
Computer Vision and Image Understanding 249 (2024) 104155

D
O
I

A

C

K
S
3
D
D
S

1

f
k
i
p
o
e
i
m

m
a
o
e
e
c
a
p
t
d
m

o
a

h
R
A
1
(

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

eformable surface reconstruction via Riemannian metric preservation
riol Barbany ∗, Adrià Colomé, Carme Torras

nstitut de Robòtica i Informàtica Industrial (CSIC-UPC), C/ Llorens i Artigas 4-6, Barcelona, 08028, Spain

R T I C L E I N F O

ommunicated by Akihiro Sugimoto

eywords:
hape-from-template
D reconstruction
eformable surfaces
ifferential geometry
urface parametrization

A B S T R A C T

Estimating the pose of an object from a monocular image is a fundamental inverse problem in computer
vision. Due to its ill-posed nature, solving this problem requires incorporating deformation priors. In practice,
many materials do not perceptibly shrink or extend when manipulated, constituting a reliable and well-known
prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the
perfect playground to solve the surface reconstruction problem as they can approximate surfaces with arbitrary
precision and allow the computation of differential geometry quantities. This paper presents an approach for
inferring continuous deformable surfaces from a sequence of images, which is benchmarked against several
techniques and achieves state-of-the-art performance without the need for offline training. Being a method that
performs per-frame optimization, our method can refine its estimates, contrary to those based on performing
a single inference step. Despite enforcing differential geometry constraints at each update, our approach is the
fastest of all the tested optimization-based methods.
. Introduction

The problem of inferring the shape of a generic non-rigid object
rom a sequence of monocular images given a 3D template of it is
nown as Shape from Template (SfT) (Bartoli et al., 2015). SfT appears
n areas like robotic manipulation (Bodenhagen et al., 2014), in which
erceiving the state of deformable objects is one of the bottlenecks
ften pinpointed as hindering their manipulation by robots (Sanchez
t al., 2018). In this area, estimating the cloth state is crucial to simulate
ts evolution under manipulation (Coltraro et al., 2022) and apply
odel-predictive control (Luque et al., 2024) to guide the robots.

The SfT problem is inherently ill-posed as it permits infinitely
any solutions leading to accurate projection to the input 2D im-

ges (Tretschk et al., 2023). Thus, solving it requires the incorporation
f deformation priors, isometry being one of the most common (Brunet
t al., 2010; Bartoli et al., 2015, 2012; Parashar et al., 2015; Chhatkuli
t al., 2017; Casillas-Pérez et al., 2021). Isometry models surfaces that
annot extend or shrink, a condition often not restrictive in practice
s many deformable objects made of materials such as cloth and
aper are nearly inextensible (Salzmann and Fua, 2011). Although
his constitutes a powerful and widely applicable prior, it defines a
ifferential equation that, in most cases, has to be approximated to
ake the problem computationally tractable.

In this work, we propose to encode the parametric equations of the
bject of interest in the weights of a neural network. Doing so yields
 continuous surface contrasting with the discrete representations used
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in previous works. To estimate the parametric equations, we perform
an iterative procedure enforcing three soft constraints accounting for
a correct surface projection, the preservation of the surface metric
(equivalent to the isometry constraint), and temporal consistency with
the previous surface. We depict the presented method in Fig. 1.

The isometry assumption is equivalent to the hypothesis that the
geodesics on the surface may not change their length over time. Fol-
lowing this assumption, we compute the surface metric analytically
using the learned parametric equations and impose its preservation
as a soft constraint. This allows for a fast estimation of the surface,
which is in stark contrast with previous methods struggling to optimize
non-convex objectives and considering differential equations. While
previous works used neural parametric representations for single-view
reconstruction (Groueix et al., 2018; Bednarík et al., 2020), this is the
first method to employ them without offline training and in conjunction
with the popular isometry constraint.

We evaluate the proposed method against five approaches and a
baseline introduced in this paper on two publicly available datasets.
The quantitative results showcase the effectiveness and robustness
of the proposed solution, which is also the fastest of all the tested
optimization-based approaches despite enforcing isometry.

Our main contributions are:

• We combine the powerful and widely applicable assumption of
metric preservation with the representation power of neural net-
works. In particular, we learn a surface parametrization (Groueix
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Fig. 1. Summary of the presented method. Given a template consisting of a mesh and an image showing such a surface, we want to recover deformations of the same surface
s it appears in the input frames. We propose describing the surface by a learned parametric equation, which maps a point in R2, uniquely defining a point on the surface, to

its spatial coordinates in R3 (in the example shown above, this mapping preserves the colors, which we add for easier visualization). To find such a parametric equation, we
impose three soft constraints that alone are insufficient but, when combined, allow us to recover the surface. We illustrate the ambiguities of each condition by showing feasible
solutions that are either correct (in red) or incorrect (in blue and green). The constraints and ambiguities are: (1) The surface correctly projects to the input image, a condition
satisfied by any surface obtained after arbitrarily moving the tracked points along the line of sight. (2) The geodesic distances are preserved, a condition satisfied for any isometric
transformation of the template surface. (3) The surface does not vary too much in consecutive frames, which is compatible with all surfaces whose distance between the surface
from the previous frames is small.
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et al., 2018), which allows representing continuous surfaces
rather than discretized representations (e.g., point clouds, voxels,
or meshes).

• We advocate for imposing metric preservation of the surface as
a soft constraint, which accounts for the fact that physical quan-
tities are not preserved exactly (Alet et al., 2021a,b; Salzmann
et al., 2008a).

• We learn a parametric surface during inference and without an
offline training process. Hence, the method requires neither a
dataset nor fine-tuning to new sequences, materials, or templates.

The rest of this paper is structured as follows. In Section 2, we
review previous approaches to the SfT problem. Then, we introduce the
proposed method in Section 3 and show its qualitative and quantitative
performance in Section 4. Finally, we conclude the paper in Section 5.

2. Related work

In this section, we review several approaches to the SfT problem
and group them under three umbrellas: the methods that use hand-
rafted constraints to define the manifold of surfaces, those that infer

the deformation models from data, and the approaches that combine
analytical and data-driven models.

Table 1 presents a summary of the discussed papers.

2.1. Hand-crafted constraints

One approach to SfT is to use explicit properties of the tracked
surface to determine feasible shapes. While these methods result in
easily modifiable constraints, some equations may be too simplistic
for accurately describing complex and nonlinear physics of real-world
surfaces (Salzmann et al., 2008a).

Assuming constant Riemannian metric allows for unambiguous
surface reconstruction (Bartoli et al., 2012, Theorem 1). Metric preser-
ation can be enforced analytically by leveraging a differentiable
arp (Bartoli et al., 2012, 2015; Parashar et al., 2015; Chhatkuli et al.,

2017; Casillas-Pérez et al., 2021), but this struggles with sharp folds and
is undefined in occluded areas. Relaxations using equality constraints
on Euclidean norms (Salzmann et al., 2008a, 2007c) are incompatible
with sharp folds, and inequality constraints (Salzmann and Fua, 2009,
2011; Salzmann et al., 2008b) are prone to vertex collapsing.
2

Laplacian meshes constrain the problem by reducing the number
of free parameters (Ngo et al., 2016; Wang et al., 2019), but lose
resolution on the edges of the surface and yields 3D shape estimates
hat re-project to the image but are not necessarily accurate.

For high enough frame rates, the tracked object barely changes
in neighboring frames. Some works incorporate this constraint in the
bjective by minimizing the difference with the previous shape (Yu
t al., 2015), a window of past surfaces (Salzmann and Fua, 2009),
econd derivatives of surface parameters (Salzmann et al., 2007c), or
he change of edge orientation (Salzmann et al., 2007a), and others use

it to provide good initializations for future shapes (Ngo et al., 2015,
2016; Kairanda et al., 2022). Enforcing temporal smoothness helps
recover surfaces with severe deformations and reduces jitter.

2.2. Data-based constraints

Data-based approaches use statistical learning techniques to learn
the manifold of plausible surfaces. However, they require a dataset
of surface configurations that should ideally represent all deforma-
tions and be representative of the surface dynamics. These approaches
may also require different datasets for each material, surface, lighting
conditions, and mesh resolution.

Previous works used PCA (Salzmann and Fua, 2011; Salzmann
t al., 2008a, 2007c), sparse GP-LVMs (Salzmann et al., 2008b), and

constrained latent variable models (Varol et al., 2012). In these ap-
proaches, the dimensionality of the latent space may depend on the

aterial, and the models can yield extensible surfaces even if the
dataset only consists of inextensible surfaces (Salzmann et al., 2007c).

Neural networks can be used to predict surface vertices (Bednarík
t al., 2018; Pumarola et al., 2018) or depth maps (Fuentes-Jimenez

et al., 2022, 2021). The former only allow prohibitively small mesh
sizes, e.g.10 × 10 in Pumarola et al. (2018), and the latter needs post-
processing like ARAP (Sorkine and Alexa, 2007) to obtain occluded
areas.

An interesting approach is to learn the parametric equations of the
urface depicted in the input image (Groueix et al., 2018; Bednarík
t al., 2020), which can generate continuous surfaces. These approaches
rain on pairs of images and their point clouds. Hence they are also

object-specific.
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Table 1
Summary of related work. Our method is the first to satisfy all the listed desirable properties for the reconstruction of deformable surfaces.

Method Works with
non-planar
template

Models
sharp
folds

Does not
need
dataset

Temporal
coherence

Variable
mesh
resolution

Hand-crafted constraints (Section 2.1)

Iterative isometric surfaces
(Brunet et al., 2010)

✗ ✓ ✓ ✗ ✗

Closed-form isometric
surfaces (I) (Bartoli et al.,
2015, 2012)

✓ ✗ ✓ ✗ ✗

Closed-form isometric
surfaces (II) (Parashar
et al., 2015; Chhatkuli
et al., 2017; Casillas-Pérez
et al., 2021)

✓ ✓ ✓ ✗ ✗

Iterative constant Euclid.
Salzmann et al. (2007c)

✗ ✗ ✗ ✓ ✗

Closed-form constant
Euclid. Salzmann et al.
(2008a)

✗ ✗ ✗ ✗ ✗

Inextensible surfaces
(Salzmann and Fua, 2009)

✗ ✓ ✓ ✗ ✗

Dense registration (Ngo
et al., 2015)

✗ ✓ ✓ ✓ ✗

Laplacian meshes (Ngo
et al., 2016; Wang et al.,
2019)

✓ ✓ ✓ ✓ ✗

Edge orientation changes
(Salzmann et al., 2007a)

✓ ✓ ✓ ✓ ✗

Vertex coordinate changes
(Yu et al., 2015)

✓ ✓ ✓ ✓ ✗

Data-based constraints (Section 2.2)

Latent space (Salzmann
and Fua, 2011; Salzmann
et al., 2008b; Varol et al.,
2012)

✓ ✓ ✗ ✗ ✗

Neural network: Image to
vertices/depth (Bednarík
et al., 2018;
Fuentes-Jimenez et al.,
2022, 2021; Pumarola
et al., 2018)

✓ ✓ ✗ ✗ ✗

Surface parametrization
(Groueix et al., 2018;
Bednarík et al., 2020)

✓ ✓ ✗ ✗ ✓

Hybrid approaches (Section 2.3)

GP constant Euclid.
Salzmann and Urtasun
(2010)

✗ ✗ ✗ ✗ ✗

Differentiable physics
simulator and renderer
(Kairanda et al., 2022)

✓ ✓ ✓ ✓ ✗

Linear (ours) ✓ ✓ ✓ ✓ ✓

Neural (ours) ✓ ✓ ✓ ✓ ✓
m
f
o

p
s

i

2.3. Hybrid approaches

A promising research direction highlighted in the context of per-
ception for robotic cloth manipulation (Yin et al., 2021) is to combine
nalytical and data-driven models. Salzmann and Urtasun (2010) used
Ps implicitly satisfying a set of quadratic equality constraints. How-
ver, this method requires all training examples to satisfy all the
onstraints and is overly simplistic for sharply folding materials like

clothes (Varol et al., 2012).
Kairanda et al. (2022) proposed integrating a differentiable physics

simulator and renderer. The drawbacks of this method are that it im-
poses hard constraints through the physics simulator, requires 16–24 h
on a GPU to process an image sequence, and uses a fixed resolution of
around 300 vertices, which prevents capturing fine wrinkles (Kairanda
t al., 2022).
 p

3

This work falls into this category, as we combine a data-driven
ethod, namely neural networks, with equations to constrain the sur-

ace dynamics. Concretely, we propose using the dynamic equations
riginally derived to simulate clothes in Coltraro et al. (2022) and then

solve the inverse problem. Concretely, we adapt the model for textile
manipulation by Coltraro et al. (2022) based on metric preservation.

3. Methodology

In this section, we first introduce the problem notation and some
reliminaries. Then, we integrate the relaxation of the isometry con-
traint developed for a cloth simulator (Coltraro et al., 2022) into an

optimization scheme with linear objective and linear constraint. This
method is used as a baseline and dubbed Linear (ours). Finally, we
ntroduce the method that constitutes the main contribution of this
aper, which we refer to as Neural (ours).
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Fig. 2. Problem notation. The parametric equations 𝜑(𝑡) map the input domain
 ⊂ R2, in this case, the interior of a unit square, to the 3D coordinates of  (𝑡),
the surface at time 𝑡. The image 𝐼 (𝑡) is obtained by projecting  (𝑡) with 𝛱 .

3.1. Preliminaries

The first fundamental form of a surface  allows measuring curve
lengths, angles of tangent vectors, and areas of regions on it (Do Carmo,
2016). Using a parametrization 𝜑 ∶  ⊂ R2 → R3, the Riemannian
metric of  is then uniquely defined by the metric tensor 𝐉𝑇𝜑𝐉𝜑, where
𝜑 is the Jacobian matrix of the map 𝜑. We focus on modeling surfaces
n such a way that we preserve the Riemannian metric. That is, at all
imes, the length of any curve inside the surface remains constant.

Assumption 1. The sequence of monocular images used as input in the
SfT problem is obtained with a calibrated camera with known intrinsic
arameters.

Following the pinhole camera model, given a point 𝐬 = (𝑥, 𝑦, 𝑧) ∈ ,
which w.l.o.g. we assume to be expressed in the camera referential, we
can compute the position (𝑢, 𝑣) in the image captured by the camera as
follows:

𝑑
⎡

⎢

⎢

⎣

𝑢
𝑣
1

⎤

⎥

⎥

⎦

= 𝐊
⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

, (1)

where 𝐊 ∈ R3×3 is the intrinsic matrix, known according to Assumption 1
a common assumption in SfT, and 𝑑 is the depth along the line of sight.
In the following, let 𝛱(𝐬) ∶= (𝑢, 𝑣). The camera referential assumption
is satisfied without losing generality in case the camera is fixed or
the relative motion is known and properly compensated. We include
a summary of notation in Fig. 2.

Problem. Given a sequence of images {𝐼 (𝑡)}𝑡∈[𝑇 ], where [𝑇 ] ∶= {1,… ,
𝑇 }, and a template surface  , estimate the surface  (𝑡) at any time 𝑡.

3.2. Linear approach

Let  ∶= ( ,  , ) be a triangle mesh that approximates the
smooth surface  with 𝑛 vertices  ∶= {𝐯𝑖}𝑖∈[𝑛𝑣], edges  ⊆ 2 and
riangular faces  ⊆ 3.

A typical strategy to formulate the SfT problem is to proceed in two
teps. First, in the registration step, we find 3D-to −2D correspondences

𝑀 (𝑡) ∶= {(𝐬, 𝐢) ∶ 𝐬 ∈  (𝑡), 𝐢 = 𝛱(𝐬) ∈ 𝐼 (𝑡)} , (2)

where 𝛱(𝐬) ∶= 𝐢 ∈ R2 is the projection of 𝐬 into the image plane.
Then, in the reconstruction step, we obtain the deformed shape,

hich requires inferring the depth of the points 𝐢 in 𝑀 (𝑡).
Let 𝐱(𝑡) ∶= vec

([

𝐯(𝑡)1 ⋯ 𝐯(𝑡)𝑁
])

. The projection constraints given
by 𝑀 (𝑡) can be expressed as

𝐌(𝑡)𝐱(𝑡) = 𝟎 , (3)

where 𝐌(𝑡) ∈ R2|𝑀 (𝑡)
|×3𝑛𝑣 expresses the correspondences employing

arycentric coordinates (Salzmann et al., 2007b).
 d

4

To compute 𝐌(𝑡), the tracked points on the surface are expressed
sing barycentric coordinates. Recall that, given a point 𝐩 belonging
o facet 𝑓 of 𝐒, we have that 𝐩 =

∑

𝑖∈[3] 𝑏𝑖𝐯𝑓 ,𝑖, where ∑

𝑖∈[3] 𝑏𝑖 = 1
nd {𝑏𝑖}𝑖∈[3] and 𝑏𝑖 ≥ 0 are the barycentric coordinates of 𝐩. If the 𝑗−th
atch in 𝑀 (𝑡) links the previous point 𝐩 to an image coordinate 𝐢, this

orrespondence is encoded in 𝐌(𝑡) as

𝐌(𝑡)[2𝑗 − 1, 2𝑗 ; Index(𝐯𝑓 ,𝑖)] ∶= 𝑏𝑖(𝐊[1, 2] − 𝐢⊗𝐊[3]) , (4)

where we define submatrices as [row indices ; column indices]. In
case column indices are not specified, all columns are selected. For
convenience, we define the Index operator, which returns the indices of
the 𝑥, 𝑦, 𝑧 coordinates of a given vertex according to the vectorization
used to define 𝐱(𝑡). We refer the interested reader to Salzmann et al.
(2007b) for the full derivation of this result.

Every solution to Eq. (3) re-projects correctly to the image, but
the vertex positions are not guaranteed to correspond with the true
ones because of the depth ambiguity. However, Eq. (3) is severely
nder-constrained in practice, with around a third of the singular
alues of 𝐌(𝑡) being very close to zero (Salzmann et al., 2007b). That

means there are several possible solutions, in this case, obtained by
moving each point along the line of sight. To factor out these incorrect
olutions, we require additional constraints.

Given that  uses triangular faces, we define a surface
parametrization consisting of an ensemble of triangles 𝛺𝑓 for each face
𝑓 ∈  such that  ≃ ∪𝑓𝛺𝑓 (Coltraro et al., 2022). For an element
𝑓 = (𝐯𝑓 ,1, 𝐯𝑓 ,2, 𝐯𝑓 ,3), we define the local parametrization

𝜑𝑓 ∶ [−1, 1]2 → 𝛺𝑓 ; 𝜑𝑓 (𝜉 , 𝜂) ∶=
∑

𝑖∈[3]
𝐯𝑓 ,𝑖𝑁𝑖(𝜉 , 𝜂) , (5)

where we define the shape functions 𝑁𝑖 as

𝑁1 ∶= 𝜉 ; 𝑁2 ∶= 𝜂 ; 𝑁3 ∶= 1 − 𝜉 − 𝜂 , (6)

whose local coordinates of the vertices in the triangular face are (𝜉 , 𝜂) =
1, 0), (0, 1), and (0, 0), respectively (Zienkiewicz et al., 2013).

Coltraro et al. (2022) used the Riemannian metric preservation
assumption to constrain the possible vertices of a mesh for the simula-
tion of deformable surfaces. In particular, they introduced an easy-to-
evaluate function 𝐶 that, given a parametrization 𝜑(𝑡) of (𝑡)

 , satisfies

𝐉𝑇
𝜑(𝑡)𝐉𝜑(𝑡) = 𝐉𝑇𝜑temp.𝐉𝜑temp. ⟺ 𝐶(𝐱(𝑡)) = 𝟎 , (7)

where 𝜑temp. is the parametrization of the template shape. Given the
realistic simulations achieved by Coltraro et al. (2022), we consider the
ssumption to be reasonable. We refer the interested reader to Coltraro

et al. (2022, Algorithm 1) for a detailed computation of the function 𝐶,
rom which we replace the local parametrization of quadrilateral faces
ith (5).

We can relax Eq. (3) as in Ngo et al. (2016), Salzmann et al.
(2007a) and minimize the error in the square sense subject to the metric
reservation given by 𝐶. That is, for 𝛥𝐱(𝑡) ∶= 𝐱(𝑡) − 𝐱(𝑡−1), the vertices of
he mesh can be found by solving

min
𝛥𝐱(𝑡)

‖

‖

‖

𝐌(𝑡)(𝐱(𝑡−1) + 𝛥𝐱(𝑡))‖‖
‖

2

2

s.t. 𝐂(𝐱(𝑡−1) + 𝛥𝐱(𝑡)) = 𝟎
, (8)

which is a quadratic program with quadratic constraints. To make it
computationally tractable, we approximate Eq. (8) with a sequence of
quadratic programs with linear constraints using the first-order Taylor
expansion 𝐂(𝐱(𝑡)) ≈ 𝐂(𝐱(𝑡−1)) + ∇𝐂(𝐱(𝑡−1))𝛥𝐱(𝑡) (Coltraro et al., 2022; Varol
et al., 2012).

Overall, for each time step 𝑡, the vertex positions of Linear (ours) are
found by solving the linear system
{

𝐌(𝑡)𝑇𝐌(𝑡)(𝐱(𝑡−1) + 𝛥𝐱(𝑡)) + ∇𝐂(𝐱(𝑡−1))𝑇 𝝀 = 𝟎
𝐂(𝐱(𝑡−1)) + ∇𝐂(𝐱(𝑡−1))𝛥𝐱(𝑡) = 𝟎

, (9)

where 𝝀 is the vector of Lagrange multipliers. We recall that this loss
function is not minimized during an offline training process but instead
uring inference for each of the inputs.
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For the initialization of 𝐱(0), we use the template mesh  . Note
that the optimization of the first step is expected to take longer and
yield a larger 𝛥𝐱(1) than other time steps, where the motion between
neighboring images in time is in general small provided the frame rate
is high enough.

3.3. Neural approach

Representing the state of a deformable object alone is an open
hallenge (Yin et al., 2021; Montagnat et al., 2001). Most SfT methods
epresent objects using meshes, but an alternative is to use the neural
arametric representation introduced by Groueix et al. (2018). Such a
epresentation encodes a surface in the weights of a neural network
epresenting a mapping from 2D to 3D. Parametric representations are
 general way to express a surface, and their great flexibility allows
o control deformations with intuitive parameters (Arriola-Rios et al.,

2020). Given a parametric surface, we can analytically compute the
first and second fundamental forms, Gaussian curvature, and surface
normals (Bednarík et al., 2020).

Implicit neural representations are another method that has recently
emerged as a promising alternative to classical discretized representa-
tions of signals (Yüce et al., 2022). Both parametric and implicit neural
representations can generate continuous surfaces, which amounts to
having meshes with an arbitrary resolution. However, an advantage
of using parametric representations in front of the popular implicit
representations such as NeRFS (Mildenhall et al., 2020) or SDFs (Park
et al., 2019) is that the co-domain of a parametric representation is the
surface itself. Therefore, if we want to generate a mesh, it is enough to
sample the domain at desired locations of the vertices. Instead, implicit
representations require using marching cubes on the outputs obtained
by sampling many more points on R3 in the case of SDFs (and the
sampled points will only lie on the surface if in a specific level set),
and sampling rays for NeRFs (with rays that may or may not hit the
object).

Given that both considered datasets only consist of rectangular
surfaces, we choose the parametrization  to be  ∶= [0, 1] for practical
purposes. Other approaches (Bednarík et al., 2020; Groueix et al., 2018)
et  as the interior of the unit square. However, to naturally represent
he surface edges, we consider the closure of such a domain. The choice
f  to be the unit square allows representing all developable surfaces,
.e., smooth surfaces that we can flatten into a plane, e.g., cylinders,
ones, and toruses.

To model non-developable surfaces like the sphere, we can choose
he interior of the unit square. In case of having surfaces with other
opologies or with holes, we could obtain  by conformal flattening
f  (Bartoli et al., 2015), using a texture map (Bartoli et al., 2012),

inferring the parametrization domain from data (Lei et al., 2020), or
combining different parametric surfaces to create an atlas (Groueix
et al., 2018).

A usual assumption in the SfT problem is that the template  and
he tracked surface at time 𝑡,  (𝑡), have the same topology, which
mplies that they also share a parametrization space (Bartoli et al.,

2015). Therefore, we can use the same choice of  to infer the surface
t any point in the sequence.

Proposition 1. Let  be a surface that can be parametrized on the
unit square. There exists a feed-forward neural network with Softplus
non-linearities that can approximate  with arbitrary precision.

Proof. The proof follows the same reasoning as in Groueix et al.
(2018, Proposition 2.), which states the same for ReLU non-linearities.
nstead of relying on the universal representation theorem by Hornik

(1991), this proposition requires invoking the theorem by Kidger and
yons (2020), which works with other activation functions, including

Softplus. □
5

Assuming we can parametrize the surface of interest with the chosen
, we can leverage Proposition 1 and represent it with a feed-forward

neural network 𝜑𝜃 , where 𝜃 are the learnable parameters. Note that
the parametrization needs to be twice differentiable so that the loss
may incorporate first-order derivatives (Bednarík et al., 2020). The
requirement motivates the use of Softplus (Dugas et al., 2000), an
approximation of the ReLU function with smooth first and second
erivatives (Bednarík et al., 2020).

For the sake of notation, let 𝜑⋆ be the real parametrization of .
Let 𝑃 be the set of points from  corresponding to the vertices of the
emplate mesh and the surface meshes for each time. That is
𝑃 ∶= {𝐩 ∈  ∶ 𝐩 = 𝜑−1

⋆ (𝐯) ∀𝐯 ∈ } . (10)

Similarly to the relaxation of Eq. (2) used in Section 3.2, re-
projection consistency can be enforced with

projection ∶= 1
|𝑀 (𝑡)

 |

∑

(𝐩,𝐢)∈𝑀 (𝑡)


‖

‖

𝛱(𝜑𝜃(𝑡) (𝐩)) − 𝐢‖
‖2 , (11)

where

𝑀 (𝑡)
 ∶= {(𝐩, 𝐢) ∶ 𝐩 ∈  , 𝐢 = 𝛱(𝜑(𝑡)

⋆ (𝐩)) ∈ 𝐼 (𝑡)} . (12)

This term enforces that the recovered surfaces are consistent with
their corresponding images. This loss is present in all the SfT solutions,
ither explicitly or implicitly, since the monocular images provide the
nly information to recover the current state of the surfaces.

Suppose the matches provide image locations for each vertex. One
ould displace each 3D vertex location along the line of sight, thus
btaining infinitely many surfaces that attain a zero re-projection loss.
nforcing isometry ideally reduces the set of plausible solutions to a
ingle surface (Bartoli et al., 2012, Theorem 1). To favor surfaces whose

Riemannian metric is preserved, we add the loss term

metric ∶= 1
|𝑃 |

∑

𝐩∈𝑃

‖

‖

‖

‖

𝐉𝑇𝜑𝜃(𝑡)
𝐉𝜑𝜃(𝑡)

(𝐩) − 𝐉𝑇𝜑𝜃temp.
𝐉𝜑𝜃temp. (𝐩)

‖

‖

‖

‖

2

𝐹
, (13)

where ‖⋅‖𝐹 is the Frobenius norm.
Unlike works approximating the surface metric, we can compute

t analytically using surface parametrization (Bednarík et al., 2020).
oreover, we enforce metric preservation in 𝑃 , not only in the visible

arts, which potentially helps to recover occluded zones (Brunet et al.,
2010).

Another difference with previous works is that we incorporate
isometry as a soft constraint, which differs from works imposing the
metric to be exactly preserved (Bartoli et al., 2012, 2015), which may
be a restrictive assumption in real scenarios. Quasi-isometry, on the
other hand, is a relatively mild constraint when manipulating surfaces
like clothes, as those are nearly inextensible (Salzmann and Fua, 2011).

his approximation is especially suited for robotics contexts, where fine
etails such as wrinkles are irrelevant (Coltraro et al., 2022).

Finally, the loss also includes a temporal regularization term

time ∶= 1
|𝑃 |

∑

𝐩∈𝑃

‖

‖

𝜑𝜃(𝑡) (𝐩) − 𝜑𝜃(𝑡−1) (𝐩)‖‖2 . (14)

Adding a small amount of temporal regularization reduces frame-to-
rame flickering (Yu et al., 2015) and can help constrain the corners,
hich can freely bend isometrically if no point correspondences are

found on them (Brunet et al., 2010).
The total loss used to update the parameters 𝜃(𝑡) then becomes

total ∶= projection + 𝜆metricmetric + 𝜆timetime . (15)

Similarly to Brunet et al. (2010), we obtain the surface parameters
by minimizing a combination of a re-projection loss Eq. (11), a term
involving the metric tensor favoring plausible poses Eq. (13), and a
term that encourages smooth motions Eq. (14). The key differences
with this work are:
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Algorithm 1 Deformable Surface Reconstruction
1: Inputs: Template  , matchings {𝑀 (𝑡)

 }𝑡∈[𝑇 ]
2: Output: Estimated surfaces described by {𝜑𝜃(𝑡)}𝑡∈[𝑇 ]
3: Compute 𝑃 according to 
4: 𝜃temp. ← argmin

𝜃temp.

1
|𝑃 |

∑

𝐩𝑖∈𝑃

‖

‖

𝜑𝜃temp. (𝐩𝑖) − 𝐯𝑖‖‖2 ⊳Over-fit to template

5: Store 𝐉𝜑𝜃temp. (𝐩)
𝑇 𝐉𝜑𝜃temp. (𝐩) ∀𝐩 ∈ 𝑃 ⊳Metric tensors of the template

6: Let 𝜑𝜃(0) ← 𝜑𝜃temp. ⊳Needed for Eq. (14)
7: for 𝑡 ∈ [𝑇 ] do
8: 𝜃(𝑡) ← argmin

𝜃(𝑡)
total ⊳Compute loss Eq. (15) with stored metric tensors

9: end for
i
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• Re-projection loss: For a matching (𝐬, 𝐢) ∈ 𝑀 (𝑡), Brunet et al.
(2010) enforce that 𝐬 ≈ 𝛱−1(𝐢), which requires knowing the depth.
Instead, we check that 𝛱(𝐬) ≈ 𝐢.

• Metric preservation loss: Our method enforces that the metric
of the surface at any time is close to that of the template. In
contrast, Brunet et al. (2010) set the metric tensor to the identity,
which only allows modeling unit squares on R3 when  = [0, 1].

• Smoothing loss: Brunet et al. (2010) favor non-bending sur-
faces by minimizing the Frobenius norm of the Hessian of the
parametrization. Instead, we consider the difference of surfaces
in consecutive frames, which aims at reducing frame-to-frame
flickering.

In Algorithm 1, we detail the procedure on how to estimate the
surfaces for the whole sequence given the inputs of the SfT problem.

4. Experiments

4.1. Datasets

In this paper, we use two public datasets involving rectangular
deformable surfaces:

• Deformable Surface Tracking (DeSurT) (Wang et al., 2019):
Dataset consisting of 11 video streams, with around 300 images
each, displaying different materials, deformations, and lighting
conditions. The surfaces are either well-textured (Campus, Cob-
ble, Cushion I, Scene, Newspaper I, and Newspaper II), repeti-
tively textured (Brick, Cloth, and Cushion II), or weakly textured
(Stone and Sunset). The surfaces are represented with meshes of
size 13 × 10 for all the sequences except the cushion, which uses
an 11 × 11 mesh.

• Tracking Surface with Occlusion (TSO) (Ngo et al., 2015): Set
of two image sequences with about 200 images each and meshes
of size 13 × 10. The sequences consist of a poorly textured surface
with real occlusions (White paper) and a well-textured surface
with artificial occlusions (Classroom).

• Texture-less Deformable Surfaces (TDS) (Bednarík et al., 2018):
Dataset showing deformable surfaces under various lighting con-
ditions. We use seven sequences (the ones with ground-
truth vertex annotations) with around 900 images each, display-
ing a piece of cloth represented with a 31 × 31 mesh.

Given that the surfaces of both datasets are rectangular and meshes
ave equispaced vertices, we define 𝑃 with the coordinates given by

a grid on the unit square.

4.2. Baselines

We use the following methods to compare the performance of
the proposed technique. Unless specified, we use the publicly avail-
able code implemented by the original authors without modifying the
algorithms or the hyper-parameters.
6

• GP: Unconstrained GP-LVM (Varol et al., 2012). We exclude
the constrained GP-LVM introduced in the same paper from the
comparisons as it consistently under-performed the unconstrained
version.

• Lap: Method based on Laplacian meshes (Magnenat et al., 2015;
Ngo et al., 2016; Östlund et al., 2012).

• Dense: Dense image registration in Ngo et al. (2015).
• Graph: Deformable surface tracking using graph matching (Wang

et al., 2019).
• TexLess: The model from Bednarík et al. (2018) trained from

scratch with ground-truth mesh vertices for each dataset and
mesh resolution.

• Linear (ours): Constrained linear optimization method outlined in
Section 3.2.

• Neural (ours): Proposed method described in Section 3.3.

4.3. Implementation details

The sparse linear system in Eq. (9) required by Linear (ours) is solved
n the least-squares sense using the SciPy (Virtanen et al., 2020) routine

limited to 100 iterations. This procedure is repeatedly applied until the
approximation is good enough, as understood by the same criterion
of Coltraro et al. (2022).

For the proposed method, we set an early stopping mechanism
for the optimizations in Algorithm 1 with different criteria for the
verfitting of the template (line 4) and the surface reconstruction (line
). When learning the template, we set a patience of 200 iterations,
eaning that the minimization process halts if the loss does not im-
rove during 200 optimization steps. Since surface reconstruction starts
ith an initialization close to the solution for high enough frame rates,
e set a patience of 20 and restrict the total number of iterations to
00. In both cases, the model that we use is the one that attains the
inimum loss in the whole optimization process.

The matches 𝑀 (𝑡) can be obtained with SIFT (Lowe, 1999), SURF
(Bay et al., 2006), Ferns (Ozuysal et al., 2010), or soft graph match-
ng (Wang et al., 2019) followed by an outlier rejection mechanism

(Vogler et al., 2007). Obtaining the matches with a dedicated model
and then performing reconstruction results in correspondences robust
o occlusions, especially for well-textured surfaces (Ngo et al., 2015).

On the one hand, for the Neural (ours), we use matches obtained
ith CoTracker (Karaev et al., 2023), a model based on transform-
rs (Vaswani et al., 2017) that exploits the correlation across features

by tracking dense points in a frame jointly across a video sequence.
In this case, the matches were obtained by uniformly sampling points
n the faces and borders of the template and tracking them throughout
he sequence. Using CoTracker allows tracking texture-less surfaces and

obtaining denser matches.
On the other hand, we found that the Linear (ours) method works

est when using the correspondences provided by the registration
lgorithm used in the baseline Lap, based on matching SIFT (Lowe,

1999) features and then applying an outlier rejection mechanism. The
Lap algorithm did not terminate and hence could not provide matchings
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Fig. 3. Model architecture. Given 2D-to-2D matches relating the tracked surface and the input image at time 𝑡, we map them to 3D coordinates using 𝜑(𝑡). We parametrize the
mapping 𝜑(𝑡) using a neural network with linear layers and SoftPlus activations. The SoftPlus activations, unlike more popular choices such as ReLUs, make the mapping twice
ifferentiable, a requirement to compute differential geometric quantities. The predicted 3D points are projected to image coordinates and compared to the 2D locations provided
y the point tracker. Then, we sample points in a uniform grid on  , transform them using 𝜑(𝑡), and enforce metric preservation and temporal consistency on the output, which
ies in 3D.
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Table 2
Ablation. Design choices of our model and their impact on the performance on the
Lr_bottom_edge sequence of the TDS dataset in terms of the mean tracking error (mm).
We show modifications belonging to different parts of our pipeline: the input, the loss,
and the model. The last row of the table shows the result of our final model, for which
results are reported. The last column of this table shows the difference in performance
between an experiment and Neural (ours).

Modification Error (↓) Difference

Without coordinate normalization 77.11 +8.77

𝜆metric = 0 81.30 +12.96
𝜆time = 0 72.23 +3.89
𝜆metric = 𝜆time = 0 130.58 +68.24

Shallower: 4 layers 66.33 -2.01
Deeper: 10 layers 75.72 +7.38
Narrower: 64 units in hidden layers 67.94 -0.40
Wider: 1024 units in hidden layers 78.31 +9.97

Neural (ours) 68.34 –

for all the frames indicated with (∗) in Table 3. In this case, we used
ynthetic matches by sampling a random point inside each facet of the
esh. Note that these matches are noise free and cannot be obtained

n a real pipeline.

4.4. Ablation

The proposed neural approach offers flexibility regarding the class
of models used to represent 𝜑𝜃 , the loss terms’ weighting, and the
optimization algorithm updating the model parameters in new frames.
In practice, we use a simple multi-layer perceptron to parametrize the
surface similarly to NeRFs (Mildenhall et al., 2020).

We use Optuna (Akiba et al., 2019) to set the hyperparameters
of the model, namely the number of layers (we test from 3 to 10)
nd the number of units of each layer (64, 128, 256, or 512 for the

first, middle and last layers). We select an architecture based on the
average performance across all sequences and show the resulting model
architecture in Fig. 3.

We also use the hyperparameter search to determine the learning
ate (which we explore in the log-scaled range from 10−5 to 10−1) and
he amount of time and metric regularization, i.e., 𝜆time and 𝜆metric,
espectively (sampling the interval from 0 to 100).

In Table 2, we present an ablation study comparing different design
hoices. Similarly to Groueix et al. (2018), we processed all the meshes

so that the vertices fall in the centered unit 𝓁2 ball. We can see that this
normalization results in a substantial increase in performance, as the
domain of values allows for better-conditioned gradients and results in
overall improved convergence.

Incorporating the metric preservation term into the loss function is
he main contribution of this paper and is shown to be the principal
 E

7

driver of performance in Table 2. When not considering the temporal
oss term, the performance drop is smaller and attributed to a slight
itter. Removing both temporal and metric losses, the model optimizes
nly for the projection error, which results in meshes that correctly

project to the tracked points but are not metrically consistent nor
ecessarily coherent with neighboring time steps.

Finally, we test modifications on the model on the same sequence.
Making the model larger, both wider and deeper, for this case results
n worse performance However, we can see that for this particular
equence, using a shallower model can reduce the error by around
 mm on average, and using a narrower model can slightly improve
he performance.

Overall, the ablation shows that there is room for tiny incremental
mprovements by tuning the model hyperparameters to specific se-

quences. Nonetheless, we use the same architecture for all sequences
to avoid performing architecture searches for each sequence.

Besides the changes that contributed to the performance of our
model, we also tested the following changes that obtained a worse

ean tracking error:

• Batch normalization (Ioffe and Szegedy, 2015): We experi-
mented with applying batch normalization after every linear layer
except the last one. In this case, we removed the biases of all the
linear layers and added a bias term to the output layer. However,
we found the same unstable training reported in Bednarík et al.
(2020).

• Positional encoding: Similarly to NeRFs, the inputs to our model
are low-dimensional coordinates. Mildenhall et al. (2020) used
sines and cosines at different frequencies determined by multiples
of the input coordinate to create a higher dimensional represen-
tation and allow representing higher frequency functions. In this
experiment, we mapped the 2D coordinates to [−1, 1]2 and used
the same positional encodings as (Mildenhall et al., 2020). While
this change improved the performance on some occasions, it was
detrimental in most sequences.

• Normalized projection: Given that predicting normalized sur-
face coordinates was beneficial, we tested with predicting image
coordinates normalized to [−1, 1]. Similarly to the change above,
we found slight improvements in some sequences, but overall, it
was not beneficial.

• Skip connections: We also tried concatenating the inputs to
the activations of one of the middle layers to prevent vanishing
gradients. This strategy is also used by Mildenhall et al. (2020)
but did not provide substantial benefits for our case.

4.5. Evaluation

4.5.1. Ground truth mesh
To evaluate the accuracy of the proposed model, we compute the

uclidean distances from vertex to vertex. Concretely, Table 3 reports
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Fig. 4. Qualitative results. Neural (ours) successfully recovers the tracked surface in all cases, with the most noticeable gap in performance with other methods for the TDS
dataset (except our linear approach, which can also successfully estimate the tracked surface). Linear (ours) is sensible to occlusions and diverges in some cases for the other
datasets. In this case, Neural (ours) showcases its superiority and robustness to different surfaces.

8
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Table 3
Mean tracking error. This table shows the mean tracking error (mm) obtained when reconstructing a mesh from monocular images. The best
value for each sequence (the lowest) is shown in boldface, and the runner-up is underlined. (∗) indicate that a method did not terminate, in
which case the average error of the meshes obtained before the method crashed is reported. The sequences used to train and validate Texless
are indicated with (†) and (‡). Note that we favor Texless by providing it with full sequences and, for the sequences with (†), reporting the
values on training examples.
Dataset ↓/Methods→ GP Lap Dense Graph Texless Linear (ours) Neural (ours)

Brick 109.45 44.80 81.56 25.62 82.23† 67.20 39.47
Campus 85.48 85.80 57.00 22.36 71.56 66.29 35.62
Cloth 104.30 460.44 85.58 46.96 114.63 899.65 55.30
Cobble 100.54 41.90 68.90 21.70 80.39 56.33 40.92
Cushion I 104.18 72.55 108.65 44.55 89.75† 250.69 30.76
Cushion II 104.05 157.76 96.91 38.05 218.35‡ 918.63 46.52
Newspaper I 83.25 63.23 85.12 22.20 72.67† 79.83 34.93
Newspaper II 79.85 67.66 73.65 25.50 186.36 68.46 40.78
Scene 102.25 57.36 82.37 21.14 235.45 69.85 44.12
Stone 100.62 421.36 90.93 36.11 85.55† 1140.23 38.53

De
Su

rT

Sunset 107.89 248.29∗ 67.24 29.22 87.35‡ 72.78 40.81

Classroom paper 49.16 8.22 35.66 3.13 47.54† ‡ 32.92 19.28

TS
O

White paper 45.50 54.48 26.20 9.92 43.64 737.09 33.35

Lr_bottom_edge 94.72 882.28* 85.50 1184.78 86.35† 66.43 68.34
Lr_bottom_edge_tl_corn 55.59 2999.26∗ 71.00 1043.35 55.01† 40.93 47.64
Lr_left_edge 78.89 1603.06∗ 103.06 1154.88 82.70† 58.58 52.68
Lr_tl_tr_corns 66.19 850.86∗ 87.80 1049.56 62.68† 59.09 58.69
Lr_top_edge_1 93.43 509.31∗ 93.53 1059.72 81.17† 69.08 60.16
Lr_top_edge_2 74.79 600.83∗ 88.89 1108.46 71.83† 63.32 55.83

TD
S

Lr_top_edge_3 59.50 361.39∗ 70.54 1032.46 69.82‡ 54.65 52.04
t
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the mean of such distances, i.e.,

1
𝑇

∑

𝑡∈[𝑇 ]

[

1
𝑁

∑

𝑛∈[𝑁]

‖

‖

‖

𝐯̂(𝑡)𝑛 − 𝐯(𝑡)𝑛
‖

‖

‖2

]

, (16)

the quantity reported in several 3D reconstruction works (Ngo et al.,
2015; Pumarola et al., 2018; Varol et al., 2012). Given a parametriza-
tion 𝜑𝜃(𝑡) obtained with the proposed method, one can compute 𝐯̂(𝑡)𝑛 by
valuating the parametrization at the point in 𝑃 corresponding to the
−th vertex.

We can see that the Graph method obtains a superior performance
on the DeSurT and TDS datasets, with our neural approach, i.e., Neural
(ours), being the runner-up in most cases and obtaining the best mean
tracking error for the Cushion I sequence. For the TSO sequence, Lap
achieves the second-best performance, which is not surprising given
the fact that Graph uses the same reconstruction algorithm and only
changes the matching algorithm, leading to a close performance in the
well-textured classroom surface.

When reconstructing textureless surfaces, we can see that both
our approaches consistently outperform all the baselines. The neural
approach outlined in Section 3.3 obtains the best results for most
equences, with the approach based on solving a linear program with
inear constraints described in Section 3.2 closely following.

It is worth noting that the best performance for all sequences is
ttained by methods relying on an external method to obtain cor-
espondences. The superiority of algorithms taking matches as input
ontrasts with the current trend of predicting surfaces directly from
mages. However, relying on an external registration algorithm is a
ouble-edged sword and becomes the main limitation of the proposed
ethod. The reason is that matching algorithms introduce noise and
ay fail with repetitive or poorly textured surfaces, especially the

lassical matching methods. We can see this phenomenon on the TDS
ataset, where the Graph method fails at recovering the surfaces.

An alternative is to use dense approaches like Dense, which does not
extract features but instead maximizes a similarity measure to perform
registration (Ngo et al., 2015; Yu et al., 2015). These approaches usu-
lly need consistent illumination and suffer from brightness changes,
cclusions, and motion blur (Wang et al., 2019).

Data-based approaches like Texless do not require matches but
ypically work only with the surface seen during training and require

fine-tuning to different templates. Fuentes-Jimenez et al. (2021) at-
tempted training texture-generic neural networks, but their results were
9

worse than the ones obtained with texture-specific methods. Table 3
showcases that data-based approaches did not perform strictly better
han other methods for any tested sequences.
Linear (ours) directly incorporates the Riemannian metric preserva-

tion constraint proposed by Coltraro et al. (2022) for cloth simulation
and achieves one of the best performances for the TDS sequences. De-
pite the notable results backing up the metric preservation assumption,
his approach scales poorly with the number of vertices (being the
lowest method in Table 5) and diverges in some cases (e.g., the Stone

sequence in Table 3). Neural (ours) obtains very similar results in TDS
and consistently outperforms Linear (ours) on DeSurT.

In Fig. 4, we provide a qualitative evaluation of the obtained results.
We depict the projection of the reconstructed mesh on top of the
nput image for each tested method and the ground truth. Recall that,
s mentioned above, a perfect vertex projection does not guarantee
 correct reconstruction due to the depth ambiguity. Therefore, one
ust consider both qualitative and quantitative results, the former

onsidering how well the projected mesh matches the image and the
atter considering the estimation error in 3D.

4.5.2. Mesh-to-pointcloud
For all the datasets used in this paper, ground truth mesh vertices

are provided. In all cases, the process to obtain the ground truth is auto-
mated and based on capturing RGBD data and processing the resulting
pointcloud. However, this process is not trivial as correspondences are
unknown.

For the TDS dataset, the authors learn a neural network that maps
RGB images to a mesh using synthetic data. Then, the same model is
trained on the real dataset of pointclouds incorporating losses that take
into account the segmentation mask and the depth map of the cloth.
Nevertheless, the process to obtain the ground truth of the TSO and
DeSurT datasets is not specified in the papers that presented them.
Particularly for the DeSurT dataset, we noticed that the ground truth
was inaccurate in some cases, for example those illustrated in Fig. 5.

For this reason, we report a distance using the original unprocessed
oint cloud (𝑡) for each time step 𝑡. Given that we need a metric
etween sets of points with different sizes and without a matching
etween them, we use the mean of the directed Hausdorff distances,
efined as:
1 ∑

max
{

min
(𝑡)
‖𝐯̂ − 𝐳‖

}

, (17)

𝑇 𝑡∈[𝑇 ] 𝐯̂∈ ̂ (𝑡) 𝐳∈
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Fig. 5. Inaccuracies in ground truth meshes. Obtaining the vertex locations from RGBD data is a nontrivial procedure that can lead to errors. Such errors can stem from different
sources, wrong correspondences from the feature-matching algorithm being the most probable. In this case, methods using the image correspondences obtained with the same
procedure used to generate the ground truth will make the same mistakes, resulting in positively biased performance metrics that constitute an unfair and unrealistic evaluation.
This figure shows three frames from the Cushion I and Stone sequences from the DeSurT dataset. The first frame, corresponding to the template mesh, shows a near-planar
rectangular mesh that covers all the objects. In later frames, the vertices do not correspond to the original surface points of the template, with the zones indicated with blue and
red rectangles being the ones where the mismatch is most noticeable.
Table 4
Hausdorff distance. Given that we found some inconsistencies in the ground truth annotations of the meshes, we report the error between the
predicted mesh and the input point cloud. Concretely, we report the directed Hausdorff distance (mm) to account for sets of points of different
sizes and without correspondences. The best value for each sequence (the lowest) is shown in boldface, and the runner-up is underlined. (∗)
indicate that a method did not terminate, in which case the average error of the meshes obtained before the method crashed is reported. The
sequences used to train and validate Texless are indicated with (†) and (‡). Note that we favor Texless by providing it with full sequences and,
for the sequences with (†), reporting the values on training examples. (⊗) indicates that the depth used to obtain the point cloud is given by
a monocular depth estimator and the results are thus sensible to prediction errors.
Dataset ↓/Methods→ GP Lap Dense Graph Texless Linear (ours) Neural (ours)

Brick⊗ 147.38 83.66 100.65 82.23 101.48† 112.20 76.35
Campus⊗ 119.87 141.91 109.03 86.28 98.99 137.13 83.14
Cloth⊗ 149.31 556.14 147.36 105.62 129.58 754.33 98.59
Cobble⊗ 144.07 93.27 97.69 86.87 98.63 91.72 81.12
Cushion I⊗ 128.83 116.16 132.83 85.46 101.45† 272.47 56.67
Cushion II⊗ 283.55 215.49 107.43 81.37 98.88‡ 836.13 73.61
Newspaper I⊗ 133.74 109.52 146.88 79.30 116.97† 150.47 97.29
Newspaper II⊗ 133.96 103.61 137.86 75.24 217.98 116.18 93.54
Scene⊗ 127.86 97.25 111.68 76.47 236.48 123.97 83.34
Stone⊗ 140.90 504.37 136.45 126.56 116.54† 1006.38 81.65

De
Su

rT
⊗

Sunset⊗ 162.96 348.11 123.49 97.37 140.38† 149.28 92.04

Classroom paper⊗ 80.84 47.72 59.99 44.25 76.50† ‡ 57.32 43.07

TS
O

⊗

White paper⊗ 113.13 112.11 72.56 81.45 107.38 628.08 73.58

Lr_bottom_edge 193.65 1004.33 216.28 1370.55 178.31† 163.59 135.45
Lr_bottom_edge_tl_corn 159.99 3040.47 180.72 1208.29 157.34† 122.07 132.98
Lr_left_edge 186.85 1640.69 235.25 1333.07 189.88† 148.27 141.27
Lr_tl_tr_corns 157.34 884.21 177.79 1219.90 147.03† 145.09 130.31
Lr_top_edge_1 212.57 556.37 216.85 1263.86 184.79† 164.27 142.74
Lr_top_edge_2 183.25 690.91 196.30 1218.45 169.71† 156.97 138.67

TD
S

Lr_top_edge_3 144.60 490.05 175.51 1042.67 157.63‡ 151.59 126.59
f

where  (𝑡) is the set of estimated vertices of the surface at time 𝑡.
Note that, since this metric is computed with a dense point cloud ,
it approximates the maximum distance between any point and the true
surface. On the one hand, this is complementary to the mean tracking
error as it reports an extreme metric instead of an average. On the other
hand, reporting a metric on the raw input point cloud circumvents
possible errors in the ground truth mesh.

The TDS dataset provides point clouds, but other datasets do not.
or the DeSurT dataset we compute segmentation masks using the
onvex hull of the mesh projected to the image. To account for incorrect
esh vertices, we dilate the resulting mask using image morphology, as
10
most of the error is due to the borders of the mesh being towards the in-
side of the mask. Finally, we use the SAM segmentation model (Kirillov
et al., 2023) to refine the segmentations. For the TSO dataset, segmen-
tation masks are provided for the object and the occlusions. We then
obtain a final mask by removing occluded zones.

We obtain depth estimates for DeSurT and TDS using an off-the-shelf
monocular depth estimation model. Estimators providing depth maps
rom monocular RGB images, obtain results that do not necessarily have

the same scale as the true unknown values. We tackle this problem
by first creating a point cloud from the RGB image, the estimated
depth, and the segmentation mask, and then finding the scaling of the
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Table 5
Additional quantitative performance indicators. The row Time shows the average time in seconds required to process one image for the
TDS sequence Lr_bottom_edge, the dataset with higher resolution meshes (961 vertices). The rows DeSurT, TSO and TDS present the mean and
standard deviation of the tracking error in millimeters across the sequences of each dataset. The best value for each sequence (the lowest) is
shown in boldface, and the runner-up is underlined. (⊗) indicates that the depth used to obtain the point cloud is given by a monocular depth
estimator and the results are thus sensible to prediction errors.
Dataset ↓/Methods→ GP Lap Dense Graph Texless Linear (ours) Neural (ours)
Mean tracking error statistics (Table 3)

DeSurT 98.35 ± 9.90 156.47 ± 146.19 81.63 ± 𝟏𝟑.𝟖𝟖 30.30 ± 9.09 122.03 ± 62.24 335.45 ± 405.84 40.71 ± 6.20
TSO 47.33 ± 1.83 31.35 ± 23.13 30.93 ± 4.73 6.53 ± 3.39 45.59 ± 1.95 385 ± 352.08 26.31 ± 7.03
TDS 74.73 ± 14.33 1115.28 ± 854.54 85.76 ± 10.84 1090.46 ± 55.51 72.79 ± 10.56 58.87 ± 8.63 56.48 ± 6.23

Hausdorff distance statistics (Table 4)

DeSurT⊗ 152.04 ± 43.12 215.41 ± 165.81 122.85 ± 17.50 89.34 ± 14.54 132.49 ± 46.72 340.93 ± 328.94 83.39 ± 11.56
TSO⊗ 96.99 ± 16.15 79.91 ± 32.19 66.27 ± 6.28 62.85 ± 18.60 91.94 ± 15.44 342.70 ± 285.38 58.33 ± 15.26
TDS 176.89 ± 22.05 1186.72 ± 836.30 199.81 ± 21.61 1236.68 ± 97.84 169.24 ± 14.74 150.27 ± 13.34 135.43 ± 5.46

Time (s) 𝟎.𝟎𝟏 5.80 26.73 32.52 𝟎.𝟎𝟏 49.00 0.73
a
s
f
o
t
r
i
c

a
d
t
r

m
I
m
d

e
o
f

o
i
s
o
o
d
o
m

resulting point cloud that better aligns with the ground truth mesh
ertices. Doing so addresses the scale ambiguity, but predicted depth
alues may still contain some errors. In practice, we use ZoeDepth (Bhat

et al., 2023) for its zero-shot transfer capabilities to a wide variety of
omains.

In Table 4, we report the Hausdorff distance between the estimated
point clouds and the meshes provided by each compared method. As
ypothesized, the TDS dataset, for which ground truth depth maps are
rovided and whose ground truth mesh acquisition is reported, presents
 very similar performance to that of Table 3. Concretely, the best and
unner-up performances are consistent with the mean tracking error,

with only one of the sequences showing a flip in the performance
ranking order.

However, we can observe that for the DeSurT and TSO sequences,
Neural (ours) obtains a much better performance relative to that of the
other baselines. Concretely, our method achieves the best performance
in 8/11 sequences of the DeSurT dataset in terms of the Hausdorff
distance while only achieving the lowest mean tracking error using
the ground truth mesh in 1/11 sequences. As expected, the 2/11
sequences of the DeSurT dataset in which Graph obtains the lowest
Hausdorff distance show well-textured surfaces. In this case, obtaining
correspondences using classical matching algorithms is easier, leading
to better surface estimations for Graph and facilitating the ground truth
mesh extraction. Note that we obtain the results for DeSurT and TSO
with an estimated depth map. Hence, the Hausdorff distance evaluation
is affected by possible estimation errors. While TDS offers sensed depth,
we use a pseudo-ground truth for the other datasets, circumventing
the absence of ground truth depth values and the inaccuracies of the
ground truth meshes.

These results point out a possible unfair comparison but should
e contrasted as the Hausdorff distance does not consider correspon-
ences. Instead, all points are treated equally, and what matters is that,

for each point of the predicted mesh, there is a point in the pointcloud
hat is close enough. That said, a perfect surface reconstruction would

attain zero error in both cases if the ground truth mesh is ideal so
the two results are complementary and indicative of the reconstruction
performance.

Considering both the mean tracking error and the Hausdorff dis-
ance, Neural (ours) is crowned as the best performing method, as
hown in Table 5. While Graph obtains the best average performance

per dataset in terms of the mean tracking error, our two approaches
outperform this method on the TDS dataset. Moreover, in terms of
the Hausdorff distance, our neural approach is indisputably the best
method. Interestingly, our approach shows a stable performance in
the different sequences of each datasets, hence attaining the lowest
standard deviation in most cases.
11
In Table 5 we also report the average time1 required by each method
to process one image and statistics about the performance across all the
sequences.

On the one hand, as expected, learning-based methods (GP and
Texless) attain the lowest inference time as they only need to evalu-
te a function. Optimization-based methods require finding the best
urface parameters given an image, which requires performing several
unction evaluations and parameter updates. The proposed method is
ptimization-based but has significantly lower computational overhead
han its competitors. Concretely, the time to compute a forward pass is
oughly 1 ms, while the backward pass takes another 7 ms. This makes
t feasible to compute several gradient updates and still keep reduced
omputation times.

On the other hand, the proposed approach attains the best aver-
ge performance across both tested datasets. Moreover, the standard
eviation of mean tracking errors for different sequences is among
he lowest, which shows that our method is generally applicable and
obust.

5. Conclusions

This work tackles the inherently ill-posed problem of reconstructing
deformable surfaces from monocular images by assuming that the Rie-

annian metric of the manipulated surface is approximately constant.
sometry is a mild hypothesis for a broad range of scenarios since
any materials do not perceptibly shrink or stretch when they suffer
eformations (Salzmann and Fua, 2009).

The metric preservation constraint can be easily incorporated when
using parametric surfaces as they allow for an analytic computation of
differential geometric quantities. With this in mind, one could adapt
our framework for constraining other properties considered in SfT,
.g. the surface area (Salzmann et al., 2007a). Another advantage
f learning a parametric surface is that we can approximate a sur-
ace with arbitrary precision (Proposition 1) and obtain a continuous

representation.
Contrasting to the previous methods for SfT using neural networks,

ur approach does not require offline training but instead uses an
terative optimization process for each input. Although this solution is
lower than data-driven regression methods, such optimization takes
rders of magnitude less time than the other optimization-based meth-
ds. Moreover, it lifts the requirement of data-driven methods to have a
ataset with enough samples to represent the dynamics and appearance
f an object. Hence, we can use our approach on new sequences without
odification. Additionally, being an optimization-based solution, it

incorporates the error-feedback loop that regression methods lack.

1 Computations performed in a machine with an 11th Gen Intel (R) Core
(TM) i9-11900KF @ 3.50 GHz with 16 cores and a NVIDIA GeForce RTX 3090
GPU with 24 GB of VRAM.
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