

Deep learning-based scene understanding for urban autonomous navigation

Author: Hafsa Taher Supervisor(s): Angel Santamaria-Navarro

MOTIVATION

 The motivation for this research stems from the critical need to develop a comprehensive understanding of the semantic environment surrounding autonomous vehicles (AVs), and to use this understanding effectively to drive the vehicle's control system.

RESULTS

BDD100K dataset used to train the model.

OBJECTIVES

The main objective is to build an **End-to-End** architecture to improve the scene understanding of a navigation platform and vehicle control by processing images using deep learning.

The E2E architecture will incorporate both Panoptic Segmentation (PS) and Physically-Informed Neural Networks (PINNs) approaches.

 PS to improve scene perception and detection of traversable areas. The results demonstrate a satisfactory performance in both lane line and drivable area segmentation.

- For drivable area segmentation, it was able to achieve 93.5 MIoU.
- In lane detection, it exhibited high accuracy, with a 87.31% accuracy rate and a 31.6% IoU metric.
- Furthermore, it achieved an impressive 91 fps with 38.9M parameters.

The visual and metric results demonstrated the model's remarkable capabilities.

Data collection

- Our preliminary assessment was conducted on a mobile robot called Ona.
- The data were obtained from ONA in Esplugues, Debrecen, and Braunschweig.
- PINNs for decision making and control of vehicle dynamics and traffic flow principles.

Start date: January 2023 *Research Plan defense:* Fabruary 2024

Publications

[1] A. Santamaria-Navarro, S. H. Juan, F. H. Cotarelo, A. L. Gestoso, I. Del Pino, N. A. R. Linares, C. Fernandez, A. Baldó i Canut, C. Lemardelé, A. Garrell, J. Vallvé, H. Taher, A. Puig-Pey, L. Pages, A. Sanfeliu. *Towards the deployment of an autonomous last-mile delivery robot in urban areas*. IEEE Robotics and Automation Magazine. (to appear 2024).