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Abstract— In this article, we propose a generalization of a
Deep Learning State-of-the-Art architecture such as Retentive
Networks so that it can accept video sequences as input.
With this generalization, we design a force/velocity predictor
applied to the medium-distance Human-Robot collaborative
object transportation task. We achieve better results than with
our previous predictor by reaching success rates in testset of
up to 93.7% in predicting the force to be exerted by the human
and up to 96.5% in the velocity of the human-robot pair during
the next 1 s, and up to 91.0% and 95.0% respectively in real
experiments. This new architecture also manages to improve
inference times by up to 32.8% with different graphics cards.
Finally, an ablation test allows us to detect that one of the input
variables used so far, such as the position of the task goal, could
be discarded allowing this goal to be chosen dynamically by the
human instead of being pre-set.

Index Terms— Physical Human-Robot Interaction, Object
Transportation, Force Prediction, Human-in-the-Loop

I. INTRODUCTION

Robotics has always allowed us to put into practice and
test in the real world the advances made in fields as diverse
as automatic control, physics, psychology or, especially
in recent years, artificial intelligence in general and Deep
Learning in particular. In this way, we have improved the ca-
pabilities of robots to work autonomously with increasingly
precision [1], [2] and, more recently, to collaborate with us
humans in multiple tasks such as handover [3], collaborative
search [4], [5], collaborative assembly [6], [7] among others.

In this work, we focus on the task of human-robot col-
laborative transportation (see Fig. 1). More specifically, it is
the improvement of our previous work [8], [9]. While in [8]
we proved that it was possible to take advantage of the fact
that this is a task where information exchange occurs mainly
through forces to develop a first predictor of the next force to
be exerted by the human, in [9] we improved its architecture
using Transformers [10] and extended its capabilities to also
predict the velocity of the human-robot pair.

In this article we develop an improved version of our force
and velocity predictor based on a more recent architecture
such as Retentive Networks (RetNet) [11]. To this end, we
first generalize these RetNets to be able to process video
sequences and not only one-dimensional data sequences. To
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and with Universitat Politècnica de Catalunya - BarcelonaTech
(UPC). Jordi Girona, 31, 08034, Barcelona, Spain. {jdominguez,
sanfeliu}@iri.upc.edu. The first one is the corresponding author.

Fig. 1. Collaborative transportation set-up. Human and robot must
collaborate to transport an aluminium bar until the goal (marked with a
chequered flag) through a complex scenario with multiple routes. OptiTrack
on the ceiling to detect and track the human, the robot and the goal for
posterior analysis. Force sensor on robot’s wrist to detect human’s exerted
force. LiDAR to detect the environment and make an occupancy map.

the best of our knowledge, this generalization has not been
proposed in any other work, being this our first contribution,
which can be useful for other tasks and even other fields.
By means of this generalization, we managed to improve
the performance of our predictor, both in accuracy when
predicting force and velocity and obtaining inference times
up to 32.8% lower with respect to the previous best version,
being this our second contribution. Finally, in different tests
performed, this new design of our predictor seems to be less
sensitive to knowing a priori the location of the goal to which
the human-robot pair should take the object, being this one
of the main limiting factors of the previous versions, opening
the door to this goal being chosen on the fly by the human,
being this our third contribution.

In the remainder of the article, Section II presents the
related work. Section III presents the architecture of the force
and velocity predictor presented in this article. Section IV
shows the results obtained regarding the performance of
the predictor both in dataset and real experiments. Finally,
Section V presents the conclusions and future work.

II. RELATED WORK

When we talk about joint manipulation of objects between
a human and a robot, the first solutions that can be found in
the literature are based on the use of admittance [12], [13]
and impedance [14], [15] controllers, all of them aiming
to make the robot adapt to the human’s actions as fast as
possible. While it is also possible to find works that attempt
to include as input to these controllers some kind of predic-



tion of the trajectory of the human [16] or the object [17],
it was not until the proliferation of Deep Learning models
that these predictions improved sufficiently. Thus, [18] uses
Reinforcement Learning (RL) to model the uncertainties of
the human as an imput of a Model Predictive Controller
(MPC) and [19], [20] rely on Learning from Demonstration
(LfD) to learn the task to be executed or predict the human’s
desired speed profile.

Even though some of the previous work [20] has as input
for its architecture the force exerted by the human, no work
beyond our previous work [8], [9] attempts to obtain a
prediction of the force that will be exerted by the human
in the near future. Instead, they usually choose to try to
predict the trajectory of the human or the transported object
because it is more stable and, therefore, easier to predict.
We, on the other hand, advocate predicting the force to be
exerted because it allows us to detect changes in human’s
intention more quickly. Moreover, this prediction can be
further processed to obtain a trajectory estimation [8].

While in [9] we processed both visual and sequential in-
formation based on well-known architectures such as Trans-
formers [10] and its version oriented to process image se-
quences such as the Video Vision Transformer (ViViT) [21],
in this work we will be inspired by Retentive Networks
(RetNet) [11]. These RetNets, like Linear Transformers [22]
or RWKV [23], seek to improve the performance of Trans-
formers when performing inference, although, in the case of
Linear Transformers, at the cost of worsening their overall
performance. RetNets, on the other hand, seek to maintain
the performance of a Transformer or even improve it by
optimizing resource consumption. Although this type of
network is used to process one-dimensional data sequences
and [24] generalizes it to process images, our article is the
first to perform a more extensive generalization that allows
them to be used to process videos or sequences of images.

III. RETNET-BASED FORCE/VELOCITY PREDICTOR FOR
COLLABORATIVE OBJECT TRANSPORTATION

In order to compare this new predictor with our previous
work [8], [9] and expand the dataset used, we use the same
collaborative task (human-robot transport of objects) in the
same scenario in which multiple obstacles are placed so that
the human has at all times multiple routes available to get
the object to its predefined destination and can even change
routes on the fly (see Fig. 1).

A. Problem formulation

The goal is to obtain a prediction of the next T measure-
ments of the force that the human will exert on one end of the
transported object, Y force

N+1:N+T ∈ R2,T , and of the following
T values that the velocity of the human-robot pair will take,
Y vel
N+1:N+T ∈ R2,T . As discussed, the former prediction is

useful for detecting rapid changes in the human’s intention,
while the latter allows us to obtain a better estimate of the
trajectory that the pair will follow by taking into account
both the human’s and the robot’s contribution to the task.

In order to obtain both predictions, we use five information
inputs. First, we use the LiDAR+LaserScan of the robot to
obtain an occupancy map of the environment. This map will
be an image of 100x100 pixels in which each pixel will
indicate whether the equivalent area of 10x10 cm in the real
scenario is occupied or not. The second information source is
the result of giving semantic meaning to this occupancy map.
By clustering the occupied cells, we detect the O obstacles
visible at each moment by the robot and assign to each of
them a repulsive force inversely proportional to the distance
between the obstacle and the pair, fC,obsi ∈ R2. In parallel,
the robot uses a global planner to generate the waypoints
of the optimal path (not necessarily the one desired by the
human) to the known position of the goal to which they must
take the object. These waypoints generate an attractive force,
fC,goal ∈ R2, and the weighted sum of this attractive force
and the repulsive forces generated by the detected obstacles
generates a force representative of the environment, fE,C ∈
R2. More details on how to compute this second input to our
model can be found in [25], [26].

The third source of information is the force exerted by the
human on the transported object and measured by a force
sensor on the wrist of the robot, FH,C ∈ R2. The fourth
source of information corresponds to the linear and angular
velocity commands generated by the robot by combining the
force exerted by the human with the force representative of
the environment. Finally, the fifth input of our model is the
distance in modulus and angle to the pre-established goal of
the task1. In order to make use of and extend the dataset used
in our previous work, the last four sources of information
mentioned must be normalized to [−1, 1]. For this purpose,
the following maximum values are considered: 12 N for the
modulus of each force, 0.65 m/s for the linear velocity,
1 rad/s for the angular velocity and 7 m for the distance to
the goal.

Thus, to obtain both Y force
N+1:N+T and Y vel

N+1:N+T we will
use the last N occupancy maps, Xmap

1:N , and the concatenation
of the last N values of the other four information entries,
Xf

1:N = [xf
1 , x

f
2 , ..., x

f
N ] with xf

i ∈ R8. As in [8], we will
use the information of the last 2 s to predict the following
1 s (N = 20 and T = 10 since the system works at 10 Hz).

B. RetNet-based Force/Velocity Predictor Model

In the original article on Retentive Networks (RetNet) [11]
they proposed the retention mechanism for modeling se-
quences by bringing temporal decay to language models:

Retention(X) = (QKT ⊙D)V

Dn,m =

{
γn−m if n ≥ m

0 otherwise

(1)

using Q, K and V for Queries, Keys and Values; D for
both causal masking and exponential decay; representing ⊙
a matrix multiplication and being n and m the indexes of the
selected token and the one with which retention is calculated.

1Example of how to calculate FTask,C and the performed experiments:
https://youtu.be/Mbxavt78Xvw



Fig. 2. Model architecture for RetNet-based force/velocity predictor. Two input and two output streams in parallel. Occupancy map obtained from
LiDAR used as video stream and encoded as tubelets. Our implementation of Video RetNet (3D RetNet) to process them and 1D RetNet to process other
inputs. Both streams concatenated and processed to obtain simultaneously a 1 s prediction of next human’s force and next human-robot pair’s velocity.

Fig. 3. Different attention mechanisms used with each version of
RetNets. The green square/cube represent the selected token and red
squares/cubes represent the relative importance of other tokens with respect
to the green one. A - 1D decay for original Retention mechanism [11]. B -
Manhathan SefAttention with 2D decay used for generalized RetNets with
2D inputs (images). C - 3D Manhathan SefAttention with 3D decay used
for re-generalized RetNets with 3D inputs (videos).

While this mechanism is appropriate for data with causal
properties (see Fig. 3 - A), the same is not true when
applied to image processing. Because of this, they evolve
this mechanism to provide it with bidirectionality and bidi-
mensionality by developing what they call Manhattan Self-
Attention (MaSA) [24] (see Fig. 3 - B):

MaSA(X) = (Softmax(QKT )⊙D2d)V

D2d
n,m = γ|xn−xm|+|yn−ym| (2)

being (xn, yn) and (xm, ym) the two-dimentional possition
of the n-th and m-th considered tokens in the image.

In order to apply this mechanism to videos, where a causal
relationship does exist, a generalization must be made which,
to the best of our knowledge, has not been considered until
this article. To this end, we seek inspiration in [21] and
use tubelet embedding, i.e., create non-overlapping, spatio-
temporal ”tubes” from the input video which are processed
as tokens. Subsequently, we generalize MaSA to 3DMaSA
in order to process these tokens causally (see Fig. 3 - C):

3DMaSA(X) = (Softmax(QKT )⊙D3d)V

D3d
n,m =

{
γ|xn−xm|+|yn−ym|+|zn−zm| if zn ≥ zm

0 otherwise

(3)

being (xn, yn, zn) and (xm, ym, zm) the three-dimentional
possition of the n-th and m-th considered tubelets in the
video chunk.

Considering the above, Fig. 2 shows a diagram of our
architecture. There are two parallel streams to process Xmap

1:N

and Xf
1:N respectively. Xmap

1:N is sequenced in tubelets con-
taining L = 4 consecutive patches of size 25x25 pixels.
The choice of these values will be discussed in Section IV.
These tubelets are delivered to eight layers of our video-
oriented version of RetNets, each of them with h = 8
self-attention heads, 128 as the projection dimensionality
of queries, keys and values and p = 0.3 as the Dropout
probability. On the other hand, Xf

1:N is processed using six
layers of vanilla RetNets, each with h = 8 retention heads,
64 as the projection dimensionality, 512 for the inner FC
layers’ dimensionality and 128 for the dimensionality of the
sub-layers’ outputs. As with the 3D version, Dropout is used
for regularization with a probability p = 0.25.

The concatenation of both input streams is sent to two
output streams to obtain Y force

N+1:N+T and Y vel
N+1:N+T . Both

streams consist of nine layers of vanilla RetNets with the
same parameters except Dropout p = 0.3. This model will be
called RetNet-3D+1D in the comparisons with other models.

C. Dataset Acquisition and Training

The dataset used in [9] is extended using the samples gen-
erated in the real experiments performed in that same work
as well as with the experiments carried out in [27] in which
our set-up is used to analyze the effect of direct human-robot
communication systems. With this, our dataset increases to
18920 sub-sequences, 34% larger than the one previously
used. These sub-sequences are the result of dividing each
experiment performed in blocks of N + T samples of the
five information sources previously indicated and with an
overlapping of (N + T )/2 samples between sub-sequences.
Thus, the first N samples are used by our model to predict
the following T human’s forces and human-robot pair’s
velocities. This dataset is divided into the training (90%:



TABLE I
EVOLUTION OF MEAN ERROR AND PERCENTAGE OF CORRECT PREDICTIONS IN TESTSET. VARIABLE Y REPRESENTS FORCE (F ) OR VELOCITY (V el).

Measure
Time [ms]

Force (Y = F ) Velocity (Y = V el)
100 300 500 1000 100 300 500 1000

Error Yx [N or m/s]

CNN+LSTM [8] 0.239 0.250 0.260 0.290 – – – –
CNN+T [9] 0.205 0.233 0.241 0.254 0.0059 0.0065 0.0073 0.0090
ViViT+T [9] 0.190 0.202 0.211 0.249 0.0051 0.0063 0.0071 0.0088
RetNet-3D+1D 0.192 0.199 0.207 0.242 0.0054 0.0062 0.0069 0.0085

Error Yy [N or rad/s]

CNN+LSTM [8] 0.121 0.130 0.141 0.163 – – – –
CNN+T [9] 0.095 0.113 0.117 0.132 0.0040 0.0044 0.0050 0.0064
ViViT+T [9] 0.086 0.096 0.101 0.126 0.0034 0.0042 0.0048 0.0062
RetNet-3D+1D 0.089 0.095 0.100 0.125 0.0036 0.0041 0.0047 0.0059

Error |Y | < 0.1 · Ymax

&
Error ∠Y < 18◦ [%]

CNN+LSTM [8] 93.7 93.0 92.4 91.2 – – – –
CNN+T [9] 94.9 94.2 93.9 93.0 98.1 97.6 97.0 96.0
ViViT+T [9] 95.6 94.9 94.4 93.4 98.4 97.8 97.2 96.2
RetNet-3D+1D 95.5 95.0 94.6 93.7 98.3 97.9 97.4 96.5

TABLE II
PERFORMANCE OBTAINED WITH DIFFERENT GRAPHIC CARDS

Model
Frames Per Second (min. / avg. / max.)

GTX 1060
Mobile (80 W)

GTX 1660 Ti
Desktop

RTX 3060
Mobile (80 W)

RTX 3080 Ti
Desktop

CNN+LSTM [8] 13.0 - 13.8 - 14.2 18.0 - 18.8 - 20.1 21.3 - 22.6 - 24.3 54.9 - 58.9 - 62.4
CNN+T [9] 8.98 - 9.79 - 10.2 12.5 - 13.3 - 14.4 15.0 - 16.1 - 17.2 39.9 - 43.0 - 45.8
ViViT+T [9] 6.72 - 7.26 - 7.82 9.07 - 9.84 - 10.6 10.7 - 11.9 - 12.9 30.2 - 32.3 - 34.5
RetNet-3D+1D 8.54 - 9.21 - 10.0 11.7 - 12.4 - 13.4 14.4 - 15.5 - 16.6 40.1 - 42.9 - 45.6

17028 sub-sequences), validation (5%: 946 sub-sequences)
and testing (5%: 946 sub-sequences) datasets.

The model is coded using the Keras 3.0 API, which is
compatible with both TensorFlow and PyTorch. In this way,
both the previous models and the new one are retrained using
the extended dataset in order to compare their performance.
The optimizer used is Adam with its default parameters
except for the learning rate, which is used lr = 5 × 10−4.
Learning rate decay is also used with a decay factor of 0.96
up to lrmin = 3 × 10−5. Early stopping is added to avoid
overfitting. The maximum number of epochs is set at 100
although no model exceeded epoch 91 due to early stopping.
An NVIDIA RTX 2080 Ti graphics card was used, training
for 110-170 minutes depending on the model.

IV. RESULTS

First, we must check the performance of our predictor
compared to the predictors designed in our previous work
both in predicting the next force to be exerted by the human
and the velocity of the human-robot pair. To do so, we will
perform multiple tests on the testset split. Once this is done,
we take the best predictor among the previously designed
ones and our new predictor and test its performance in real
experiments. To do this, we record 15 new experiments
performed by volunteers who had not previously done this
task in previous rounds of experiments, so that they may

have different preferences than those present in the dataset.
These experiments are performed without executing any of
the predictors so that they do not condition the behavior
of the robot, in this case the IVO robot [28]. Offline, the
data recordings of the experiments are played back running
each predictor encapsulated in a ROS (Robot Operating
System) node so that its real performance can be checked. All
the experiments reported in this work have been performed
after getting the approval of the ethics committee of the
Universitat Politècnica de Catalunya (UPC) in accordance
with all the regulations and relevant guidelines (ID: 2023.05).

A. Force/Velocity Predictor Performance in Dataset

To check the performance of our predictor, we use the
metrics outlined in [8]. Thus, to evaluate the force prediction,
we calculate the absolute error made on each Cartesian axis
by comparing the prediction with its actual value. Likewise,
to evaluate the velocity prediction, we calculate the absolute
error between the linear and angular velocity prediction and
their respective real values. In addition, for both predictions,
we also calculate the percentage of samples that show an
error in modulus and angle of less than 10% (1.2 N for the
force and 0.065 m/s and 0.1 rad/s for the velocity).

Table I shows the evolution of the above metrics. It is
worth mentioning that the results obtained by the previ-
ous predictors, CNN+LSTM, CNN+T and ViViT+T differ



TABLE III
ABLATION STUDY WITH RETNET-3D+1D REMOVING EACH INPUT. VARIABLE Y REPRESENTS FORCE (F ) OR VELOCITY (V el).

Measure
Time [ms]

Force (Y = F ) Velocity (Y = V el)
100 300 500 1000 100 300 500 1000

Error |Y | < 0.1 · Ymax

&
Error ∠Y < 18◦ [%]

Without ocupancy map 86.0 83.2 80.2 75.1 93.7 91.2 87.9 84.4
Without env. force 93.4 91.1 88.9 85.2 96.5 95.4 93.3 90.4
Without human’s force 90.4 88.6 85.7 80.9 96.3 95.1 93.0 90.0
Without robot’s velocity 93.5 90.9 88.3 84.2 95.7 94.4 92.1 88.7
Without goal position 94.8 94.1 93.3 92.1 97.7 97.0 96.2 95.0

Fig. 4. Evolution of force (in blue) and velocity (in red) prediction accuracy at 1 s using diferent model hyperparameters in the Video RetNet
stream. Left - Performance variation by changing the occupancy map patch size. Middle - Performance variation by changing the tubelet depth. Right -
Performance variation by changing the number of Video RetNet layers.

slightly from those shown in [9] because all models have
been trained with a larger dataset over more epochs. First,
ViViT+T outperforms CNN+T, a result that did not occur
in [9]. It confirms the known issue in the literature that ViT
(and thus ViViT) can outperform CNNs in image recognition
tasks if trained with sufficiently large datasets [29], [30].
Second, RetNet-3D+1D manages to outperform all other
predictors from about the first 200 ms. However, this ob-
served improvement between RetNet-3D+1D over ViViT+T
is inferior to that achieved with ViViT+T over CNN+LSTM.
This could be indicative that we are reaching the limit of
the predictive capabilities of these variables since the force
exerted by the human is intimately related to their intention
and this can change suddenly.

On the other hand, RetNets do not stand out over Trans-
formers so much for a better performance in the task for
which they are used but rather for a more efficient use of
computational resources, especially memory [11]. This is
reflected in the Table II in which the Frames Per Second or
FPS (calculated as the inverse of the inference time or time
it takes to execute the line of code in which a new prediction
is requested after receiving a new set of input data) of each
model executed on different graphics cards is checked. The
performance improvement observed over ViViT+T makes the
use of RetNet-3D+1D to make sense, especially when using
lower-end hardware. It should be noted that since they are
graphics cards from different generations, it is not possible
to use the same drivers version in all of them. Instead, we
used the most updated graphics driver available for each of
them as well as the most recent CUDA compatible version.

Focusing on the RetNet-3D+1D model, the testset can
be used to perform an ablation test to know the relative
importance of each input. To do this, predictions are made by
hiding the different inputs one at a time and the percentage
of samples with an error of less than 10% is calculated. The
Table III shows the results. As expected, the most relevant
factor is the occupancy map because without it the full
processing power of one of the model’s input streams is lost.
Its absence causes a drop in performance of up to 18.6%
in force prediction and up to 12.1% in velocity prediction.
The next most relevant factors are the force exerted by
the human previously causing drops of up to 12.8% and
up to 6.5% respectively, and the speed followed by the
human-robot pair with drops of up to 9.5% and 7.8%. Note
that the force exerted turns out to be less determinant in
predicting the speed of the pair and vice versa. Finally, the
least determinant factors are the virtual force generated to
represent the environment with drops of up to 8.5% and
6.1%, and the distance in modulus and angle to the goal
with drops of 1.6% and 1.5%. This last and relatively small
drop in performance by eliminating the goal position offers
the possibility of using our predictor in tasks where the goal
is not pre-set but can be chosen by the human on the fly,
although its testing is outside the scope of this article.

Finally, and considering that the most significant contri-
bution of this article is the generalization of RetNets to be
used for video processing and its application to the task of
human-robot collaborative transportation, Fig. 4 shows how
the performance of the model varies both when predicting
the force to be exerted and the speed of the pair by varying



TABLE IV
MEAN ERROR AND PERCENTAGE OF CORRECT PREDICTIONS IN REAL EXPERIMENTS. VARIABLE Y REPRESENTS FORCE (F ) OR VELOCITY (V el).

Measure
Time [ms]

Force (Y = F ) Velocity (Y = V el)
100 300 500 1000 100 300 500 1000

Error Yx [N or m/s]

ViViT+T [9] 0.240 0.253 0.265 0.312 0.0070 0.0084 0.0098 0.0116
RetNet-3D+1D 0.242 0.252 0.261 0.298 0.0072 0.0083 0.0095 0.0113
RetNet-3D+1D
(w/o goal) 0.251 0.264 0.295 0.330 0.0086 0.0101 0.0120 0.0148

Error Yy [N or rad/s]

ViViT+T [9] 0.115 0.129 0.145 0.173 0.0048 0.0057 0.0077 0.0100
RetNet-3D+1D 0.117 0.129 0.142 0.169 0.0050 0.0056 0.0075 0.0095
RetNet-3D+1D
(w/o goal) 0.128 0.144 0.169 0.179 0.0060 0.0080 0.0102 0.0121

Error |Y | < 0.1 · Ymax

&
Error ∠Y < 18◦ [%]

ViViT+T [9] 94.0 93.1 92.2 90.8 97.2 96.5 95.8 94.7
RetNet-3D+1D 93.9 93.1 92.3 91.0 97.1 96.6 95.9 95.0
RetNet-3D+1D
(w/o goal) 93.2 92.2 91.0 89.6 96.4 95.6 94.6 93.4

TABLE V
COMPARISON OF MEAN ERROR ESTIMATING HUMAN TRAJECTORY WITH

DIFFERENT MODELS. * MARKS VALUES OBTAINED BY INTERPOLATION

FROM LAPLAZA EL AL. [3].

Model L2 [m]
500 ms 1000 ms

Martinez el al. [31] 0.159* 0.317*
Mao et al. [32] 0.081* 0.161*
Laplaza et al. [3] 0.072* 0.142*
2nd order polynomial 0.123 0.277
CNN+LSTM [8] 0.095 0.202
ViViT+T [9] 0.063 0.142
RetNet-3D+1D 0.061 0.139
RetNet-3D+1D (w/o goal) 0.084 0.171

the main parameters of the architecture. Although these
results are considerably task-specific, we believe that they
may be useful to the reader when tuning their own model
based on this architecture. In this case, it can be observed
that the maximum performance is achieved for a patch size
equivalent to one-sixteenth of the input image size: 25x25
pixels versus 100x100. On the other hand, the best result is
obtained with a tubelet depth of one fifth of the number of
images composing the sequence: 4 versus 20 (2 s at 10 Hz).
As for the number of layers, the performance could still
increase above 6 layers if a larger dataset were available.

B. Predictor Performance in Real Experiments

Although the testset split by definition is composed of
samples that are not used during training, they belong to
the same distribution as they are obtained after shuffling
and splitting all the samples obtained from the experiments
performed so far. That is why to check the real performance
of our predictor we use 15 new real experiments not present
in the dataset. Table IV shows the results. Analyzing the

RetNet-3D+1D model, there is a drop in performance of
up to 1.7% in force prediction and up to 1.5% in velocity
prediction. This model still performs better than ViViT+T
in both predictions at 200 ms and above. We also include
the performance offered by the RetNet-3D+1D model in the
case of not giving it the goal position to get a rough idea
of the effect that the absence of this variable would have in
real experiments.

As previously mentioned, this prediction of the speed that
the human-robot pair will follow can be integrated to obtain
an estimate of the trajectory they will follow. Table V shows a
comparison of the error made when estimating the trajectory
with different models. While [3], [31], [32] are predictors
of human movement applied to other tasks such as handover
and therefore cannot be used to make a fair comparison, they
do serve to give context to the predictive capabilities of our
model. As it can be seen, RetNet-3D+1D achieves the lowest
error beating ViViT+T. On the other hand, the version of this
model that does not receive goal position information shows
a significant increase in the error, although it improves the
result offered by our original predictor [8].

V. CONCLUSIONS AND FUTURE WORK

In this work, a generalization of the recent RetNet archi-
tecture has been presented so that it can be used to process
video as input. Results are provided on the effect of varying
the most important parameters in this architecture. Although
these results have been obtained in a specific task, we believe
that they can be useful to design other models applied to
other tasks based on this architecture.

Secondly, we provide a new force/velocity predictor ap-
plied to the task of collaborative transport of objects between
human and robot that obtains a higher accuracy in both
predictions and that makes a more efficient use of resources
reaching improvements of up to 32.8% in the FPS obtained,
which allows us to use our new predictor in real time using
lower-end hardware. Through real experiments, it proves to



be the best predictor reaching acceptable error rates 91.0%
of the time for the prediction of the force to be exerted by the
human in 1 s and over 95.0% for the speed of the human-
robot pair. Additionally, it also shows the best capabilities
if used to generate an estimate of the trajectory that both
agents will follow.

For future work, through an ablation study we have found
that the elimination of one of the information inputs, such
as the position of the until now pre-set goal of the task, does
not generate a high performance drop. This opens the door to
generalize our predictor so that the task goal can be chosen
on the fly by the human. A new round of experiments, as well
as possible changes in the architecture, will be necessary to
test this possibility. In addition, other information inputs such
as the human’s gaze could be taken into account to overcome
the performance limit that we seem to have reached with the
inputs considered so far.
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