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Fig. 1: Our framework combines a dynamic motion primitive that adheres to the robots’ constraints, for quick task progression,
with quasi-static motions for final adjustments. We evaluate the framework by implementing BILBO: Bimanual dynamic
manipulation using Imitation Learning for Bag Opening, a system for a practical bag-opening task.

Abstract— Imitation Learning (IL) is a promising paradigm
for learning dynamic manipulation of deformable objects since
it does not depend on difficult-to-create accurate simulations of
such objects. However, the translation of motions demonstrated
by a human to a robot is a challenge for IL, due to differences in
the embodiments and the robot’s physical limits. These limits
are especially relevant in dynamic manipulation where high
velocities and accelerations are typical. To address this problem,
we propose a framework that first maps a dynamic demon-
stration into a motion that respects the robot’s constraints
using a constrained Dynamic Movement Primitive. Second,
the resulting object state is further optimized by quasi-static
refinement motions to optimize task performance metrics. This
allows both efficiently altering the object state by dynamic
motions and stable small-scale refinements. We evaluate the
framework in the challenging task of bag opening, designing the
system BILBO: Bimanual dynamic manipulation using Imitation
Learning for Bag Opening. Our results show that BILBO can
successfully open a wide range of crumpled bags, using a
demonstration with a single bag. See supplementary material
at https://sites.google.com/view/bilbo-bag.

I. INTRODUCTION

Dynamic manipulation has shown great potential, particu-
larly in the manipulation of deformable objects [1]–[3]. Un-
like quasi-static manipulation like pick-and-place, dynamic
manipulation utilizes forces of acceleration for the success
of the task [4]. Therefore dynamic actions can achieve object
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configurations that are not reachable through quasi-static ma-
nipulation [2], [5]. For instance, to dynamically manipulate
objects such as cloths, a typical approach is to learn the
skill in simulation and then transfer it to the real world [1],
[5]. However, simulation approaches can be unsuitable for
more complex deformable objects such as bags, due to their
3D structure and the complex forces, for example, those
related to aerodynamics [2]. One solution to bypass this
challenge is to learn the manipulation skills directly from
human demonstrations using Imitation Learning (IL).

IL is a learning paradigm for teaching skills to robots
by providing demonstrations [6]. The demanding dynamics
of dynamic manipulation including high accelerations and
velocities highlight the IL challenge known as the correspon-
dence problem [7]. Specifically, intuitive dynamic motions
exhibited by human demonstrators may be impossible to
transfer directly to robots, due to differences between the
bodies and constraints of the robot actuation.

To overcome this problem, we propose a framework,
shown in Fig. 1, that first transforms a dynamic human
demonstration into a motion that adheres to the robot con-
straints by utilizing constrained Dynamic Movement Primi-
tives (DMPs) [8], [9]. In the second stage of the framework,
quasi-static motions are used for stable refinement of the
deformable object state. Our framework decides whether
to repeat an action or proceed to the next stage using the
task performance metrics. These task specific metrics can be
computed utilizing the same system used for recording the
demonstration, e.g. a motion capture system.

We demonstrate the benefits of the proposed framework
in the task of bimanual bag opening with the novel system
BILBO: Bimanual dynamic manipulation using Imitation
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Learning for Bag Opening. BILBO employs a dynamic
motion to optimize the volume and area of the bags, fol-
lowed by a linear refinement motion to enhance the opening
roundness (see Fig. 1). Our experiments show that a single
human demonstration is sufficient for BILBO to successfully
open bags of a wide range of sizes and material properties,
even when they are initialized in a highly crumpled state. The
experimental results additionally emphasize the importance
of prioritizing high velocities and accelerations in dynamic
manipulation over strictly following the demonstrated path.

In summary, our contributions include:
• A novel IL framework for learning dynamic manipula-

tion of deformable objects with adaptation to hardware
constraints using constrained DMPs and refining the
object state using quasi-static motions.

• An extensive evaluation of three constrained DMP can-
didates in a dynamic manipulation setting.

• A new definition of a bag volume metric, and a rim area
metric based on α-shapes, for the bag-opening task.

• A thorough empirical evaluation of BILBO’s perfor-
mance and generalization capabilities on a wide range
of bags made of different materials, sizes, and shapes.

II. RELATED WORK

A. Learning Dynamic Manipulation of Deformable Objects

Dynamic manipulation of deformable objects has been
studied for 1D ropes [10], 2D cloths [1], [5], [10]–[12] and
3D objects like pizza dough [13]. These methods typically
utilize simulations [1], [5], [10], [11], [13], [14] thanks to the
recent advancement in soft-body physics engines, making it
feasible to gather large amounts of data. While prior work
has successfully transferred dynamic manipulation policies
learned in simulation to the real-world [1], [5], [11], there is a
noticeable reality gap in dynamic tasks [15]. This gap is even
more pronounced in bag manipulation, where no simulation
engine is currently capable of accurately simulating plastic
bags [16]. To begin with, physic engines require modeling
the complex aerodynamics effects that take place in the
real world when dynamically manipulating bags [2]. Fur-
thermore, the perception of plastic bags is challenging due
to their translucent and reflective material [16], [17], which
are difficult to capture in simulation to ensure successful
sim-to-real transfer. Although prior work has demonstrated
manipulation of bags in simulation [18], [19], they provide
no guarantees of a successful sim-to-real transfer.

B. Bag Manipulation

The research on bag manipulation has mainly focused on
two perspectives. The first direction has focused on learning
the dynamics of bags [20], [21], where the problem of
learning to manipulate the bags is neglected. The second
direction has used pre-defined primitives for manipulating
the bag. One option for achieving this is to leverage self-
supervision methods, where the bags can be marked and
segmented, to learn the perception of the bag state, which is
used in a pre-defined reasoning scheme to apply pre-defined
manipulation primitives [3], [17], [22]. These works dealt

with the bagging problem, that is, opening a bag, inserting
items, and lifting it [17]. Other works have studied learning
where to direct pick-and-place actions [16], [18], [23]. While
many works rely on quasi-static actions [16], [18], [23],
some recent works have demonstrated the effectiveness of
dynamic manipulation [2], [3]. In [2], the authors proposed
a method to open bags by applying an air stream using
a blower. Rather than executing pre-defined motions, or
utilizing unconventional actuators, in this work we learn a
dynamic motion from a single human demonstration, which
can effectively open bags using standard grippers.

Another alternative to learn motions that are not pre-
defined is using Reinforcement Learning (RL) to train a
policy in a simulated environment [19]. However, standard
model-free algorithms are unable to succeed in bag manip-
ulation tasks [19]. Due to the aforementioned limitations of
bag simulation, and the poor performance of standard RL
algorithms for bag manipulation tasks, BILBO uses IL to cir-
cumvent these limitations and apply dynamic manipulation
to the problem of bag opening. Specifically, we utilize the
DMP framework [24] to learn directly from a single human
demonstration in the real world, and bypass the perception
issues discussed, by tracking robust hand poses rather than
markers attached to the bag.

III. BACKGROUND

In this section, we introduce the formulation of
DMPs [24]. DMPs is a framework for encoding motions in
a non-linear dynamic system. For point-to-point trajectories,
DMPs represent the trajectories for a single Degree of
Freedom (DoF) by the system of differential equations:

τ ż = αz(βz(g − y)− z) + f(x), (1)
τ ẏ = z, (2)
τ ẋ = −αxx. (3)

The transformation system, expressed by equations (1) and
(2), resembles a mass-spring-damper system augmented with
a forcing term f(x) and a time constant τ for scaling the
duration of the motion. The equilibrium for the position y
in the system is given by g, which thus encodes the goal of
the motion. The parameters αz and βz are positive constants
tuned to achieve critical damping in the system when the
forcing term is excluded.

The equation (3), called the canonical system, describes
the decay of the phase x, which replaces the explicit time
dependence via a positive constant αx. This implicit repre-
sentation of time enables synchronization between multiple
DoFs or with external systems [24], and makes it possible
to slow down or stop the motion in the presence of tracking
errors [25]. By augmenting the forcing term f(x) complex
trajectories can be encoded in the system. The forcing term
is calculated as a weighted sum of H exponential kernels:

f(x) =

∑H
i=1 Ψi(x)wi∑H
i=1 Ψi(x)

x(g − y0), (4)

where Ψi(x) = exp
(
− 1

2σ2
i

(x− ci)
2

)
, (5)



where σi and ci define the widths and centers of the kernels,
and wi are the weights. The kernels are spaced exponentially
in phase and, therefore, evenly in time [24]. Fitting the
weights is a supervised learning problem that can be solved
using any function approximator. For systems with multiple
DoFs, the DMPs of each DoF share one canonical system,
and only the transformation systems and forcing terms are
unique for each DMP [24].

IV. IL FRAMEWORK FOR DYNAMIC MANIPULATION

The proposed framework, shown in Fig. 1, consists of two
main components: the dynamic primitive encoded with con-
strained DMPs, and the quasi-static refinement. The dynamic
motions induce a drastic change in the state of a deformable
object, which is useful for making fast progress in a task.
However, this feature of dynamic manipulation also makes it
ill-suited for fine-tuning the object state. This motivates the
second stage of our framework, where repeated small-scale
changes from quasi-static motions are used to gently refine
the state. After each stage, the object state is estimated to
compute task performance metrics that are used to decide
wheter to repeat the stage or proceed to the subsequent step.
As the aim of the refinement stage is to improve the result
of the dynamic stage, the performance metrics should have
stricter requirements for deeming the state sufficient after
refinement.

A. Adaptation to Constraints with Constrained DMPs

Given a set of N Cartesian poses with quaternion orienta-
tion P ∈ R7×N provided as a path in the robot workspace,
and robot position constraints, we rely on the assumption
that an Inverse Kinematics (IK) solver can produce feasible
joint-space targets Q ∈ RD×N , denoted as:

Q = IK(P,q,q), (6)

where q ∈ RD and q ∈ RD are the lower and upper joint
position limits, respectively, and D is the number of DoFs of
the robot. The corresponding velocities Q̇ and accelerations
Q̈ can be calculated using the timestamps of the provided
path. Then, given Q, Q̇, Q̈, and the kinematic constraints
denoted with lower and upper bars, the constrained joint-
space trajectory Q∗, Q̇∗, Q̈∗ ∈ RD×M can be computed with
a constrained DMP (CDMP):

Q∗, Q̇∗, Q̈∗ = CDMP(Q, Q̇, Q̈,q,q, q̇, q̇, q̈, q̈). (7)

Note that the dimensions of the constrained trajectory ma-
trices may differ from the unconstrained ones, due to aug-
mented duration, velocity, and acceleration.

The original DMP formulation described in Section III
does not support the encoding of constraints. Here, we
present three alternatives that extend DMPs with this func-
tionality and can be used for dynamic manipulation. To the
best of our knowledge, our work is the first to use constrained
DMPs for dynamic manipulation of deformable objects.

One straightforward solution is to adjust the time constant
τ of the DMP, which we refer to as tau-DMP. This solution
retains the path shape that a non-constrained DMP would

produce, and enforces velocity and acceleration constraints
by gradually increasing the value of τ to uniformly slow
down the motion until the constraints are satisfied. Conse-
quently, the method can only be used in offline settings.

Recently, more advanced modifications have been pre-
sented that are capable of adapting the trajectory to the
constraints online [8], [9] and encode additional constraints
like via-points and obstacles [9]. The constrained DMP
formulation in [8] is provided using temporal coupling, that
is, online scaling of τ to proactively scale it before the
velocity and acceleration limits are exceeded. We refer to this
method as TC-DMP. One downside of this method is that it
does not ensure that acceleration constraints are guaranteed
in the online setting presented in [8]. In offline settings,
the acceleration constraints can be guaranteed by appropriate
tuning of the model parameters via trial-and-error.

The third method we consider formulates the problem
of fitting the weights of a DMP with constraints as an
optimization problem [9], which we refer to as Opt-DMP.
In order to express position, velocity, and acceleration at any
time point as affine functions in the DMP weights, Opt-DMP
follows the equations from [26], thus removing the need for
explicit integration. This makes it possible to formulate Opt-
DMP as a solution to a Quadratic Program. As the constraints
are no longer enforced by scaling τ the generated path might
differ from the demonstration. Therefore, position constraints
are explicitly part of the optimization problem in addition to
the velocity and acceleration constraints.

B. Quasi-Static Refinement Motions

In contrast to dynamic motions which affect the entire
state of an object, quasi-static motions can be designed to
fine-tune a deformable object state via local, small, directed
changes. We consider quasi-static motions that are reversible,
while the effects of dynamic manipulation can typically not
be undone. Formally, we assume that for every action a there
exists a reverse action a− such that the state dynamics s′ =
f(s, a) follow f(f(s, a), a−) = s. Furthermore, we assume
the actions to cause only small changes in the object state
∥s − f(s, a)∥ < δ1,∀a. Thus, the reversible action space
makes quasi-static motions suitable for stable refinement of
the state.

To cast the refinement as an optimization problem, we
assume there exists a continuous cost function C(s) that
measures the quality of the state. Thus, we want to incre-
mentally refine the state by applying actions such that the
cost function is minimized:

a = argmin
a

C(s′). (8)

Assuming the cost function is convex within the region of
attraction given by the initial state of the local refinement
phase, continuing the local refinements allows converging to
a minimum. This follows from the fact that any action will
have a bounded effect on the cost ∥s − f(s, a)∥ < δ1 ⇒
|C(s)− C(s′)| < δ2.



V. BILBO: BIMANUAL DYNAMIC MANIPULATION USING
IMITATION LEARNING FOR BAG OPENING

We present BILBO, a system that uses the proposed
framework for opening bags via dynamic manipulation using
a bimanual system, as depicted in Fig. 1. Here, we assume
that non-dynamic steps such as grasping and item insertion
can be solved by existing methods [3], [17], [22]. First, we
start by gathering a single human demonstration of a dynamic
motion using a motion capture system. Then, we utilize the
aforementioned constrained DMP approaches to augment the
joint-space trajectory corresponding to the demonstration,
so that it adheres to the robots’ constraints. The learned
constrained motion is used to dynamically improve the
volume and area of the bag. As the ideal bag state should
not only be expanded but also have a round opening, we
design a quasi-static refinement motion for improving the rim
elongation. For evaluating the bag-opening performance and
deciding whether the learned dynamic manipulation primitive
or the linear refinement motion needs to be applied, we
estimate the bag state using a motion capture system, and
extract area, volume, and elongation metrics for the bag.

A. Learning a Dynamic Motion from Human Demonstration

The human demonstration is captured using a motion
capture system that tracks the hands of a human. The motion
range of the demonstration should be within the robot’s
reach, or its amplitude must be scaled down. At each time
step of the demonstration, the distance between the hands
is calculated, as a percentage of the maximum observed
distance, and used to define the desired distance between
the robot grippers when replaying the motion for bags of
different widths. Any rotation that is not around the main
rotation axis of the motion is filtered out. Then, the trajectory
is smoothed to account for noise in the captured trajectory.
Finally, the trajectory is converted to joint space to apply the
constrained DMP approaches described in Section IV-A.

B. Evaluating the Task Performance

First, to define the performance metrics for the bag-
opening task, we specify how to measure the state of the bag
and its regions of interest. To perceive the state, we employ a
perception scheme based on reflective markers and a motion
capture system. Here, we capture the bag state after either
the dynamic or refinement motion have finished, which is
more straightforward than tracking the bag state during its
motion, especially if the motion is dynamic.

Each bag has two regions of reflective markers, one around
the rim and another near the bottom. In addition, the inside
of the rim has markers to facilitate detecting the rim even
if it is folded. The marker points of the bag are defined as
P = {p1, · · · ,pL} ∈ R3, where L is the number of points in
Cartesian space provided by the motion capture system. We
then filter out the bag points PF by removing outliers based
on their relative position, and identify the points PR ∈ PF

belonging to the rim1.

1For more details see our implementation https://sites.google.
com/view/bilbo-bag.

The optimal state of an opened bag is characterized by a
large, round rim and an expanded volume, which is required
for downstream tasks such as item insertion. To quantify this
state, we introduce three bag metrics that measure the bag
volume, rim elongation, and rim area. These metrics utilize
a convex hull function CH(·) of the bag points. The bag
volume is defined as the 3D convex hull of the filtered points

V = Volume(CH3D(P
F )). (9)

To measure the elongation, we first extract the Principal
Component Analysis (PCA) axes from the 2D convex hull
of the rim points

λ1, λ2,v1,v2 = PCA(Vertices(CH2D(P
R
x,y))). (10)

Note that we use subscripts to denote that values for specific
coordinates are extracted throughout this section. The elon-
gation metric is then defined as the ratio of the PCA axes
so that the length of the axis primarily directed along the
y-axis of the robot frame is divided by the length of the axis
primarily directed along the x-axis (see Fig. 1 for the axes)

E =


√

λ2

λ1
if |v1,x| > |v2,x|,√

λ1

λ2
otherwise.

(11)

This definition of the elongation metric is beneficial for
the refinement of the elongation using the robot system, in
contrast to defining the elongation as the ratio between the
major and minor PCA axes [17] which does not take into
account the direction of the elongation.

Finally, the area metric is defined by fitting an alpha-shape
[27] to the rim points

A = Area(AlphaShape(PR
x,y, α)). (12)

To accurately define multiple bag openings we need different
α values. Thus, we define α as a linear function of the 2D
convex hull of the rim

α = kα ∗ Area(CH2D(P
R
x,y)) + bα, (13)

where kα and bα were found empirically for bags of different
sizes. Our definition of the rim area provides better estimates
than directly using the convex hull [17], which can lead
to an overestimation of the area when the rim is slim and
bent (see Fig. 3 a). However, alpha-shapes can underestimate
the opening area for some bag configurations, e.g., when
points of the bag are occluded (see Fig. 3 b). Nevertheless,
overestimating the area is a more severe problem as it is
prone to early task termination in states which are actually
insufficient, whereas underestimating the area only results
superfluous motions for improving the area metric.

C. Elongation Refinement Motion

The dynamic motion from the human demonstrator targets
only a high volume and rim area, without refining the
roundness of the opening. Consequently, as suggested in
Section IV-B we design a cost function on the elongation
metric defined in equation (11). The optimal elongation

https://sites.google.com/view/bilbo-bag
https://sites.google.com/view/bilbo-bag


α-ShapeConvex Hull

a) b)

Fig. 3: Estimation of the opening area using the α-shape
(orange), and convex hull (black). In a) the convex hull
overestimates the rim area. In b) the α-shape underestimates
the area due to the occlusion of markers.

E = 1 indicates a perfectly round opening and stretch-
ing in any direction is undesirable. Therefore, we define
the cost function as the distance to optimal elongation:
∆Elongation = C(s) = |1− E(s)|.

As actions, we use linear, reversible motions that adjust
the distance between the grippers along the x-axis by a pre-
defined step. We implement the action choice in equation (8)
with a state-machine based on the relationship between the
gripper distance and the elongation of the bag. In case that
E < 1, the bag is elongated primarily along the x-axis of
the robot frame, and the refinement will decrease the distance
between the grippers. On the other hand, if E > 1, the bag
is elongated along the y-axis and the motion will increase
the grippers’ distance. Additionally, to prevent collisions and
tearing apart the bag, we defined a maximum and minimum
allowed distance along the x-axis.

VI. EXPERIMENTAL SET-UP

Our experiments are designed to answer the following
research questions:

• What is the performance of different constrained DMPs
for dynamic manipulation of deformable objects?

• Does including a quasi-static refinement stage improve
the manipulation performance?

• How well does BILBO generalize to bags that are
significantly larger than the one used to record the
human demonstration?

• How does the difficulty of opening a bag relate to the
size and stiffness of the material?

Our dual-arm setup consists of two Franka Emika’s robots2

and an OptiTrack motion capture system for perception. Each
experiment was repeated 10 times for each combination of
bags, manipulation approach, and initial bag configuration. In
total, 240 evaluation runs were gathered in the experiments.

For the constrained DMP implementations, we set the
constraints to 98% of the strictest position, velocity, and
acceleration limits for each joint specified in [28] to leave a
margin for numerical inaccuracies. Both τ of tau-DMP and
γa of TC-DMP, a parameter which balances the trade-off
between avoiding limit violations and increasing slowdown,
were set by gradually increasing their values until no limits
were exceeded. In Opt-DMP, a parameter λ is used to toggle
between optimizing with respect to position and velocity.
In our case, we optimize with respect to the position to

2We used two different versions of the Franka Emika’s robot, Panda and
Franka Research 3, due to hardware resources.

(a) Bag C Easy (b) Bag C Hard (c) Bag C Open

Fig. 4: Examples of two initial bag configurations used in
the experiments and an example the final state after BILBO.
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Fig. 5: Plastic bags used in the experiments.

reduce the distortion from the demonstrated trajectory, which
is verified to be safe, and therefore lower the risk of collision
between the robots. All kinematic constraints are enforced
regardless of the optimization objective. To ensure a fair
comparison between the DMP methods, we tuned the pa-
rameters so that they produced comparable trajectories when
no constraints were applied.

A. Bags and Initial Configuration

In our experiments, we used five plastic bags with different
material properties and sizes (see Fig. 5). To provide context
on the size of the evaluated bags, prior work [17], [22]
has demonstrated quasi-static manipulation of bags in the
ranges 28-30 cm by 49-54 cm and 32-55 cm by 32-55 cm,
respectively, while [3] dynamically manipulated bags in the
range of 25-35 cm by 40-53 cm.

Regarding the material, bag A is made of biodegradable
plastic, making it especially soft, while the other bags are
made of polyethylene. Moreover, bags C and E contain
drawstrings, which increases the rigidity of the rim. The
stiffness of the bags, as perceived by a human evaluator,
listed from soft to stiff, is as follows: A, C, E, D, B. Note
that only bag A was used to record the human demonstration.

We define two initial states of the bags to evaluate the task
performance, an easy state and a hard state (see Fig. 4). In
both cases, we assume that the bags are gripped symmet-
rically by the robots. In the easy state, the bag is hanging
extended with the rim closed. The hard state has the bottom
of the bag crumpled, folded inward, and the rim pressed shut.

B. Bag Opening Evaluation

In our experiments, we evaluated the bag-opening task
using the bag metrics proposed in Section V-B. The area
and volume metrics are represented as the ratio between the
achieved value and the observed value in a successful human
demonstration with the same bag. The area and volume are
considered sufficiently high if they reach the lower limits of
60% and 70%, respectively, where we consider a bag to be
open if these targets are reached. We use a more strict volume
target because high volumes were expected to be easier to
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Fig. 6: Quantitative results of the learned dynamic primitives using Opt-DMP, tau-DMP, and TC-DMP for three different
bags in a) easy and b) hard initial configuration. The results show the area, volume, elongation and their target limits.

achieve and maintain compared to high areas of the more
unstable rim.

In addition, we study the elongation during the refinement
stage via the cost function defined in Section V-C. In the
experiments, we use an upper limit for the cost function,
which is deemed sufficiently low when ∆Elongation ≤ 0.2.
This relatively strict upper limit is selected so that the
manipulation would not terminate early at an easier target
value, and the system would instead use any remaining
actions to strive for a better rim elongation.

The refinement action is reversed if it causes the area or
volume metrics to fall below the target levels, and in such
cases, the refinement will terminate after the reversal. The
reason for this rule is that the area and volume, are treated
as primary objectives, which should not be compromised
for better elongation, i.e., the secondary objective. The
manipulation scheme terminates if the target elongation is
met without reducing the area or volume metrics below their
targets, or if the total number of allocated actions is reached.

VII. EXPERIMENTAL RESULTS

A. Analysis of Constrained DMP methods

In this experiment, we studied the performance of the
dynamic manipulation primitive learned with each of the
constrained DMP versions. We evaluated bags A, B, and
C in both easy and hard initial configurations. The dynamic
motion was repeated until the targets set for the area and
volume metrics were achieved or a maximum of 10 actions
was reached. Note that runs that needed less than 10 actions
to reach the targets have the unused steps padded with the
final values in the figures.

As shown in Fig. 6, Opt-DMP consistently exceeds the
area and volume targets for each bag, while other methods

only succeeded in reaching the targets for bag C from the
easy initial state. Although the hard initial state typically
requires more actions compared to the easy state, Opt-DMP
was able to frequently achieve the targets with only 2-6
actions, depending on the bag and the difficulty of the initial
state. This demonstrates the effectiveness of the dynamic
motion. As the performance of TC-DMP is comparable to
tau-DMP, the only benefit of TC-DMP in the setting we
consider is faster runtime, as τ is adaptive rather than fixed.

A key reason for the superior performance of Opt-DMP
compared to the τ -scaling methods is that Opt-DMP en-
ables high peak velocities and accelerations in each joint
independently, at the cost of distorting the path, as the
constraints are encoded in the DMP weights. In contrast,
the tau-DMP and TC-DMP tend to slow down all joints via
the shared canonical system, in case any joint exceeds the
limits, as they enforce the constraints by scaling τ . This result
highlights that the ability of Opt-DMP to independently gain
high peak velocities and accelerations in each joint is more
important for dynamically manipulating the bag than an
accurate reproduction of the demonstrated path.

In addition, the results show the relationship between
the structure and stiffness of the bag and its opening per-
formance. Bag A, which was used to provide the human
demonstration, ended up being relatively difficult to open
as the rim would easily collapse due to the softness of the
material. Due to the stiffness of bag B, it needed relatively
many repetitions of the dynamic motion to uncrumple the
bag initialized in the hard state and reach the target volume.
In contrast, the medium stiffness and drawstring in the rim
of bag C made it the easiest bag to open in this experiment,
despite its significant depth compared to bags A and B.

Note that the dynamic motion can only slightly enhance
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Fig. 7: Area, volume and elongation results using only the
refinement motion for bag A initialized in the hard state.

the elongation. However, the final elongation is far from the
target value. This motivates the proposed refinement motion,
since further refinement of the elongation is necessary.

B. Evaluating the Elongation Refinement Motion

In this experiment, we studied the performance of the
refinement motion for improving the elongation metric. In
addition, we evaluated the bag-opening performance of the
refinement motion alone to rule out the possibility that it
alone is sufficient without dynamic manipulation. In this
experiment, bag A was initialized in the hard state, where
the refinement motion was applied until a maximum of 20
actions were performed or the area and volume targets were
reached. While BILBO simply prevents motion outside a
range we defined to prevent collisions or the bags tearing, in
this experiment we had the robots take a step in the opposite
direction if they were commanded past these limits. This
allowed the robots to keep adjusting the bag, and potentially
uncrumple it, instead of terminating the run.

The results in Fig. 7 show that the refinement motion
can slightly improve the elongation, suggesting that the
motion can be used to improve the roundness of the bag
opening. However, the refinement motion neither manages
to uncrumple the bag nor approaches the area or volume
limits, which highlights the necessity of using the dynamic
primitive. Therefore, the optimal system should combine the
best-performing dynamic primitive obtained from the Opt-
DMP with the non-dynamic refinement scheme.

C. BILBO’s Bag-Opening and Generalization Results

Finally, we evaluated the performance of our proposed sys-
tem BILBO, which combines the dynamic primitive encoded
by Opt-DMP with the linear refinement. First, we evaluated
the performance of the system using bags A, B, and C, which
have similar widths and varying materials. A maximum of
20 total actions were allocated for both the dynamic and
refinement motions. The dynamic primitive was first applied
until the target area and volume were reached. Then, if
the maximum number of actions had not been reached, the
refinement primitive would be subsequently applied based
on the measured elongation. An example of the final state of
a successful run of BILBO is shown in Fig. 4 c.

The performance of both BILBO and Opt-DMP from the
dynamic primitive experiment is shown in Fig. 8. The results
show that BILBO’s refinement motion is able to keep the
target state achieved by the dynamic motion, as the area
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Fig. 8: Area, volume, and elongation results of BILBO for
bags A-C initialized in the hard state. The results from the
dynamic primitive experiment are also shown as a reference,
denoted as dynamic-only Opt-DMP.
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Fig. 9: Area, volume, and elongation results of BILBO for
bags D & E initialized in the hard state.

and velocity targets are reached at a level similar to that of
the dynamic-only experiment, even for bag A. Furthermore,
the refinement successfully decreases the distance to optimal
elongation. The target elongation is more challenging to
reach for bag A, as the soft material causes the rim to
collapse easily. In contrast, it is not uncommon for bags
B and C to reach the target. One thing to note is that the
mean values of ∆Elongation do not fall below the target
level for any bag. The reason for this is that the target was
intentionally chosen as a strict value to encourage finding
the best reachable elongation as explained in Section VI-B.
Therefore, ∆Elongation converges to the best reachable level
for each bag in our experiments.

Additionally, we evaluated BILBO’s capability to gen-



eralize to significantly larger bags than the one used for
demonstration by conducting the same experiment on Bag
D and Bag E. The results in Fig. 9 show that BILBO yields
similar performance on bags D and E as it does on bags
A-C. Even with significantly larger bags, BILBO consis-
tently surpasses the target values for both area and volume
metrics, maintaining stability during refinement, while the
∆Elongation converges to a bag-specific lowest level.

All in all, the results show that BILBO is capable of
successfully opening different bags that vary in size and
material with just one human demonstration for a single
bag, highlighting both the generalizability and efficiency of
the proposed method. One possible extension is to extend
BILBO to the full bagging task, including gripping and item
insertion, thus developing the BILBO Bagging system.

VIII. CONCLUSIONS

We presented an IL framework that first learns a dynamic
primitive for inducing significant changes in the states of
deformable objects with few motions, while adhering to robot
constraints with constrained DMPs. Subsequently, it employs
stable quasi-static motions for small-scale adjustment. We
assessed the framework in the task of bimanual bag opening,
resulting in a system named BILBO.

First, we evaluated three constrained DMP versions for
generating a dynamic primitive that adheres to the robots’
limits. Our experiments showed that Opt-DMP achieved su-
perior performance, which demonstrates that in the dynamic
manipulation task, it is more important to achieve high
velocities and accelerations than to accurately reproduce the
demonstrated path. This highlights the necessity of selecting
a constraint satisfaction approach that prioritizes attributes
most relevant to the task. Due to the benefits of Opt-DMP, it
was selected for learning the dynamic motion in the BILBO
system using a human demonstration with a single bag.
Our experimental results showed that BILBO was able to
effectively open bags of different materials, shapes, and sizes
than the one used for the demonstration. More specifically,
BILBO was able to open most bags in less than 5 actions
and achieve near-optimal elongation after 20 actions.

As future directions, the learned dynamic motions could be
used to bootstrap learning methods that refine the motion by,
for example, adapting the DMP weights, without violating
the kinematic constraints. This could potentially lead to
greater efficiency in dynamic manipulation tasks.
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