and
manage the experiment logic.

The experiment takes around 25-30 min and consists of
an initial explanation about the task and the Vizanti interface
and 2 search phases in the same map:
• First Search: Here the MMAS without sub-priors is

used to provide the agents’ paths. The ’init’ button is
pressed in the interface to see the paths and ’start’ is
pressed to begin the search with the robot. The robot
shows the same interface on its screen, so the buttons
can also be pushed in the robot. The participant has to
follow the green path while searching for the object. The
participant can also see in the interface the red robot
path, the robot position (red point), and his position
(green point). When the participant finds the object has
to press ’object found’ to communicate it and the search
finishes. If the robot finds the object or the object is not
found before the robot has finished its path, a message
appears to indicate the end of the search.

• Second Search: In this case, before the search, the
participant has to press the button with a square and
draw rectangles over the ROS map in the Vizanti
interface. The rectangles represent the preferred areas
where the person wants to search. After drawing the
areas, the participant has to press ’replan’ and wait until
the paths computed using the MMAS with sub-priors
appear. Then, after pressing ’start’ the search begins.

Before starting the experiment, the task is explained and a
sheet is provided with the segmented map and the semantic
classes. Between the two rounds, the participant has to fill
out the first part of a questionnaire and finish it at the end.

It is important to remark that the order of the search phases
is the same for all participants to allow them to familiarize
themselves with the interface at a basic level on the first
search before using it to give their preferences. This order
could induce a bias in the participants’ perception that could
affect the questionnaire answers. More experiments in future
work are required to test whether such bias exists.

1Vizanti documentation: http://wiki.ros.org/vizanti

TABLE II: Average values and standard deviation in real
experiments for different metrics to evaluate differences
between the two search phases.

Metric 1st search 2nd search
ET (s) 15.78 ± 0.00 20.94 ± 6.56

RST (s) 69.05 ± 52.40 86.35 ± 47.90
% Robot finds 35 15
% Person finds 50 75
% Not found 15 10
vr (m/s) 0.35 ± 0.02 0.33 ± 0.03
vp (m/s) 0.44 ± 0.15 0.51 ± 0.14
DD (m) 0.65 ± 0.76 0.46 ± 0.26
% CA 39.95 ± 25.47 70.52 ± 21.51

The experiment has been performed with 20 participants
under the approval of the ethics committee of the Universitat
Politècnica de Catalunya (UPC) 2. The volunteers are of legal
age and in full use of their mental faculties. At the beginning
of the experiment, they signed an informed consent form
after having received the relevant information regarding the
experiment. Additionally, they have accepted that all the
information collected during the experiments will be treated
anonymously for academic purposes.

To perform the experiment, a covered outdoor area of 21
x 27 m inside the Barcelona Robot Lab has been considered.
The search area is the left part of the map shown in Fig. 1.
The robot does not use a sensor to detect the object and the
person is not detected because the perception systems are
not in the scope of this article. For this reason, the object
position is provided to ROS and the robot finds the object
when the distance to the object is closer than 2.5 m. The
person’s position during the searching task is marked by hand
in Vizanti by a third person. A video with explanations about
the experiment and some examples has been developed 3.

The results of the experiments are shown in Table II. The
first metric used is the ET of the paths shown in the interface.
The Real Search Time (RST) is the average time expended
until the object is found or the timeout is achieved. % Robot
Finds (%RF) and % Person Finds (%PF) are respectively
the percent of times the robot and the person find the object.
% Not Found (%NF) is the percent of times the object is
not found. vr and vp are respectively the average velocities
of the robot and the person during the search task. The
Divergence Distance (DD) is the average minimum distance
between the plan shown in the interface and the agents’
real position. The DD measures how accurately the person
follows the plan displayed on the interface during the search.
% Considered Areas (%CA) is the average percent of the
plan shown in the interface that is inside the preferred areas
selected by the participants. The %CA indicates the extent
to which the individual’s preferences are taken into account
in the plans displayed in the interface.

When preferred areas are provided, the ET increases
because the plan is less optimal concerning the first search,

2Committee website: https://comite-etica.upc.edu/en
3Experiment example: https://youtu.be/b0J57hXV7ic



and the % CA also increases because the new plans consider
human preferences. The RST is much longer than the ET
because equal velocities had been considered for the agents
in the optimization process with a value of 0.5 m/s and the
ideal sensor given by (5) has been used for the agents. The
results show that these assumptions are not fulfilled in this
real scenario. IVO’s velocity is lower than the participant’s
velocity for security reasons and the ideal sensor model
is not a good approximation for people in real scenarios.
The reduction in the DD during the second search can
be explained by people’s increased experience in locating
themselves at the interface.

C. User’s Study

A User’s Study has been performed to test the next
hypotheses:
• H1 - ”Participants’ perception of IVO changes in the

second search with respect to the first one.”
• H2 - ”The HRC in the planning process to obtain the

search paths improves the participants’ search experi-
ence.”

Both hypotheses are conditioned to the fact that the order
of the search phases is the same for all participants. Experi-
ments where the order of the search is randomly taken could
produce different results.

To obtain the participants’ information and test the hy-
potheses a questionnaire in Spanish and English has been
presented with 5 sections:
• Demographic Data: In this section, the participant’s

name, academic level and age are taken. After the
experiment, the data is anonymized. The average age
of participants was 28,19 years old with a standard
deviation of 4.35 years.

• IVO perception after the first search: This section
evaluates the robot’s perception of the participant after
the first search. To evaluate the perception, questions
from [29] and [30] have been taken in a 7-point Likert
scale to evaluate 4 attributes: Warmth, Competence,
Discomfort and Anthropomorphism.

• IVO perception after the second search: This section
evaluates the robot’s perception of the participant after
the second search. The questions are the same as in the
previous section.

• Interface perception: The fourth section evaluates the
interface perception using the System Usability Scale
(SUS) [31].

• Preferred method: At the end of the questionnaire,
there is a last question to select one of the 2 search
methods as the preferred one.

To test the hypotheses, the second and third section
results are compared. The average Cronbach’s alpha ob-
tained for the attributes Warmth, Competence, Discomfort
and Anthropomorphism in these sections is respectively
α = (0.81, 0.61, 0.60, 0.64). The average values of Warmth,
Competence and Anthropomorphism are compared using a
Paired Sample T-test. The Discomfort is the only attribute

Fig. 7: Participants’ perception of IVO. The mean attribute
values appear in green for the first search and brown for the
second search. The error bars indicate the standard deviation,
and p is the p-value of the tests.

that has not passed the Shapiro-Wilk test so to compare the
average Discomfort a Wilcoxon test is used. The test results
are summarized in Fig. 7.

H1 is fulfilled for Warmth with a p-value, p < 0.1, and
Competence with p < 0.05 and, in both cases, the second
search shows a more positive participants’ perception of IVO.
On the other hand, for Discomfort and Anthropomorphism,
the results show a very similar perception in the 2 cases.

H2 is fulfilled because of the increase in Warmth and
Competence in the second search. The results in the last
section of the questionnaire also support it. The 85.7 % of
participants have chosen as the preferred method the one
where they select the preferred areas.

The results also show that participants do not perceive
a high Warmth or Anthropomorphism. These results are
consistent with the fact that the person who searches does
not interact too much with the robot. Most of the interaction
is performed using the tablet interface. However, participants
consider that the robot is very competent and the Discomfort
is very low. This may occur due to the near-zero path
overlapping, which prevents agents from getting in each
other’s way.

The interface perception has been very positive. The
obtained result, 82.06, indicates good overall usability. This
is consistent with the fact that the participants interact more
with the interface than with IVO.

D. Implementation Details

The MMAS parameters considered are α = 1, β = 6 and
ρ = 0.002. The graph used is a grid with a 7x7 neighborhood
for each cell. In the experiments’ first search, plans are
pre-calculated with 1200 iterations. In the second search, a
parallelized optimization is performed with 10 ants across
300 iterations that take around 80 s. The visibility radius
is 2.5 m for all agents, the grid distance is 3.5 m and the
maximum probability not covered by the plans is 0.014.

To generate probability maps, the CNN-31 model [28]
has been trained with the original hyper-parameters and a
batch size of 32. The inputs are 14 64x64 pixel patches,
one for each semantic class. The output is a 64x64 patch
with the probabilities. The dataset consists of 22 segmented



images close to the Barcelona Robot Lab. 15 images to
train, 4 images for validation and 3 images for testing. Data
augmentation is performed through 90o rotations to obtain
6584 patches for training. The Mean Square Error (MSE) for
training, validation and testing is respectively: 0.017, 0.021
and 0.013. The probability map used for the experiments is
one of the test maps.

VI. CONCLUSIONS
The sub-prior MTS-ACO has been presented as a feasible

solution to incorporate human preferences for the search task
in real experiments with a robot and a person. The results
show that the algorithm can leverage the prior knowledge
with the particular preferences of other agents to create
optimal plans. Moreover, an interface to obtain a dataset that
allows learning probability maps of the search area using a
basic segmented map has been proposed. A small obtained
dataset has been enough to train a CNN with a low MSE. As
a third contribution, a Vizanti interface has been presented
to enable HRC during the search task.
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