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Abstract—
Autonomous robotic systems come as a new way of harvesting

cotton, which is needed to preserve quality while reducing
expenses, as opposed to traditional methods. New algorithmic
solutions must be developed to detect cotton and discern between
ready-to-harvest and not ready-to-harvest bolls. Using YOLOv8
as our object detection model, this paper presents a new cotton
boll image dataset, RTH-CONDIS (Ready-To-Harvest Cotton
Discerning Imageset), with a total of 409 raw images, enlarged
with data augmentation for the training process. After testing
different sizes of YOLOv8, YOLOv8s is the most promising
version for this project, with a final detection performance of
0.902 for mAP50, a recall of 0.852, and a precision of 0.901. As
a result, we get satisfactory prediction metrics, considering the
dataset’s size. This solution is suitable for real-time, resource-
limited implementations, as is needed for tracking and counting
applications on a mobile harvester robot.

Index Terms—Cotton detection, cotton dataset, cotton ripeness
classification, YOLOv8, greenhouse farming.

I. GLOSSARY

Please refer to Table I for acronym meanings.

II. INTRODUCTION

The global cotton use is estimated at almost 25,452 million
metric tonnes for 2024/2025, the highest in the last 4 years,
therefore being one of the most produced crops worldwide [1].
The current scenario for harvesting relies mainly on mechani-
cal harvesting among developed nations. At the same time, in
developing countries like India, multi-stage handpicking (by
human labour) of cotton crops is widely used [2]. Machine-
based methods offer fast, easy, and cheap harvesting compared
to human labour, but they reduce cotton quality. New ways of
collecting the cotton are needed.

On the other hand, in developed countries, cotton harvesting
traditionally involved removing the entire plant, with cotton
fibres later sorted from the rest. While this method is fast and
cheap, the fibres can be damaged, resulting in lower quality
compared to hand-picked cotton, which is more expensive [3].

The future of cotton cultivation in protected systems like
greenhouses holds significant promise for sustainability by
reducing water consumption, pesticide use, fertilizers and
energy. Implementing new technologies is crucial for opti-
mizing these production systems. Automating and robotizing
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TABLE I: Acronym glossary

Acronym Full name
HVI High Volume Instrument
DNN Deep Neural Network
YOLO You Only Look Once. n (nano), s (small) and m (medium)
SSD Single Shot MultiBox Detector
mAP Mean Average Precision

TAD Type Augmented Dataset, referring to the original dataset
augmented with some technique

OG Original dataset

B Brightness (factor range for change between
-0.2 and 0.2)

R Rotation (between -60º and 60º)
H Flip-H (Horizontally)

BL Blurring (random Gaussian kernel size applied between 5
and 35 pixels)

MN Multiplicative Noise (random MN applied pixel-wise
between 0.5 and 3.5 units) over RGB channels

COMB0 Combination of blurring and multiplicative
noise techniques

COMB1 Combination of all techniques with stated parameters

the harvesting of cotton bolls, one by one will enhance
fibre quality by preventing damage during picking, positively
affecting HVI parameters such as fibre length, fineness, and
strength. Additionally, by not destroying the plant, cotton can
be grown perennially, maximizing annual production. Recent
studies [4], [5] highlight the importance of these technological
advancements for sustainable cotton farming.

Zhang et al. [6] demonstrated that plants continue producing
cotton after the initial fibre harvest. Additionally, perennially
cultivated crops, aged 2 to 4 years, perform equally well or bet-
ter than annual cotton crops. Perennial cropping significantly
reduces soil, nutrient, and water loss, while also lowering
fertilizer demand [7]. Consequently, the cotton industry is
interested in both avoiding replanting costs, due to continuous
production after the first harvest and maximizing cotton yields.

Robotic cotton harvesting is a promising technology with
the potential to improve harvesting efficiency, preserve cotton
fibre quality, reduce yield losses, and promote sustainable
cotton production [8].

This article describes the computer vision framework used
for detecting, tracking, and counting cotton bolls in both ready-
to-harvest and not-ready-to-harvest stages. Our cotton plants
are located in a greenhouse (Fig. 1), but this study can be
extrapolated to other forms of cotton farming. The objectives
of this study are to:

1) Create a custom dataset for cotton boll ripeness classi-
fication.



Fig. 1: Greenhouse cotton plantation at “Centro de Edafologı́a
y Biologı́a Aplicada del Segura” (CEBAS), CSIC.

2) Use data augmentation to improve prediction accuracy.
3) Train an object detection model with the augmented

dataset capable of discerning both ready-to-harvest and
non-ready-to-harvest cotton.

4) Achieve a model with sufficient inference speed for real-
time tracking and counting of cotton bolls for rapid crop
monitoring.

III. STATE OF THE ART

Recent advancements in robotic harvesting systems have
significantly enhanced agricultural productivity, particularly in
the cotton industry. Robotic systems equipped with advanced
vision and navigation technologies have been developed to
improve the efficiency and precision of harvesting operations.
A comprehensive review by Droukas et al. [9] highlights var-
ious robotic harvesting systems, emphasizing the integration
of vision systems, motion planning, and end-effector designs
tailored for different crops. These systems typically consist
of a mobile platform, a robotic arm, and various sensory and
navigation technologies to facilitate accurate crop detection
and harvesting.

Regarding perception, object detection and classification in
agriculture have gained significant attention recently, as the
sector increasingly recognizes the potential for these tech-
nologies to be applied across all phases of the agricultural
process – from harvesting to supply, including quality control
and labelling.

Computer vision models have more than doubled in accu-
racy over the past four years [10], enabling the implementation
of accurate, flexible, and powerful object detectors. For in-
stance, Liu et al. [11] developed a YOLOX variation to detect
and count small unopened cotton bolls, achieving an mAP of
92.75%, surpassing the original model YOLOv3⇠v5 [12].

Semantic segmentation methods offer an alternative to ob-
ject detection. Singh et al. [13] proposed a triplet of custom
models that slightly outperform other segmentation models,
though at the cost of increased computation time. Lv and
Wang [14] focused on cotton growth phases and presented an
optimized PSPNet [15] for segmenting and classifying cotton
bolls, making it particularly relevant to our research.

Finally, if we focus on other implementations of au-
tonomous harvesters, Similar object detection methods have
been applied to other crops, often utilizing generic models
trained on custom datasets. Wang et al. [16] proposed an
implementation of YOLOv8 to detect strawberry ripeness,
achieving 97.81% accuracy and 96.36% recall on their cus-
tom dataset (1187 images). Lenz et al. [17] also employed
YOLOv8 to detect “pepper” and its “peduncle”, with good
results in object detection and tracking. Yoshida et al. [18]
used SSD for fruit detection, exceeding 95%.

While much work has been done on computer vision
for crop harvesting, research specifically focusing on cotton
boll harvesting appears less extensive. Nonetheless, the trend
across crops is to utilize existing, well-established models and
train them on custom datasets.

IV. DATASET CONSTRUCTION

We needed a computer vision model trained on data that
reflects those specific conditions to ensure accurate detection
of cotton bolls within our greenhouse environment. Due to the
lack of suitable public datasets, we have created a custom-
labelled dataset, in collaboration with CEBAS-CSIC, com-
prising both ready-to-harvest (ripe) and non-ready-to-harvest
(unripe) cotton bolls.

Images were collected from the CEBAS cotton plantation
throughout its life cycle, with cultivar Intercott-211. This focus
is crucial, as accurately distinguishing between mature and
developing cotton is essential for harvesting the highest quality
fibres.

The cotton bolls are harvested when they are fully open and
dry. The husk that encloses the cotton and seeds splits into
the different lobes of the boll and dries out. This transition
is visually confirmed as the husk changes colour from green,
indicating an immature stage, to brown, indicating maturity.
This colour change and drying process serve as the primary
parameters to determine the readiness for harvest. The decision
was not solely based on experience but rather on these
observable physiological indicators.

With the given information, two distinct classes for the
model to train and predict were defined:

• Class “Unripe Cotton”: This class encompasses cotton
buds, flowers, closed bolls, and open bolls that are yet
not ready for harvest.

• Class “Ripe Cotton”: This class includes only cotton bolls
ready for harvest.

The resulting dataset, named “Ready-To-Harvest Cotton
Discerning Imageset (RTH-CONDIS)”, comprises 409 images
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Fig. 2: Data augmentation techniques over a picture of a ready-to-harvest cotton boll. Refer to Table I for term meanings.

captured at a resolution of 15MP (5184x3024 pixels)1. Pho-
tos include diverse samples of both ripe and unripe cotton,
captured at varying distances, mostly close-up ones (at a
distance of approximately 50cm). All pictures were taken
at the same time and under similar weather conditions, in
the morning between 10 am and 12 pm, during June and
July (summer). Consequently, variables like light conditions,
shadows or seasonal variation are controlled.

Pictures were taken inside a 500m2 polycarbonate green-
house. The maximum temperatures reached 32ºC during the
day and 20ºC at night, with relative humidity levels of 50%
during the day and 85% at night. No shading net was used
when the photos were taken.

Finally, LabelImg [19] was used to meticulously annotate
each cotton boll individually, ensuring accurate labelling for
subsequent model training.

V. OBJECT DETECTION MODEL

For the binary classification, we need a flexible framework.
By looking at previous work in related fields [20], we see
that YOLO provides a very powerful computer vision model,
suitable for object detection, binary classification and multiple
class classification, among others.

In the comparative graphic presented by [20], we can see
that the different versions of YOLOv8 provide the best results.
There is also an improvement between YOLOv8 models and
previous YOLO versions, like YOLOv5 or YOLOv3. We will
test and use YOLOv8, in its different sizes, as a computer
vision model for this study. In addition, the solution is planned
to be suitable for mobile, low-resource systems, so prediction
time and memory usage are also core metrics.

YOLOv8 [21] is available in different models, depending
on the number of parameters available. In increasing order of
number of parameters, and decreasing order of image predic-
tion frequency: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l,
YOLOv8x.

Choosing a model that provides a good mAP is decisive. As
versions n, s and m can provide predictions in real-time with
decent mAP estimations, versions l and x were discarded for
their model’s parameter size, GPU memory usage, and lower
frequency of predictions, compared to the other models.

VI. EXPERIMENTS

Final metrics depend on the choice of the YOLOv8 version.
This will directly impact the inference speed performance, as

1RTH-CONDIS is publicly available using the following DOI reference:
https://doi.org/10.6084/m9.figshare.26214737

the final model will be deployed on an autonomous robot with
limited computational resources. Therefore, we have evaluated
both object detection and classification performances on every
model.

In addition, data augmentation is proposed as a solution
to enhance the dataset and make it more robust against
over-fitting and ambient condition changes. Yang et al. [22]
presented a survey on different techniques of data augmenta-
tion for image datasets and different computer vision tasks,
concluding that it is needed to perform dataset augmentation
when datasets are reduced, specific or tend to overfit. For this
purpose, we will use the Albumentations library [23], allowing
us to generate new images from rotations, brightness value
changes, and other techniques in the YOLO labelling format.

When selecting properties to modify for data augmentation,
it is important to prioritize those that best contribute to the
model’s learning process while remaining plausible in real-life
scenarios. To address the specific challenges of this dataset,
the following properties will be modified: brightness, rotation,
horizontal flipping, blurring, and multiplicative noise (Fig. 2).
In addition, more than one property can be changed at a
time. Therefore, based on the improvement of each data
augmentation property alone, we will also test the combination
of the two most effective individual properties (COMB0) and
the combination of all of them (COMB1) [24]. Our goal is
to see which of these techniques, makes the trained model
more robust in its ability to generalize to new, unseen data. By
systematically exploring these data augmentation techniques,
we aim to identify the optimal strategy for improving the
model’s performance and generalization capabilities.

Experimental procedures will be executed as follows:

1) Evaluate each data augmentation technique (single
properties, best two properties and all together) in
YOLOv8s2.

2) Select the most effective augmentation technique based
on model performance metrics.

3) Evaluate the augmented dataset for each version of
YOLOv8.

4) Select a YOLOv8 version based on validation metrics.

Ultralytics library has been used for training, testing and
predicting. YOLOv8 is not trained with any other dataset. It
starts from an empty model and is trained with RTH-CONDIS.

2YOLOv8s was chosen for its medium parameter size and computational
training cost.



TABLE II: Comparative between models with data augmen-
tation on YOLOv8s

TAD precision recall F1 mAP50 mAP50-95
OG 0.844 0.801 0,822 0.838 0.510
B 0.832 0.827 0.830 0.889 0.570
R 0.866 0.836 0.851 0.910 0.586
H 0.850 0.863 0.856 0.887 0.565
BL 0.913 0.856 0.884 0.898 0.553
MN 0.946 0.803 0.869 0.895 0.553
COMB0 0.911 0.804 0.854 0.891 0.568
COMB1 0.901 0.852 0.876 0.902 0.590

VII. RESULTS

A. Dataset augmentation analysis
After applying the previously mentioned techniques, table II

shows the performance metrics using YOLOv8s. We found
that, due to their high precision value and mAP50, blurring
(BL) and multiplicative noise (MN) provide the best results.
For the combination of techniques, we tested blurring and
multiplicative noise together (COMB0), as these individually
yielded the best overall performance metrics. We also tested
all techniques applied simultaneously (COMB1), as previous
image recognition experiments have shown that combined
methods often outperform single methods [24]. Results in-
dicate that COMB0 does not yield significantly improved
metrics, whereas COMB1 shows an overall high score across
all of them.

Taking into account that precision and recall are important
parameters in this study and that the mAP50 value does not
vary very much, COMB1 has been selected as the combination
of data augmentation techniques to be applied in the RTH-
CONDIS training set.

Comparing the original dataset with the augmented one
(COMB1) reveals significant improvement in model metrics:
precision and recall metrics share an approximate increment
of 0.05; mAP50 increases from 0.838 to 0.902, a difference of
0.064; mAP50�95 increases from 0.510 to 0.590, a difference
of 0.08.

Dataset partition into training, testing and validation sets,
with percentages stated (80% for training, 10% testing, 10%
validation) is done using randomness.

B. Model performance
This section evaluates the performance of different YOLOv8

models trained on our augmented RTH-CONDIS dataset. Ta-
ble IV provides a comparative overview of the model metrics,
and Figure 3 shows examples of some model predictions. As
mentioned in Section V, due to the real-time requirements of
our task, we focus on evaluating the n, s and m versions of
YOLOv8.

First of all, in terms of speed both CPU and GPU perfor-
mances have been compared for the three sizes of models, as
presented in Table III3, all suitable for real-time detection.

3For testing speed performance: GPU model = Nvidia GTX 1070Ti 8GB,
CPU model = Intel Core i5 9600K, 16GB of RAM

TABLE III: Comparative between inference speed between
models over GPU and CPU executions

YOLOv8 version Device Inference Time (ms/image) FPS

YOLOv8n CPU 387.9 2.6
GPU 5.2 192.3

YOLOv8s CPU 544.6 1.8
GPU 8.8 113.6

YOLOv8m CPU 517.3 1.9
GPU 14.1 70.9

TABLE IV: Comparison between model sizes for augmented
dataset training

Model epochs precision recall mAP50 mAP50-95
YOLOv8n 385 0.920 0.807 0.902 0.585
YOLOv8s 272 0.901 0.852 0.902 0.585
YOLOv8m 216 0.815 0.831 0.884 0.582

All three versions of the model demonstrated high detection
performance. YOLOv8n and YOLOv8s achieved more than
0.9 mAP50 score, while YOLOv8m had a 0.884 mAP50. We
also observed an inverse relationship between the number of
epochs required and the model size. The YOLOv8n version
took the most epochs to find a minimum, while YOLOv8m
took the least. These findings highlight the trade-off between
model size, training time (epochs), and performance, providing
valuable insights for selecting the optimal YOLOv8 version for
our real-time task. In the particular task of detecting, tracking,
and counting cotton bolls, precision and recall are equally
important. Therefore, the model with the most balanced per-
formance will be the one selected. As shown in Table IV,
both the n and s models demonstrate the best overall object
detection metrics. However, the s version exhibits the most
balanced precision versus recall performance, as it can be seen
when comparing F1 curves in Fig. 4.

Regarding predictions, in Figure 3 we see that the model
detects better when gets closer to the cotton bolls. RTH-
CONDIS is made of mainly close-up pictures of cotton, so
when obstacles are found in the way, or distance increases, the
detection and classification precision decreases proportionally.
This project is thought for robot implementations with cameras
close to the crops. In the future, when the object detection
model is included in the harvesting mobile robot, we will
only collect ripe cotton with high confidence. This criterion
is substantiated by Zhang et al. [6] work, showing that
ready-to-harvest cotton bolls stay in this phase long without
losing quality. Harvesting the remaining cotton bolls from the
previous iteration in a new one is preferable, to collecting not
ready-to-harvest cotton.

If we analyse the confusion matrix at Fig. 5, we observe
prediction values for the “Cotton ripe” class of 0.9, while
the “Cotton unripe” class has a lower prediction rate, with
a value of 0.81. Another notable aspect within the matrix is
the value “Cotton unripe/background”, which denotes that the
model had predicted unripe cotton when it was the image’s
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Fig. 3: Examples of cotton detection with RTH-CONDIS-trained YOLOv8s. a-f: ready-to-harvest cotton boll detection. Bottom
row: g-i non-ready-to-harvest cotton bolls detected; j-l mixed cases (ready and non-ready-to-harvest cotton bolls). The model
is optimal for close detection and classification and decreases its predictions when the distance to the bolls is incremented.

(a) YOLOv8n (b) YOLOv8s (c) YOLOv8m

Fig. 4: Comparison between F1 curves for the three evaluated versions of YOLOv8. Observe how the YOLOv8s model achieves
the highest F1 score (0.88) at a confidence level of 0.569. This high F1 score indicates an optimal balance between precision
and recall, meaning that it effectively minimizes both false positives and false negatives. While YOLOv8s achieves the highest
F1 score, YOLOv8n and YOLOv8m demonstrate slightly lower scores (both 0.86), indicating a potential trade-off between
speed and accuracy. Ultimately, the choice of the most suitable model depends on the specific requirements of the application
and the relative importance of precision, recall and inference speed.

background. This event occurs in 11 cases, of which 10 are
predicted as “Cotton Unripe” and 1 is predicted as “Cotton
Ripe”. Compared to the total number of labels in the vali-
dation set, the number of confusions in the prediction for the
class “background” is negligible. This appears because YOLO
applies this “class” to identify the cases where the model
detected something when the background was misclassified
with some cotton boll (the ground truth is the background and
the predicted label is some class, and vice versa).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a YOLOv8 model solution to
accurately and comprehensively identify the ripening phases of
cotton bolls in complex environments like a greenhouse. After
analysing the training/validation metrics, we conclude that
the best model version for our requirements is the YOLOv8s

model. Although YOLOv8n has the best precision, its recall
is too low compared to the other versions. YOLOv8s provides
the best overall precision and recall metrics combined, the
best mAP50 and the best mAP50� 95 metrics. Moreover, its
prediction time is suitable for any real-time detectors.

Despite having a limited dataset, compared to other similar
works, our model achieves very good detection and classi-
fication performances, while keeping a low inference time.
Larger versions of YOLOv8 couldn’t be tested (l,x) because
of GPU memory capacity, but since this project is focused
on a mobile robot system, they stay out of scope4. At the
same time, it would be possible to achieve higher detection
and classification rates with a more complex and bigger

4For training: GPU model = NVIDIA A10 (x2), CPU model = Intel(R)
Xeon(R) Gold 6326, 128GB of RAM



Fig. 5: Normalized confusion matrix for YOLOv8s with data
augmentation.

dataset, since a richer cotton ripeness representation would
be obtained.

For the next steps, we will increase the dataset with more
diversity of samples and classes, so that we can recognize
different stages of cotton growth (early cocoons, stages of
flower growth, early cotton bolls, open cocoons not ready to
harvest). Our goal is to perform semantic segmentation, obtain
the predicted labels, compute the centroid, and localise the
cotton boll centre via RGB-D cameras. This research is part
of the DEMETER 5.0 project, where a robot has to recognise
the growth stage, estimate the growth time needed for a cotton
boll to be collected, and keep track of crops. Thus, the robot
can keep a world state representation, optimise reasoning, and
pick those cotton bolls that are ready-to-harvest.
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