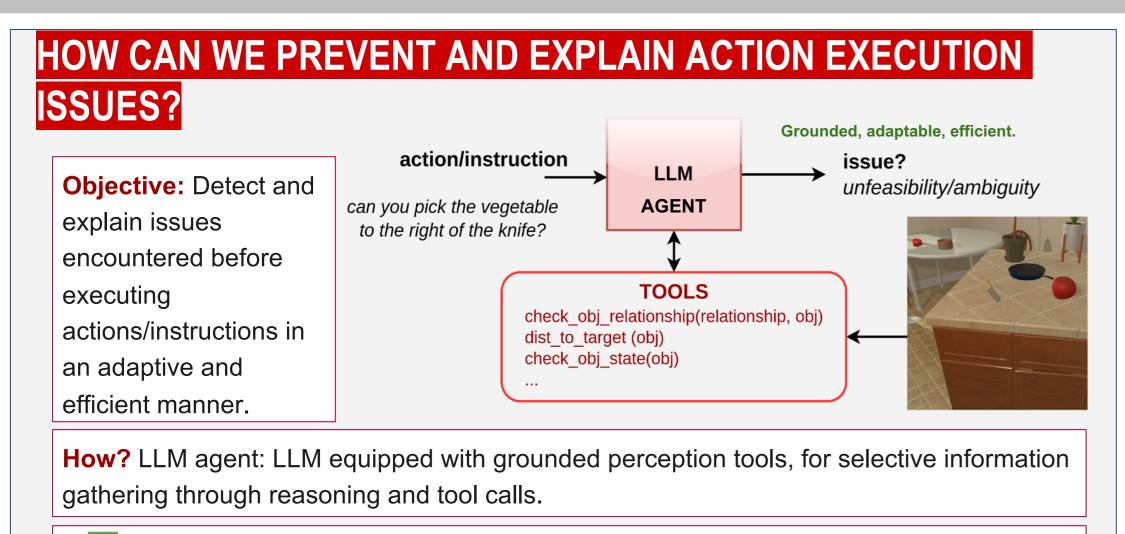


PhD**day** 2024

000 000 UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Flexible Plan Generation, Adaptation and Execution in **Human-Robot Collaboration**

Author: Silvia Izquierdo Badiola Supervisors: Guillem Alenyà (UPC-IRI) and Carlos Rizzo (Eurecat)

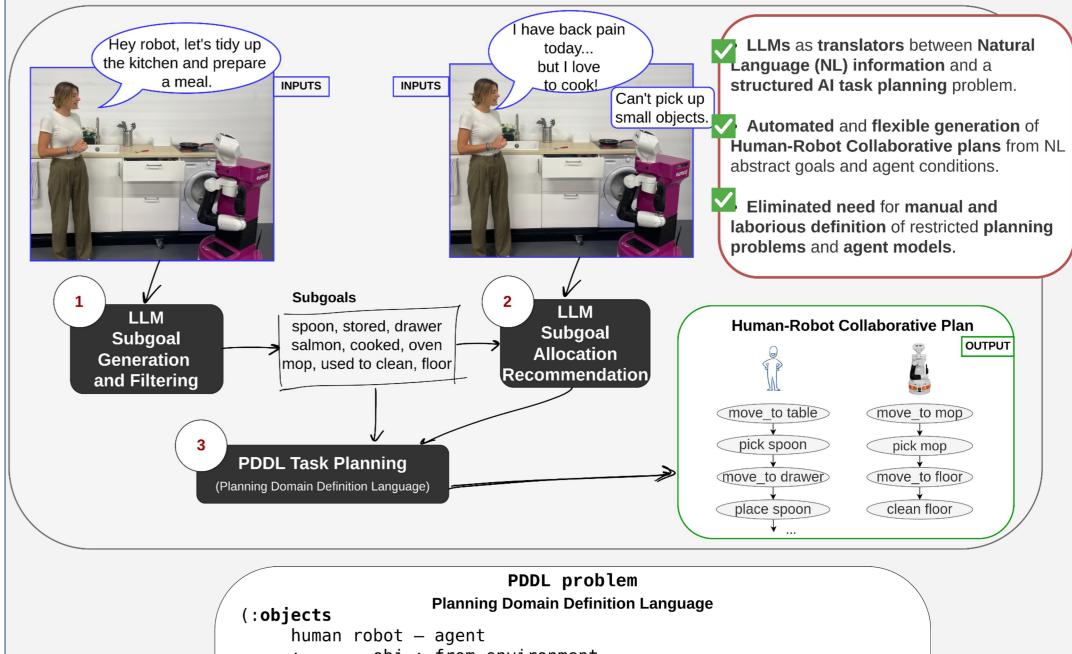


No need to define specific preconditions or rules – applicable and adaptable to unseen actions and arguments. Checks are simply limited by tool capabilities.

HOW CAN WE GENERATE PLANS FROM NATURAL LANGUAGE ABSTRACT GOALS AND AGENT CONDITIONS? [4]

Objective: Generate grounded collaborative plans from a high level goal, with an appropriate action allocation influenced by agent conditions expressed in natural language.

How? Combination of LLMs and AI task planning - LLMs to generate subgoals from a high level goal and to influence their allocation based on agent conditions. Information translated into a grounded PDDL task planning problem.



No need to define full scene graph: focus on important information only.

USER: pick the vegetable on the right of the knife

FROM ENVIRONMENT: The objects in front of the robot are: grounded object list = ['Drawer1', 'Drawer2', 'Cabinet1', 'Drawer3', 'Cabinet2', 'Cabinet3', 'Drawer4', 'DiningTable', 'Cabinet4', 'Tomato', 'Knife', 'Bowl', 'HousePlant1', 'Plate', 'Pan', 'ButterKnife', 'HousePlant2', 'Chair1', 'Chair2', 'CounterTop']. The robot is holding None

AGENT: 1. Object Grounding:

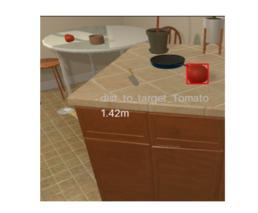
- **Knife**: Clearly identified in the object list.
- **Vegetable**: Needs to be identified as a specific object. The only vegetable in the list is **Tomato**.

2. Question Generation:

- 1. Is the Tomato on the right of the Knife?
- 2. Is there anything blocking the Tomato from being picked up?
- 3. Is the Tomato within the robot's reach?

3. Tool Calls - Information Gathering:

- call tool{tool: check obj relationship, args: on the right of, Knife} call tool{tool: check obj relationship, args: blocking, Tomato}
- call tool{tool: dist to target, args: Tomato}



AGENT: 4. Decision Making:

- The Tomato is confirmed to be on the right of the Knife.
- There is nothing blocking the Tomato from being picked up.
- The Tomato is 1.42m away, which is beyond the robot's 1.10m reach.

{"final response": "unfeasibility", "explanation": "The Tomato is beyond the robot's reach of 1.10m."}

; ... - obj ; from environment ; ... - loc ; from environment (:init (agent not busy robot)(agent not busy human)... (= (total-cost) 0); action costs from LLM recommendations based on agent states and preferences (stored cost robot spoon drawer 100) ; etc. (:goal (and goals from LLM based on environment (stored spoon drawer); etc.

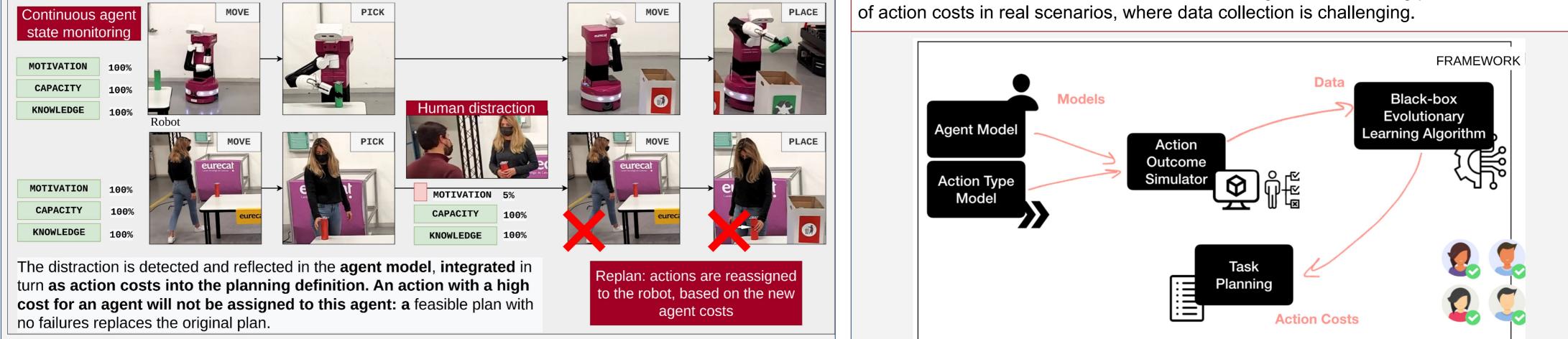
HOW CAN WE ADAPT THE PLAN TO THE AGENT'S STATES, AVOIDING HOW CAN WE LEARN APPROPRIATE ACTION COSTS FOR AN FAILURES? ^[1] AGENT TYPE? ^[3]

Objective: Prevent failures in HRC plans by adapting the plan based on agent's states.

How? Integration of an agent model into action costs of the PDDL planning domain definition.

Automated adaptation of plans to varying agent states.

Continuous agent	MOVE	0.04	PICK



Objective: Learn appropriate action cost values associated to different agent types, so that plans with a suitable action allocation adapted to these states can be generated.

How? Evolutionary algorithm for learning, where the black-box function consists of an action outcome simulator based on an agent and and an action type model.

Provides an initial set of action costs, facilitating and accelerating posterior fine-tuning

8.2

€ ►

Start date: 01/12/2020

Thesis Project defense: Pending

Research stays

Research stay in 2022 in Kings College University, United

Kingdom Funding

Eurecat: Vicente López PhD Scholarship Program

Publications

[1] Izquierdo-Badiola, S., Canal, G., Rizzo, C., Alenyà, G., (2022). Improved Task Planning through Failure Anticipation in Human-Robot Collaboration. In IEEE International Conference on Robotics and Automation (ICRA).

[2] Izquierdo-Badiola, S., Rizzo, C., Alenyà, G., (2022). Planning Interactions as an Event Handling Solution for Successful and Balanced Human-Robot Collaboration. In Workshop IEEE International Conference on Intelligent Robots and Systems (IROS Workshop).

[3] Izquierdo-Badiola, S., Alenyà, G., Rizzo, C. (2023). Adaptive Human-Robot Collaboration: Evolutionary Learning of Action Costs Using an Action Outcome Simulator. In IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).

[4] Izquierdo-Badiola, S., Canal, G., Rizzo, C., Alenyà, G., (2024). PlanCollabNL: Leveraging Large Language Models for Adaptive Plan Generation in Human-Robot Collaboration. In IEEE International Conference on Robotics and Automation (ICRA).

[5] Izquierdo-Badiola, S., Canal, G., Coles, A., (2024). Planning for Human-Robot Collaboration Scenarios with Heterogeneous Costs and Durations In European Conference on Artificial Intelligence (ECAI).