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Abstract—To evaluate how explanations affect the users’
understanding of robots, researchers typically elicit the user’s
Mental Model (MM) of the robot and then compare it to
the robot’s actual decision-making and behaviour. However,
the user’s self-rating of their level of understanding, which
we define as ‘“user-perceived understanding”, is generally not
evaluated. Moreover, this evaluation is typically done only once,
while robots are often expected to interact with the same users
over long periods. In this work, we suggest a framework to
analyse the evolution of the mental models over time across
the dimensions of completeness and correctness. We argue that
the goal of explainability should be two-fold. On one hand, it
should help align the user’s perceived understanding with the
real one. On the other hand, explainability should enhance the
completeness of the mental model to a target level, which varies
depending on the user type, while also striving for maximum
correctness.

I. INTRODUCTION

One of the main goals of designing explainable robots
is to improve the understanding of users about the robots’
decisions and behaviours [12]. In turn, this will contribute
to achieving other desired effects, such as raising users’
satisfaction when interacting with these robots, who find
them more usable, and eventually, who trust them more.

In the Human-Robot Interaction (HRI) field, the Theory
of Mind (ToM) approach assumes that users build an internal
Mental Model (MM) about the robot, which helps them
to predict the robot’s decisions and behaviour [5]. The
evaluation of the effects of explainability on the user’s
understanding of the robot is often done in terms of building
“better” mental models [6]. However, this evaluation is typi-
cally conducted after just a single interaction with the robot,
which often fails to address the novelty effect adequately.
Moreover, many robot use cases are designed for long-term
interactions, involving multiple engagements over extended
periods with the same user. Although the evolution of mental
models over time has been studied from some perspectives
(e.g. concerning robot-attributed anthropomorphism [8]), up
to the authors’ knowledge, it has not been addressed from
an explainability point of view in robotics.

In this work, inspired by the works in [6], [13], we
formalise the characterisation of mental models through two

properties: completeness and correctness. The former refers
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to how many aspects of the robot are known, while the latter
refers to the accuracy of those known facts. Moreover, we
also consider the concept of user-perceived understanding,
which is normally overlooked in previous works.

II. RELATED WORK

Regarding the evaluation of explainability, the review
work in [6] divides eXplainable Artificial Intelligence (XAI)
metrics into groups according to the measured aspect: the
explanation goodness, the user satisfaction, the user’s mental
model, curiosity, trust, and human-Al performance. For the
sub-field of eXplainable HRI (XHRI), a survey [13] defines
similar and overlapping groups, which are the explanation
content quality, faithfulness, effects (which include trust,
mental models, and human-robot performance) and timing
of explanations.

In many XHRI studies, the primary goal is to analyze
how explainability measures impact user trust in robots [2],
with several trust scales being developed [14], [11]. However,
concerns regarding how trust is measured have been raised
[3], [9]. In this work, we focus on the user’s understanding of
systems (through the evaluation of the user’s mental model),
which is considered a way to foster trust in the system [6].

According to [6], the elicitation of mental models is
usually complex, but there is a consensus that mental models
can be inferred from empirical evidence. It has been rec-
ommended to combine more than one method for eliciting
a mental model [6], [13]. Several relevant properties have
been identified to analyse them, including correctness and
completeness [6], [13]. However, to the author’s knowledge,
analysing the elicited mental models has not yet been formal-
ized in the XHRI field. Moreover, previous works on mental
models’ evaluation in XHRI do not specify how to consider
their evolution over time.

Lastly, previous works have primarily focused on assessing
mental models by evaluating “real” knowledge —what indi-
viduals actually understand about the world around them—
to appraise explainability. However, research in social sci-
ences evidences that people tend to have a wrong belief of
their understanding [10], [7], but this phenomenon has not
been well studied in the XAI field. We advocate that user-
perceived understanding is part of the construct of mental
models, considering that explainability should be a mecha-
nism that steers the user-perceived levels of understanding
closer to the real ones.
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Fig. 1. Example curves for the evolution of a mental model’s related under-
standing over time across the dimensions of completeness and correctness.

I1I. PROPOSED APPROACH

We propose to evaluate the evolution of the explainability
impact on the individual’s understanding of the robot by
considering the perceived and real understanding across
two dimensions: completeness and correctness. Complete-
ness refers to the breadth of knowledge about the system’s
features, capabilities, and behaviour, whereas correctness is
the accuracy of that knowledge.

We thus propose measuring and quantifying both di-
mensions for the real and the user-perceived understanding
at different time points. This evaluation can be done by
representing the curves for multiple users separately and then
looking for patterns and profiles, or directly aggregating all
the users’ data to discover general trends.

Figure 1 provides an example of such a representation.
Discontinuous lines represent periods when there are no
interactions with the system. Here we include all previous ex-
periences before the first interaction, which could correspond
to preconceived knowledge, biases from different sources,
or even experiences with similar systems. We consider the
initial value of the user-perceived understanding as the initial
user expectations, and the difference with the real under-
standing would correspond to the expectations mismatch.

We next describe the evolution of the curves through time
based on explainability mechanisms and their interrelation-
ships. We conclude by introducing practical considerations
of the framework, including both methods for measuring the
user-perceived and real understanding, and areas requiring
further research.

A. Evolution of the MM curves shaped by explainability

We propose that the impact of explainability should be
two-fold. First, explainability measures should adjust the
user’s beliefs and expectations to align the user-perceived
understanding levels closer to the real ones, thereby reduc-
ing expectation mismatches. Second, the real understanding
completeness should reach a target level, which varies de-
pending on the user type, while aiming for high correctness.

With respect to the user-perceived understanding, expla-
nations should support driving the curve closer to the real
understanding. Previous studies have shown that, in general,
users have the belief that they have a deeper understanding
than the real one [10], [7]. Therefore, we expect user-
perceived completeness and correctness curves to start with
higher values than the real curves, and to decrease through
time to finally track the real curves [10]. It has been argued
that the anthropomorphism level of the robot’s appearance
is highly related to humans’ expectations and perceptions
[4], so we would expect that the initial gap between the
real and user-perceived understanding is higher for more
anthropomorphic robots.

Regarding the real understanding, a target completeness
value should be defined, which represents the relevant fea-
tures, skills, strategies, decision-making logic and behaviours
of the systems to be known by a particular user type!. The
robot should provide explainability measures to reach that
target. The completeness target value should be carefully
defined to ensure that the robot’s aspects to be understood
are going to be useful for the user, that is, that they will
support effective interaction with the system, thus improving
the usability and trust in it. Participatory design approaches
can be used to define the aspects that are more useful and
relevant for the users and define a completeness target that
adapts better to the user’s needs.

After setting a target completeness level, the robot should
aim to raise the correctness to the highest possible values, as
we consider that users should not have a wrong interpretation
of the different aspects of the robot that they should know.
Especially for low completeness values, when users need to
achieve a general pragmatic understanding of the system,
mechanisms for achieving very high correctness levels are a
must. However, when the most complex aspects of a robot
need to be understood by expert stakeholders, it might not be
possible to achieve 100% correctness. For instance, this will
be the case for systems that include black-box AI modules.
We consider that the goal of the XAI generation of low-level
features is precisely to provide auxiliary outputs that can lead

'We suggest to categorise the different users following the IEEE Standard
for Transparency of Autonomous Systems P7001 [1] user type definition.
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Fig. 2. Example real understanding curves for the (a) general public, (b) non-expert users, (c) domain-expert users and (d) superusers user types from the
IEEE Standard P7001 [1]. They are example curves for a hypothetical security robot use case. For different use cases and users, the curve might follow

different trends. Target values for completeness and correctness are included.

to higher levels of correctness for users with a high required
completeness about complex systems.

As a hypothetical example, we consider a security robot
that patrols a certain facility. Figure 2 depicts the MM curves
for four types of users (as defined in [1]). The general public
or bystanders, such as visitors of that facility, should have
a low target completeness value, since they only need a
rough idea of the general capabilities of the system, e.g., that
the robot can move autonomously and that it will preserve
their privacy. Non-expert users (e.g., general staff from the
facility) completeness target should be significantly higher, as
they should know how to sporadically interact with the robot,
such as understanding some of the alarms that it can raise and
performing a preliminary assessment. In contrast, domain-
expert users, such as the security staff from that facility,
should have a higher completeness target. They should
know how to command the system, configure it, extensively
interpret the alarms triggered by the robot, and assist in
recovering from failures, among others. Finally, superusers
(e.g., persons responsible for development, fault diagnosis,
repair, maintenance and upgrade), would require close to
maximum completeness targets. All user types should aim
at a correctness of 100%, although for users with very high
target completeness, it might be more difficult to reach such
a goal.

B. Practical considerations

1) On the curves sampling: Curves in Figure 1 are
continuous, but in practice, they will be composed of a set of
discrete values. We recommend measuring the mental model
metrics as often as possible to build an accurate representa-
tion of these, which will allow to apply effective strategies
to achieve more complete and correct mental models and
reduce expectations mismatch. They should be measured at
least before starting the deployment of the system, at the
end of the deployment, and before and after large interaction

gaps.

2) On the curves assessments: Regarding the measure-
ment of the real understanding, we suggest following the
guidelines in [6], which provides a set of elicitation tech-
niques, analysis guidelines and general recommendations.

To assess the user-perceived knowledge, we recommend
creating a comprehensive set of questions covering various
aspects of the robot, such as its capabilities, decision-making
strategies, and behaviours. These questions should range
from simple to complex, and include an option to answer
“not known,” indicating gaps in the user’s knowledge. The
user-perceived completeness is calculated as the percentage
of known aspects. For aspects the user claims to know, they
should rate their understanding on a given scale. The user-
perceived correctness is then determined as the average of
these self-assessed ratings for all aspects the user claimed to
know.

3) On the explainability mechanisms: We consider three
different explainability mechanisms to impact on shaping
those curves:

e Previous information, which cover training workshops
and provided documentation that pursue building a
higher real understanding before the first interaction,
but also seek to reduce expectation mismatches by
decreasing the user-perceived understanding.

e Legible behaviours are performed by the robot during
normal usage and aim to improve the real understanding
by acting intuitively, that is, in a way that matches what
the user would expect. This means that legibility would
shape the real understanding curve, rather than the user-
perceived one.

o Post-hoc explainability mechanisms, which are actions
triggered after a user request (e.g. “why did you do
that?”), impact on increasing the real understanding and
thus, reducing the mismatch with the user-perceived
understanding. The number of requested post-hoc ex-
planations will depend on the user’s curiosity about the
system and satisfaction with previous requests.



4) On the influence of curiosity: High levels of curiosity
and explanation satisfaction will lead the users to seek higher
levels of completeness and correctness. In some cases, this
can be crucial to reach the target values, as users who are
not interested enough in the system will never reach the
target levels of understanding. Moreover, high curiosity and
explanation satisfaction will accelerate the improvement of
the mental models, and might even lead to reaching higher
values than the target ones. For example, a non-expert user
might want to go beyond the necessary aspects for the
basic usage of a system, seeking to know more about the
inner workings of the robot’s decisions and behaviours, thus
advancing towards the domain-expert user’s completeness
target.

5) On the uncertainty: Finally, there will be in practice
uncertainty associated with the correctness and completeness
of the understanding curves. Future work could consider
the inclusion of uncertainty by replacing the curves with
distributions (e.g. normal distributions) that evolve over time.
Evaluation techniques should consider and reduce the un-
certainty coming from the mental model elicitation process.
Moreover, explainability measures should attempt to reduce
the uncertainty that users themselves report, e.g., some users
might be able to provide an interval for the perceived
completeness and correctness instead of a fixed value, as
they would consciously know that there is some uncertainty
in their belief.

IV. CONCLUSIONS

This work proposes a novel framework for evaluating the
effects of explainability on users’ mental models of robots
over time. It distinguishes between real and user-perceived
understanding, focusing on the dimensions of completeness
and correctness.

Key contributions include introducing the dual-
dimensional evaluation framework, emphasizing the often-
overlooked user-perceived understanding, and suggesting
practical methods and considerations for measuring the
evolution of the mental models over time. Moreover, this
work argues that the goal of explainability should be to
improve real understanding while reducing the mismatch
between real and user-perceived understanding.

Future work will further formalize the evaluation of real
and user-perceived understanding, empirically validate the
framework through user studies in diverse HRI contexts
and explore methods to consider both the curiosity and
uncertainty in the mental models.
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