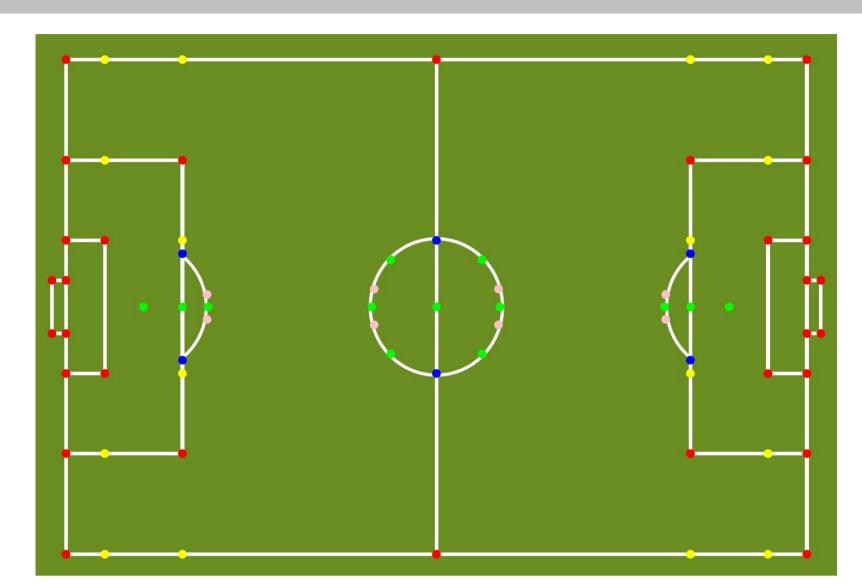
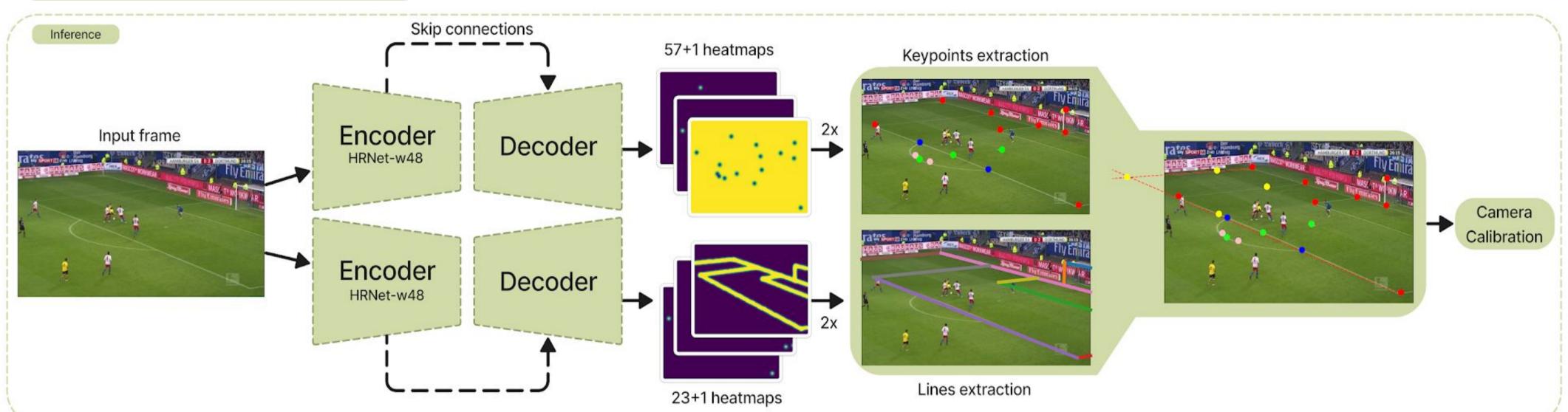


No Bells, Just Whistles: Sports Field Registration by Leveraging Geometric Properties

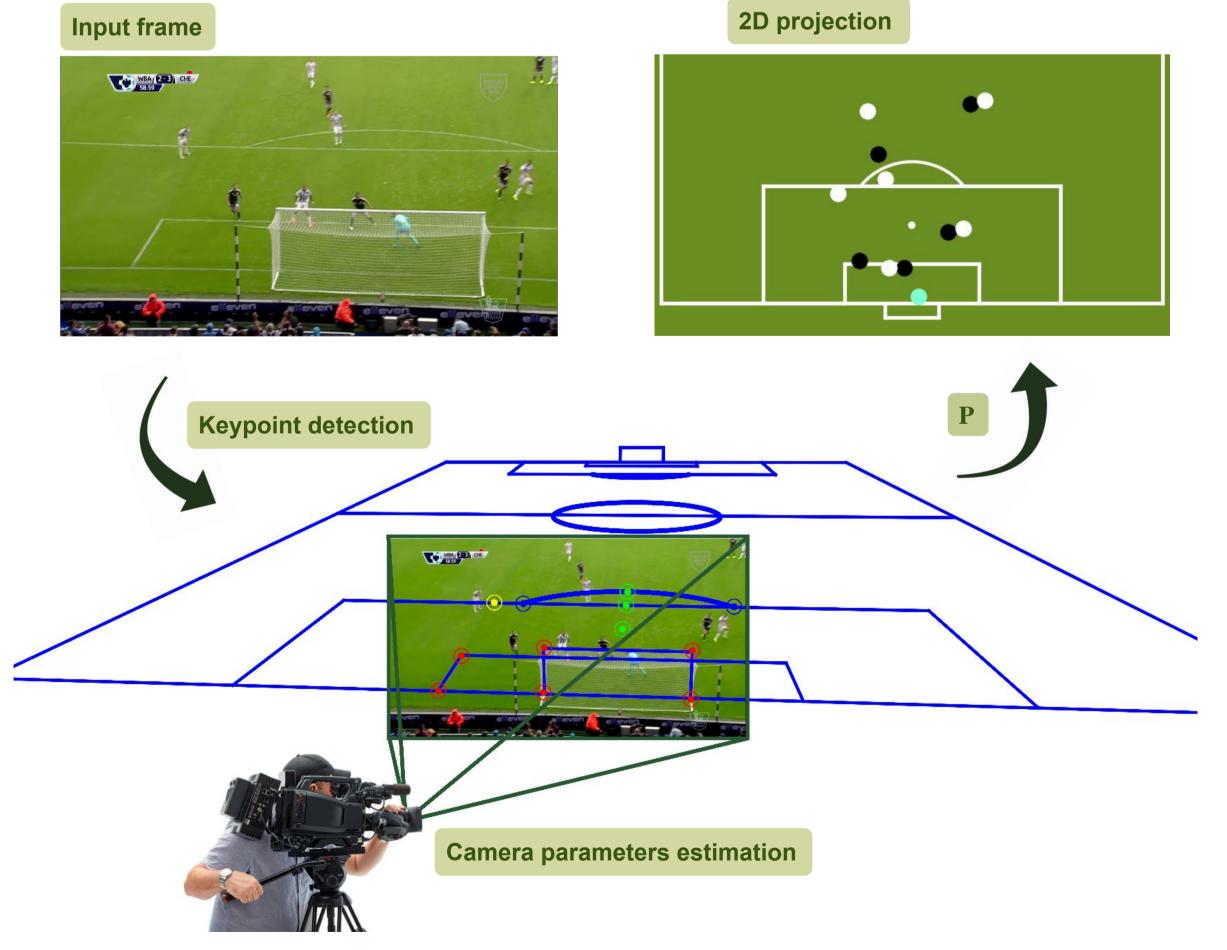
Author: Marc Gutiérrez-PérezSupervisor(s): Antonio Agudo

Goal: Estimating a projective transformation, which maps a 3D field template to a real-world field image captured from an arbitrary camera viewpoint.


Contributions


- Geometry-based keypoints grid and retrieval pipeline
- Calibration pipeline for 3D camera calibration extending to multiple views from the TV broadcast
- Pipeline structure focused solely on 2D-3D correspondences

Proposed grid


- Line-Line intersections ($\mathcal{K}p$)

 Extended Line-Line intersections ($\mathcal{K}pe$)
- Line-Ellipse intersection ($\mathcal{K}p1$)
 Ellipse tangent points ($\mathcal{K}p2$)
- Additional points ($\mathcal{K}p3$)

Qualitative Results

3D Calibration

		Acc@t [%]				
Dataset	Approach	5	10	20	CR	FS
SN23-test	Ours _{MV}	73.7	86.7	90.4	77.5	57.1
SN22-test -center	[6] + HDecomp TVCalib (τ) [31] TVCalib [31] Ours _{SV}	57.6 54.8	81.7 78.5	93.2 90.4	66.6 93.7 100.0 97.8	53.9

Ablation Study

				Acc@t [%]				
$\mathcal{K}p_e$	$\mathcal{K}p_1$	$\mathcal{K}p_2$	$\mathcal{K}p_3$	5	10	20	CR	FS
×	Х	Х	Х	66.8	73.9	91.9	85.9	57.4
✓	X	X	X	66.9	86.0	91.9	85.9	57.5
1	1	X	X	74.6	89.1	92.1	91.8	68.6
\checkmark	\checkmark	\checkmark	X	73.8	87.8	91.1	96.5	71.3
_	√	√	√	75.3	89.4	91.1	97.8	73.7

2D Calibration

Dataset	Approach	$IoU_{part} \uparrow (\%)$		$IoU_{whole} \uparrow (\%)$		Proj. \downarrow (m)		Reproj. ↓	
		Mean	Median	Mean	Median	Mean	Median	Mean	Median
WC14-test	Shi <i>et al</i> . [29]	96.6	97.8	93.1	94.8	-	-	-	-
	Maglo <i>et al</i> . [23]	96.3	97.4	92.0	94.1	0.74	0.55	0.018	0.014
	Oo et al. [26]	96.9	97.9	92.9	94.6	0.65	0.46	0.016	0.012
	Ours _{SV}	96.2	97.8	92.2	94.3	0.68	0.46	0.016	0.011
TSWC-test	Chu <i>et al</i> . [7] [‡]	98.1	98.2	94.8	95.4	0.36	0.33	0.009	0.008
15 w C-test	Maglo <i>et al</i> . [23] [‡]	98.3	98.5	95.7	96.2	0.26	0.23	0.008	0.006
	Oo <i>et al</i> . [26] [‡]	98.5	98.7	95.8	96.7	0.26	0.21	0.007	0.006
	Ours _{SV}	98.6	98.8	96.3	96.8	0.23	0.20	0.005	0.005

Start date: January 2023

Research Plan defense: September 2023

Funding

Spanish Research Project MoHuCo (PID2020-120049RB-I00) funded by MCIN/ AEI /10.13039/501100011033

Publications

[1] M Gutiérrez-Pérez and A Agudo (2024). No Bells, Just Whistles: Sports Field Registration by Leveraging Geometric Properties. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 10th International Workshop on Computer Vision in Sports (CVsports) at CVPR 2024.