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Abstract

The realm of textiles spans clothing, households, healthcare, sports,

and industrial applications. The deformable nature of these objects

poses unique challenges that prior work on rigid objects cannot fully

address. The increasing interest within the community in textile per-

ception and manipulation has led to new methods that aim to address

challenges in modeling, perception, and control, resulting in significant

progress. However, this progress is often tailored to one specific textile

or a subcategory of these textiles. To understand what restricts these

methods and hinders current approaches from generalizing to a broader

range of real-world textiles, this review provides an overview of the field,

focusing specifically on how and to what extent textile variations are

addressed in modeling, perception, benchmarking, and manipulation

of textiles. We finally conclude by identifying key open problems and

outlining grand challenges that will drive future advancements in the

field.
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1. INTRODUCTION

Textile deformable objects such as clothing items or household objects like bed sheets and

blankets are ubiquitous in our daily lives. Their usage spans applications from healthcare

and domestic environments to the textile industry. Efforts to automate the manipulation

and processing of these objects promise to enhance recycling and textile reuse while provid-

ing greater assistance to aging populations. Despite recent advances in manipulation tasks

such as assistive dressing (1, 2), folding or bagging (3, 4), textile manipulation remains

challenging as the deformable nature of these objects breaks fundamental assumptions in

robotics such as rigidity, known dynamics models, and low dimensional state space (5).

Specifically, when forces are applied to a deformable body, they not only move the object

but also change its shape. From a physics point of view, understanding how the shape

changes requires knowledge about the object’s physical properties, such as stiffness or elas-

ticity. From a perceptual point of view, properties such as shape, color, and material provide

distinct signals to visual and tactile sensors. Endowing robots with skills to perceive, ma-

nipulate, and address the diversity of these textile properties presents a compelling avenue

toward autonomous agents. However, current methods for textile manipulation tend to

be tailored to specific objects that mirror the properties of the simulators used in their

design (4, 6, 7, 8, 9).

This review consolidates recent methods and applications of deformable object manip-

ulation, specifically textiles, highlighting the challenges associated with variations in their

physical properties. We evaluate the progress made and identify key areas requiring fur-

ther research to enhance the generalization and adaptive capabilities of robots in handling

real-world textiles. Recent reviews have explored specific methods and applications related

to this object category. Particular emphasis has been given to grasping (10) and caregiving

scenarios (11, 12). In contrast, our review broadens the scope by analyzing generalization

across different textile variations and applications. Building on the foundational work on

perception, modeling, and manipulation of deformable objects (13, 14), our work offers

a distinct perspective on enhancing the generalization and adaptability of perceptual and

manipulation skills. Similarly to (5), we seek to identify ongoing challenges in modeling,

perception, and control, further addressing the underexplored area of benchmarking.

The review is organized as follows. In Section 2, we provide the fundamentals about

textiles, covering the variations of properties and tasks that will be discussed throughout the

document. Section 3 reviews analytical and learning methods to model textile dynamics,

highlighting their connection to textile physical properties. Section 4 identifies current

approaches to perceive textile properties, whereas Section 5 covers current approaches for

textile manipulations with a focus on techniques that enable generalization and adaptability

to variations of properties and to what extent do current methods account for variations in

physical and mechanical properties and tasks. In Section 6, we discuss currently available

resources such as benchmarks and datasets, that enables evaluating this generalization,

including benefits and limitations. We provide a thorough overview of application areas in

Section 7. We close with a discussion about the interplay between modeling, perception,

and manipulation, and future perspectives in Section 8.

2. FUNDAMENTALS

This section provides an overview of the fundamental aspects of textiles, detailing the def-

initions and characterizations of textile objects, exploring the variations in their physical
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Figure 1

Manufacturing process of textiles: textile is an umbrella term that covers materials that are

made of interlacing natural or synthetic fibers. The figure depicts the textile production process in
its different stages, where yellow boxes represent materials and objects, while blue blocks specify

the processing step.

properties, and examining the diversity in manipulation tasks. Understanding these foun-

dational elements is essential for delineating the types of variations and challenges discussed

in the subsequent sections on modeling, perception, and manipulation.

2.1. Textiles, Fabrics, and Cloths

Textile: originates
from the Latin
textilis, meaning

’woven’ and derived

from the verb to
weave.

Textile has evolved from its initial reference, woven fabrics, to encompass a broad spec-

trum of objects. These include traditional woven fabrics, as well as deformable and flexible

materials made from yarns or threads through various construction processes beyond weav-

ing. Common terms used to describe textile objects are fabric and cloth. Despite being

often overlapped in usage, they carry subtle distinctions tied to different phases of the pro-

duction process, as shown in Fig. 1. Fabric is any thin, flexible material crafted from thread

or yarn, fibers, polymeric film, foam, or their combinations, and is used in creating further

products like clothing, requiring additional production steps (15). Cloth, while sometimes

used interchangeably with fabric, typically refers to fabric that has undergone further pro-

cessing or cutting. Everyday clothing items are predominantly made through weaving or

knitting before being sewn, with high fashion exploring other methods more extensively.

The physical and mechanical properties of the final textile object are intrinsically tied to

its manufacturing process. Yarns and threads, the building blocks of these textiles, are spun

from various origins—animal, plant, mineral, synthetic, or blends thereof. Woven fabrics,

produced by interlacing two sets of threads, are known for their hardness and non-elasticity,

making them ideal for garments like shirts and jeans that retain creases. In contrast,

knitted fabrics, created by interloping a single set of yarn, offer softness and elasticity in

all directions and thus are used in wrinkle-resistant clothing such as t-shirts, which stretch

uniformly in all directions to better conform to the body’s shape. Additionally, further

production steps involve cutting and coloring fabrics to create clothing with various shapes

and colored textures. A comprehensive exploration of fabric properties is given in (16).
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2.2. Variations of Object Properties

One of the major challenges in robotic manipulation is designing planning and control

algorithms that generalize or adapt to variations that will be encountered in real-world

deployments (17). In this review, we refer to generalization as the ability to apply the

knowledge acquired from a specific set of textile properties to unseen variations of these

properties. Adaptation is instead the ability to dynamically adjust strategies or models

in response to changing conditions or novel variations in the object properties. Given the

challenges of generalization and adaptation, it is crucial to first understand the variations in

textile properties, which can be broadly classified into physical and mechanical properties.

Fig. 2 shows an example of different variations of textile properties for four different objects.

2.2.1. Physical properties. The object’s physical properties are inherent characteristics and

can be observed and measured without subjecting the material to external forces or manip-

ulations. These properties describe how a material appears under static or non-changing

conditions. Among these properties, Size and Shape are crucial as they influence the

robot’s workspace, correlating with the object’s function and category. The Weight influ-

ences how the textile deforms under gravity. For heavy and large textiles such as blankets,

robots may need bimanual systems to manipulate them. The Color affects perception-

based algorithms, essential for identifying and tracking the textile during manipulation

tasks (1). Fabric Material composition, ranging from natural to synthetic fibers, dictates

interaction forces between the textile and the robot, altering manipulation strategies (18).

The Construction Technique, referring to the knitting or weaving processes, directly

impacts a fabric’s mechanical behavior by defining, for example, how tight or loose the

construction pattern is, thus influencing the object elasticity and rigidity (19).

2.2.2. Mechanical properties. The mechanical properties are parameters that describe how

a material responds to applied forces or manipulations. Cloth Stiffness or rigidity influ-

ences how it behaves under manipulation as it determines the resistance to deformation.

Stiffness is a key determinant of a fabric’s manipulation behavior, as it quantifies the tex-

tile’s resistance to bending and deformation. Elasticity, or the capacity of a textile to

stretch and recover to its original size after being deformed, is essential, particularly in

applications like robotic dressing assistance (20). High elasticity can accommodate user

movements and minimize safety risks during interaction. Elasticity and stiffness are prop-

erties of the material that are often characterized by Young’s modulus and Poisson’s ratio.

The Young’s modulus quantifies a material’s ability to resist deformation under stress

by showing the relation between stress and strain in the elastic region of the textile. The

Poisson’s ratio measures instead the ratio of transverse strain to axial strain in a stretched

material. Finally, Friction refers to the resistance encountered when one surface slides over

another. In the context of textiles, friction can vary significantly depending on the surface

characteristics of the fabric (21). Friction properties affect how textiles move against sur-

faces, thus impacting how robots grasp and transport these materials and how they interact

in contact with human skin or other clothing layers.

These mechanical properties vary based on the production process the textile undergoes.

They can be measured through standardized methods from the textile industry (22) or

through procedures tailored to robotics applications (23). Their interdependent influence

in cloth deformation poses fundamental challenges to the analysis and understanding of

how these properties affect robotic manipulations.
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Figure 2

Object properties variations: Object differences rely on the variation of their physical and
mechanical properties. The figure shows visual examples of how properties can vary between four

objects from literature cloth sets. Measures can be found in (23).

2.3. Variations of Tasks

Manipulation of textiles spans a wide range of applications across domestic, healthcare,

and industrial settings, including tasks such as laundry, tidying, dressing, sorting, and

more. Each of these tasks presents unique challenges that necessitate the design and study

of specific manipulation strategies that account for specific variations in the physical and

mechanical properties of textiles discussed in the previous sections.

Following the taxonomy proposed by Mason (24), manipulation techniques can be char-

acterized based on the nature of forces involved: kinematics, static forces, quasi-static forces,

and acceleration forces. In the context of manipulating deformable objects, most current

techniques can be broadly classified into two main categories (25): quasi-static manipula-

tion, which involves slow motions allowing static equilibrium, and dynamic manipulation,

which involves motions that include acceleration forces. Physical properties like material, as

well as shape and size, significantly affect both types of manipulations. On the other hand,

while mechanical properties play a fundamental role in tasks requiring dynamic manipula-

tions due to the influence of acceleration forces, tasks involving quasi-static manipulations

are less dependent on mechanical properties.

For instance, tasks such as classification or sorting highly depend on physical properties

such as the shape of the cloth, as well as the material the textile is composed of (26).

Similarly, tasks like flattening and folding rely heavily on understanding and manipulating

the shape of the textile (27, 28, 29, 30). In these cases, elasticity does not directly impact the
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outcome of the manipulation. However, stiffness and friction still play a role in the deformed

state in which the object is observed. Regarding shape properties, flattening and folding

tasks are typically performed on textiles laid flat on a surface, simplifying the manipulation

process by reducing the need to consider more complex topographical features such as loops,

holes, or cylindrical parts. In contrast, tasks such as assistive dressing (31) or hanging an

apron on a hook (32) require a nuanced understanding and control of the textile’s topological

features, including connectivity, holes, voids, and spatial relationships (33). These tasks

are inherently more complex due to the need to manipulate the textile in three-dimensional

space and adapt to its changing configuration. Mechanical properties, such as elasticity

and stiffness, play a crucial role in these scenarios, as they influence how the textile drapes,

stretches and recovers from deformation.

3. MODELING

Accurate modeling physical properties of textile objects is crucial for robotic manipulation,

computer graphics, and material sciences. In this section, we introduce modeling techniques

commonly used in robotics, focusing on how they characterize various properties and their

effectiveness in capturing them. Rather than elaborating on the technical aspects of these

techniques, which are extensively covered in other reviews, we aim to provide an overview of

their utility and the types of physical and mechanical variations they address. The reality

gap within commonly used simulators is also covered with a discussion about currently

unmodeled phenomena and techniques for real-world alignment. For an in-depth technical

discussion on textile modeling techniques, we refer readers to (13, 14, 34).

3.1. Physics-based Models

Physic-based models form the foundation for the most commonly used simulators in

robotics. These models usually describe the cloth state through geometric representations

such as particles or meshes. Physics-based simulation provides a reproducible and scalable

mechanism to study physics-based cloth models and cloth dynamics across a range of envi-

ronments and tasks. In what follows, we characterize different modeling techniques based

on the representation used for the cloth.

Mesh-basedmodels, such as mass-spring-damper models, represent the cloth as a mesh

of interconnected masses and springs. The physical interaction between masses intuitively

reflects the variation of textile stiffness and elasticity. These models are a popular choice

implemented in many simulators, for example, MuJoCo (35) and SOFA (36). While these

models are rather straightforward to implement, they are most suitable for simulating small

deformation but not complex elastic effects with high fidelity. Additionally, tuning parame-

ters for the springs and dampers to achieve realistic behavior can be relatively challenging,

as these parameters do not directly correspond to physical meaning in the real cloth.

Particle-basedmethods in cloth simulation represent the material as a collection of dis-

crete particles, each defined by properties like position, velocity, and mass. These particles

are interconnected through holonomic constraints that describe their interactions. A widely

used approach within this framework is Position-Based Dynamics (PBD), as implemented

in simulation engines such as FLEX (37, 38). PBD focuses on satisfying constraints related

to stiffness, elasticity, and collision by directly adjusting the positions of particles, with sub-

sequent velocity updates derived from these positional changes. The advantages of PBD
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include rapid simulation speeds, enhanced stability, and the ability to simulate inextensible

textiles and shear deformation. The ability to easily incorporate a variety of constraints

makes it possible to model plastic deformations, as well as interactions with fluids and rigid

bodies under flexible frictional models (37). While PBD offers visually plausible dynamics,

it may not always align with physical realism. Moreover, the interpretation of simulation

parameters into physical parameters, such as material modulus, remains challenging and

often necessitates extensive tuning to achieve desired effects.

Continuous domain models leverage the principles of continuum mechanics rather

than relying on discrete representations of particles or meshes. This approach treats physi-

cal quantities of objects as continuous fields, providing a more physically precise depiction of

material deformations. The underlying partial-differential equations are commonly solved

with the finite element method, which divides the field domain into small elements linked

as meshes. While this approach can be computationally intensive, model parameters have

a clearer physical interpretation for textile properties such as strain, stress and their re-

lation through Young’s modulus. Robotics-relevant simulators relying on this modeling

technique are SOFA (36), Isaac Sim (39), and Bullet (40) but specifically for deformable

objects. Recently, the Material Point Method (MPM) (41) emerges with a mix of particle

representation, for which the particles carry material properties, while a spatial grid is used

to compute forces and update the state of particles. By combining both representations,

MPM is promising for rapid simulation of complex deformations observed in a cloth.

Besides forward prediction, differentiable simulators have recently gained popular-

ity with efficient derivative evaluation through automatic-differentiation or adjoint meth-

ods (42). The feature extends existing model-based approaches for efficient policy learning

and parameter identification, finding applications in cloth-related tasks (43, 44).

3.2. Data-Driven Models

Data-driven models have become a prominent alternative to traditional physics-based meth-

ods for simulating complex materials and deformations. Compared to physics-based tech-

niques, data-driven models offer greater flexibility in defining the state space for modeling

cloth dynamics, as well as lower computational complexity and easier parallelization.

These models learn cloth dynamics directly from data, which can range from handcrafted

observations, such as cloth key points, to raw images and 3D point clouds or a latent

representation of these. Image-based inputs have the benefit of not requiring knowledge

of the 3D state of the cloth as the dynamics are learned either in the pixel space (30)

or in a latent representation of the image (4). It also offers the advantage of working

under partial observability (30). However, these often struggle with domain shifts that

can occur with changes in camera positions, lighting, or background conditions, which

impacts their generalization to new environments. Particle-based representations are often

more robust to changes in visual conditions as they rely on 3D geometric representations

such as particles or meshes rather than visual clues. These representations require specific

architectures to efficiently capture local structures and handle data sparsity. Examples

include PointNet++ (45) for unordered point sets and Graph Neural Networks (GNNs) (46)

for mesh-based representations. Despite the advantage of particle-based representation in

generalization, these models are generally more computationally intensive than their image-

based counterparts. In addition, registering a mesh from partial depth data could also be

non-trivial for textiles under large deformation.

www.annualreviews.org • A Review of Robotic Cloth Manipulation 7



The flexibility of data-driven models allows one to address variations of cloth properties

by designing appropriate training schemes or conditioning the models on the object prop-

erties or a latent representation of these. Invariance to color changes is typically achieved

during augmented training with domain randomization (47). In contrast, mechanical prop-

erties like stiffness and elasticity are commonly addressed through explicit or implicit con-

ditioning. Explicit conditioning estimates these properties or their latent representations

through perception and concatenates the estimation to the input model (19). Specifically

for graph or mesh representations, properties like stiffness and elasticity can be induced as

edge features in the mesh structure to bias model learning. Implicit conditioning, on the

other hand, incorporates these properties by conditioning the model on a recent history

of observations or employing techniques such as intuitive physics (48). These approaches

allow models to adapt to changes in mechanical properties based on observed behaviors.

3.3. Reality Gap in Cloth Models

Different modeling techniques often need to account for a trade-off between computational

cost and model accuracy. Trading accuracy for speed often leads to a gap between the

dynamics in simulations and those in real-world scenarios. This gap between the model

and how the physical cloth behaves in the real world is particularly relevant to real-world

textile manipulation. Here, we identify gaps between the assumptions made by commonly

used robot simulation and real textile properties, as well as progress to align simulation to

the real world.

3.3.1. Unmodeled Phenomenas. Robot simulators generally favour fast and visually correct

behaviours at the expense of physical realism. Geometrically, textiles are often modelled

as 2D objects without thickness. This requires extra care when the task concerns stack-

ing or folding textiles of multiple layers. The mechanical modelling, be it physics-based

or data-driven, rarely goes down to the basic building blocks of fabrics as laid out in Sec-

tion 2.1. The simulation hence neglects aspects like fabric weave, thread count, as well

as the response to real-world factors such as humidity, temperature, or wear and tear. In

computer graphics, yarn-level simulation (49, 50) has been studied to account for warp

and weft interactions. However, this has not yet been integrated into robotics modeling

pipelines. The simplification of simulating effects in smaller granularity also impacts the

fidelity of how a cloth interacts with external objects. Textiles likely exhibit more complex

sliding behaviours along different directions due to how they are constructed. This breaks

the popular isotropic friction cone model in many simulators. Missing yarn-level simulation

also influences modeling the tear-up of a cloth. Current robot simulators often assume

invariant topology and uniformity about how a cloth is constructed. Graphics research has

demonstrated the possibility of capturing these nuances with advanced simulation (49, 51).

Furthermore, another phenomena that is rarely included in cloth models is the aerody-

namics of the textiles. Since most garments are very light, even in the absence of wind,

the air that surrounds them has a critical impact on highly dynamic cloth motions (52).

Much research is still needed in order to have realistic, yet efficient physical models of cloth

aerodynamics.

3.3.2. Aligning Simulation to the Real World. Physics simulation is essential for generating

synthetic training data, exploring learned policies, and predicting the performance before
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real-world deployment. Thus, bridging the gap between the real world and simulation is

crucial for generalizing manipulation skills to real-world textiles. A common approach to

reduce this gap involves tuning the simulation parameters to align with reality. This process

is often referred to as real2sim, or system identification, and can be classified into three cate-

gories (13): gradient-based techniques, global optimization techniques, and neural network-

based techniques. For gradient-based optimization, differentiable simulators backpropagate

the error between the real-cloth state and the simulated one for system identification. These

methods, however, often face challenges with discontinuous loss landscapes, particularly in

scenarios involving deformable objects. For scenarios where the analytical model is not

differentiable, global optimization techniques such as Bayesian Optimization (BO) and Co-

variance Matrix Adaptation Evolution Strategies (CMA-ES) are often used without the

need for gradients (53, 54). Global search methods can be computationally intensive and

may struggle with scalability in high-dimensional spaces. A combination of the two has

been proposed in (55), where they combine global search using BO with a semi-local search

to retain the benefit of gradient-based optimization but integrate BO for the parts of the

landscape that are intractable for gradient descent alone. Another approach is to combine

Bayesian inference with neural networks to infer simulation parameters (56). One of the

major benefits of this class of methods is capturing uncertainty in parameter estimates.

4. PROPERTIES PERCEPTION

The perceptual capabilities of robots encompass a variety of skills, including state estima-

tion, segmentation, tracking, recognition, classification, and the identification of appropri-

ate grasping points on cloth items. A comprehensive review of perception for grasping is

presented in (11). Additionally, discussions on state estimation, parameter identification,

and detection are provided in (14), where the focus was not only on textiles but on de-

formable objects in general. This section will specifically delve into the identification of

textile properties, aiming to focus on perceptual capabilities that enable the generalization

and adaptability of robots to variations in the textile properties introduced in prior sections.

Although robots in human environments constantly face uncertainty about object prop-

erties due to changing conditions, perceptual systems can reduce this uncertainty by pro-

viding sensory feedback (57). Perception can be passive, requiring no physical interaction

with the objects of interest. Properties such as color, shape, and material can be estimated

using passive perception (58). However, properties such as elasticity and friction cannot

be observed in static scenarios. Therefore, interactive perception is necessary to obtain

accurate estimates of these properties (59).

Designing the perception process relies on several key factors: the relevant properties

for the tasks at hand, the available sensors, and the manipulator configuration. Figure 3

provides an overview of various design choices for estimating textile properties. This table

also represents the literature discussed in the remainder of the section.

4.1. Physical Properties Perception

As noted in Section 2.2.1, physical properties like size, shape, weight, color, fabric material,

and construction technique can often be observed and measured without external manipu-

lation. Particularly, size and shape can be effectively inferred by observing textiles spread

over a flat surface and utilizing contour or segmentation techniques (60). Data-driven tech-
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Figure 3

Overview of sensors, properties, and actions in passive and interactive perception for

textile manipulation. On the left, the figure presents a list of sensors, properties, and actions.
LR and HR for tactile sensors stand for low resolution and high resolution, respectively. The

variation in opacity of the boxes reflects to what extent the sensor or the property has been

explored for textile perception. On the right, the figure shows connections between sensors,
properties, and actions based on the current literature. This side of the figure showcases how

passive perception methods, using sensors like cameras and spectrometers, estimate properties
that do not require physical interaction. In contrast, interactive perception integrates actions to

improve the robot’s understanding of mechanical properties, leveraging specific actions coupled

with sensor feedback to accurately perceive properties such as weight, stiffness, and elasticity.

niques such as landmark detection or end-to-end classifiers have also been explored for

shape classification (61, 62). However, textiles frequently arrive in deformed or crumpled

states, complicating direct visual assessment. While some approaches have explored feature

extraction processes to classify clothes from highly crumpled configurations (26), interactive

perception is often necessary to enhance perceptual accuracy (63). Lifting interactions, for

example, are commonly employed to infer the shape of the textile better and facilitate its

classification by garment type (64, 65).

The estimation of cloth weight has been relatively underexplored within the robotics

community. Pioneering investigations, primarily from the computer graphics domain, have

demonstrated the potential of estimating the weight per area of textiles through video anal-

ysis of the object being influenced by external forces like wind (66, 67). This interaction

could be analogously implemented in robotic systems as a flinging action (68), although

this specific application has yet to be explored for weight estimation in a robotic context.

Current approaches in the robotic community estimate cloths weights through the estima-

tion of external forces/torques felt by the robot during motion tasks such as lifting (69).

An alternative approach is to rely on a similarity network to infer cloth weight from lifting

interactions using ground-truth cloth weight as supervision (63).

Textile material and construction techniques have received considerable attention in the

robotic community to explore combinations of visual and haptic sensing specifically (70).

Photometric stereo sensors can reconstruct the surface of a region of the cloth at the yarn

level and exploit the 3D pattern to infer the material and construction properties of the ob-
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ject (71). Alternatively, high-resolution tactile sensing such as GelSight (72) has shown to

be relevant for both material classification and construction technique classification of fab-

rics. These sensors provide high-resolution images, by pressing the sensor on the cloth (73).

More specialized robot sensors, such as micro spectrometers, offer detailed insights into the

yarn material composing the fabric (74).

Since both material and construction techniques influence the mechanical properties of

cloth, interactive perception can provide additional insights to identify these properties ac-

curately. Low-resolution tactile sensors like the BioTac, coupled with a contact microphone,

have been explored to infer the material of textiles by exploring the feature of the signal

recorded from a sliding interaction over the textile (70). Additionally, force-torque sensors

used in conjunction with pulling and twisting actions have provided further insights into

materials and construction techniques by observing how the textile responds to different

mechanical stresses (18).

4.2. Mechanical Properties Perception

Mechanical properties of textiles, such as stiffness and elasticity, are critical in determining

how a fabric will behave under various types of stress and strain. These properties are

traditionally measured using sophisticated and costly systems that are standard in the tex-

tile industry. A prominent example is the Kawabata Evaluation System for Fabrics, which

quantifies a fabric’s response to controlled forces by measuring parameters such as stress-

strain behavior at maximum load for the specific material being tested (75). Additionally,

the computer graphics community has conducted in-depth studies of cloth elasticity us-

ing setups that combine pulling interactions with force and visual observations (76, 77).

However, these setups are typically unsuitable for robotic applications due to their lack of

real-time interaction and computational capabilities.

In the robotics community, stiffness and elasticity have been explored using a com-

bination of force-torque sensors and camera observations during robotic pulling interac-

tions (19). While this approach directly measures how textiles respond to controlled me-

chanical stresses, significant research focuses on methods using only camera observations to

detect textile deformation under external forces like gravity or wind. Specifically, work using

cameras can be broadly divided into two categories: 1) optimizing simulation parameters to

reflect the behavior of real-world objects accurately and 2) applying external forces and ob-

serving resultant shape changes. The first category leverages 3D observation, such as point

clouds, to optimize simulation parameters such as elasticity, bending, and stiffness (78, 79).

The second category instead includes methods from the computer vision community, where

2D images are used to assess how a textile drapes under gravity or moves under external

forces. These observations focus on visual features such as wrinkles or the dynamic motion

of textiles over time (42, 80, 81). Notably, the studies of this last category do not involve

robots, indicating a potential new research direction to replicate these techniques in robotic

systems. Friction, on the other hand, remains largely underexplored. While some work has

investigated haptic adjectives related to friction, direct estimation techniques are limited,

with efforts mainly focusing on using low-resolution haptic and auditory sensors to infer

friction-related features (82).
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5. MANIPULATION

Robotic manipulation in human environments often confronts highly unstructured settings,

necessitating the ability to manipulate objects with varied characteristics. In Section 2, we

reviewed textile variations in terms of properties and tasks, and highlighted the complex-

ity of addressing the variations of these real-world textiles. These complex environments

underscore the importance of endowing robots with robust adaptation capabilities. Here,

adaptation refers to the ability of the robot to adjust its strategies in response to changes

in its operating environment or variations in the objects it manipulates. Effective manipu-

lation skills require adaptability to both previously observed and novel variations of textile

properties (57).

Successfully handling different clothing variations can be achieved through two pri-

mary mechanisms: generalization and adaptation (17). Generalization assumes that the

distribution of knowledge acquired in the source domain will encompass the distribution

of the target domain, resulting in a successful transfer. This assumption allows the robot

to handle known variations, but it may not hold in the presence of novel variations typi-

cal of diverse human environments, where previously learned knowledge may fall short. A

common framework to achieve generalization is domain randomization (47). In contrast,

adaptation involves dynamically modifying the manipulation strategy or dynamics model

by taking into account environmental changes. This adaptation can be achieved by param-

eterizing the dynamics model (48, 83) or the manipulation policy with the estimated cloth

properties.

In the following sections, we group common manipulation strategies into three cate-

gories, provide a high-level overview of each, and discuss in more detail their adaptability

towards different textile properties and task variations. A general overview of these meth-

ods is given in Table 1, including the tasks these are applied to as well as the variations of

cloth physical and mechanical properties that are evaluated.

5.1. Model-based Manipulation

Model-based manipulation approaches refer to the class of methods that use a model of

the textile to generate the manipulation strategy. The manipulation actions are usually

obtained by planning with the model (54, 85, 86). These approaches can be categorized

based on the methods used to construct the model, namely into analytical models and

data-driven models.

5.1.1. Analytic Models. Analytic models, or physics-based models, build the textile model

based on the laws of physics. Please refer to Section 3.1 for a more detailed discussion

on the popular analytic models and the textile properties they can model. When using

these models for manipulating a textile object, the initial step typically involves aligning

the model dynamics to the real world to match the dynamics of the target textile (21, 103).

Analytic models have the advantage of being applicable to different tasks as the model is

usually task-agnostic, as long as the textile dynamics required by the task can be accurately

modelled by the chosen analytic model.

There are two major drawbacks of using analytic models for manipulation. First, their

generalization is limited by the accuracy of the physics model, which, as discussed in Sec-

tion 3, is often only an approximation of real cloth dynamics (53). Second, each new object

requires a separate system identification process, which can be tedious and difficult to scale
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for adapting to a great variability of textile mechanical properties.

Table 1 Overview of textile variations handled by methods in the literature. Methods

that do not assess their generalization or adaptation over textile variations are marked

with ✗, methods that address textile variations explicitly with ✓, and with (✓) when

not explicitly mentioned but the evaluated textiles contains such variations.

Ref. # O Task Physical Properties Mechanical Properties

SH SZ CLR M CT W E ST F

Model-Based

(4) 1 Fo ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(9) 1 Fo/Fl ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(48) 6 Fo ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

(21) 7 Fo ✓ ✓ ✓ ✗ (✓) (✓) ✓ ✓ ✓

(30) 1 Fl ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(84) 3 Fl ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

(85) 3 Fl ✓ ✓ ✓ (✓) ✗ (✓) (✓) (✓) (✓)

(86) 5 Fl ✓ ✓ ✓ (✓) ✗ (✓) (✓) (✓) (✓)

(54) 1 D ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Model-Free

(7, 8, 28) 1 Fo ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(87) 2 Fo ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

(88) 3 Fo ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

(89) 3 Fo ✗ ✗ ✓ ✓ (✓) ✓ (✓) (✓) ✗

(90) 3 Fo ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

(91) 5 Fo ✗ ✗ ✓ ✗ ✗ (✓) ✗ ✗ ✗

(92) 10 Fo ✗ ✗ ✓ ✓ ✗ ✗ (✓) (✓) (✓)

(93) 10 Fo/Fl ✓ ✓ ✓ ✗ ✗ (✓) ✗ ✗ ✗

(94) 20 Fo ✓ ✓ ✓ ✓ (✓) (✓) (✓) (✓) (✓)

(95) 1 Fl ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(47) 3 Fl ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

(68) 3 Fl ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

(96) 3 Fl ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

(97, 98) 1 D ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(20) 2 D ✓ ✓ ✓ (✓) ✗ (✓) (✓) (✓) (✓)

(99) 3 D ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

(31) 5 D ✓ ✓ ✓ (✓) ✗ (✓) (✓) (✓) (✓)

(100) 3 B ✗ ✗ ✓ (✓) ✗ ✗ ✗ ✗ ✗

Heuristic-Based

(101) 4 Fo ✓ ✓ ✓ (✓) ✗ ✗ ✗ ✗ ✗

(29) 12 Fo ✓ ✓ ✓ (✓) ✗ (✓) (✓) (✓) (✓)

(102) 25 Fo ✗ ✓ ✓ ✓ ✗ (✓) (✓) (✓) (✓)

#O:Number of test objects, Fo:Folding, Fl:Flattening, D:Dressing, B:Bed Making,

SH:Shape, SZ:Size, CLR:Color, M:Material, CT:Construction Technique, W:Weight,

E:Elasiticy, ST:Stiffness, F:Friction.
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5.1.2. Data-driven Models. Data-driven models learn from data about interactions with

textiles. There can be many state representations for data-driven models as laid out in

Section 3.2. The choice of the state representation and model architecture can greatly

affect the generalization ability of the model towards different properties, such as the shape

and texture of the textile. A particle-based state representation combined with graph

neural networks (85, 86) has been shown to generalize better towards different shapes,

geometries, and mechanical properties of the cloth compared to images (30) or latent-based

state representations (4, 84), as the particle-based state representations align better with

the underlying cloth physics. Using depth images (9) or point clouds (85, 86, 104) as the

state representation also naturally makes the model invariant to the color and visual texture

of the textiles. Due to the large amount of data needed for learning the model, most works

use a simulator to generate the interaction data for learning the model (9, 30, 48, 84, 85, 86),

with a few that does so in the real world (4).

As discussed in Section 3.2, data-driven models often address variations of cloth phys-

ical properties through domain randomization (30, 84, 85, 86). However, as current sim-

ulators (35, 37, 40) struggle in modeling a wide range of mechanical properties of the

textiles, the generalization towards diverse mechanical properties that can be achieved

through domain randomization remains limited. Still, recent work has shown that inte-

grating a model conditioned on a latent representation of mechanical properties within a

feedback-loop framework enables a model learned in simulation to adapt to textiles with

diverse mechanical properties in the real world (48).

Most works in the literature learn an individual model for each type of manipulation

task, e.g., assistive dressing (54), cloth folding (9, 48), cloth smoothing (9, 84, 86) or blanket

covering (104). A few works have demonstrated that the learned model can be used to

perform two tasks such as cloth folding and smoothing (9, 30, 85). Learning a single model

that can generalize to multiple manipulation tasks remains underexplored.

5.2. Model-free Manipulation

Model-free manipulation approaches directly map the state or sensory observation of the

textile to the manipulation action without having a model in the loop during inference.

Compared to model-based approaches, they require no prior knowledge of the textile as no

model needs to be constructed. There are two main approaches: reinforcement learning

and imitation learning.

5.2.1. Reinforcement Learning. To apply reinforcement learning (RL) to a textile manip-

ulation problem, the manipulation problem needs to be formulated as a Markov Decision

Process (MDP) or a Partially Observable MDP (POMDP). The key in the formulation is

the design of the state, action, and reward space of the MDP. As in the case of model-based

methods, common choices for state representations of textiles include manually defined fea-

tures such as key points on the cloth (92, 97), or results from a perception system such

as an image (7, 47, 89) or point cloud (20, 31) of the textile. Common actions for ma-

nipulating textiles include action primitives such as pick-and-placing (47), dragging (90),

flinging (68), or raw actions that control the delta movement or velocity of the robot end-

effector (7, 31, 89). The reward function defines the desired outcome of the manipulation

task based on the state of the environment.

Given the formulated MDP, reinforcement learning algorithms can be used to find a
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policy that maximizes the expected accumulated rewards, thus learning the necessary ma-

nipulation skills. Most works formulate the textile manipulation problem as a multi-step

MDP (7, 31, 47, 89, 96) and learn a policy to maximize the accumulated reward, while some

works (68, 90) formulate the problem into a bandit problem (an MDP with only 1 step),

learn the reward function (usually in the form of a spatial-action value map (28, 68, 90)),

and choose the best action as the one that maximizes the learned 1-step reward. Due to

the large amount of data required by an RL algorithm, the need for a reward function, and

the need to periodically reset the environment, such methods usually train a policy in a

simulator and perform sim2real transfer (7, 31, 47, 89, 92, 96) with optional real-world fine-

tuning (68). A few works (28, 87, 90) directly train in the real world, where the reward can

be automatically computed from real-world perception systems (90), and the environment

can be automatically (28, 90), or manually (87) reset.

Domain randomization is still the key technique for model-free RL methods to achieve

generalization towards diverse textile mechanical and physical properties. In domain ran-

domization, properties of the textile and environment are randomized during the training

process, so the resultant policy generalizes to all varied properties. The randomized quan-

tities can include the textile’s shape (31, 68), size (7, 31), location and orientation (7, 31),

texture and lighting (7, 47, 89), and mechanical properties (47, 89, 92). To achieve more

informed domain randomization, contrastive learning can be used to compare pairs of real

and simulated garment observations to learn a similarity metric (98), which is used to tune

the simulation parameters to align the simulation and real-world garment observations.

Again, one caveat of domain randomization is that the range of mechanical properties that

can be randomized is limited by the fidelity of the simulator. There has been little work in

the literature that explores addressing variations of textile properties via adaptation.

In terms of tasks, model-free RL methods have been applied to many textile ma-

nipulation problems including cloth smoothing and flattening (38, 47, 68, 90, 96), fold-

ing (7, 28, 87, 89, 90), placing (38), hanging (7, 32), blanket covering (105), and assistive

dressing (20, 31, 97, 98). All these works learn an individual policy for each task; the goal of

learning a single policy over multiple tasks or that can generalize to different manipulation

tasks remains highly unexplored.

5.2.2. Imitation Learning. To apply imitation learning (IL) to textile manipulation prob-

lems, a dataset of expert demonstrations that solve the manipulation task needs to be first

collected. Such demonstrations can be collected by a human (91, 94, 99) or using a scripted

policy (3, 88, 95, 106). The most standard IL algorithm is behavioral cloning (91, 94, 95).

Another approach is to directly map the actions in the demonstrations to the test object

via learned correspondences (93).

The generalization ability of IL approaches highly depends on the amount of variations

presented in the demonstrations. An extensive dataset that covers diverse objects with

varied properties is essential for learning a policy that can generalize across different textiles.

Many works that use IL for cloth manipulation show limited generalization towards different

textile properties, demonstrating their method on a fixed textile (3, 8, 95, 106). Some works

use depth images as observations, so the policy can be invariant to visual features such as

color and texture (88, 91, 100). When the collected demonstrations are diverse enough, a

stronger generalization can be achieved: Xue et al. (94) collected a dataset with hundreds

of simulation shirts and 40 real-world shirts, and showed that the imitation policy can

generalize to 20 real-world shirts with diverse shapes and materials. One caveat of IL
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methods is that collecting a sufficiently diverse and extensive set of demonstrations can be

human labor-intensive.

Task-wise, IL methods have been applied to cloth smoothing (3, 93, 95), folding (8, 88,

91, 93, 94), twisting (106), bed-making (100), and dressing (99). Again, most works have

only learned a single policy for one task (8, 91, 95, 106), with only a few that either learn

a single backbone and different output branches on the same backbone (94), or a shared

correspondence (93) for different tasks.

5.3. Heuristic-based Manipulation

The last discussed approach in textile manipulation is based on human-designed heuristic

rules instead of learning the manipulation strategies from data. The heuristic rules vary

depending on the target manipulation task. For example, for cloth smoothing, one com-

monly used rule is to detect the wrinkles of the cloth, and the manipulation action pulls the

cloth in the perpendicular direction to the detected wrinkle direction (100). For grasping,

one rule is to use the position and orientation of a wrinkle to compute the target location

and orientation of the gripper (29). Another heuristic for a cloth article hanging in the air

is to grasp key points that are identified based on the border geometry, e.g., corners for a

towel or sleeves for a t-shirt (102), and use force sensors to trace the edge and get to the

opposite corner (107). For folding, a heuristic folding motion can be achieved by leveraging

gravity and moving the cloth such that the moved part is always vertical, which is called a

“g-fold” (101). For assistive dressing, a common heuristic solution is to move the grasped

garment along the forward direction of the human limb (54).

The generalization ability of such heuristically defined rules varies based on the target

manipulation task and the assumptions made. Usually, these methods generalize well under

the settings where the assumptions are satisfied and tend to have limited generalization

when the assumptions are broken. Due to the diverse properties and configurations a

textile can have, it can be hard to design a heuristic rule that would generalize to every

situation one might encounter when manipulating textiles.

6. BENCHMARKS AND DATASETS

Benchmarking robotic manipulation plays a crucial role in understanding methods’ capabil-

ities and limitations, enabling standardized comparison. Particularly benchmarking of cloth

manipulation is limited due to the absence of objective and consistent evaluation processes

and the limited research on how different textiles influence the performance of a method.

In the following subsections, we will discuss the two main tools for benchmarking:

datasets and benchmarks. Datasets can demonstrate the adaptability of a method to new

data. However, when physical interaction is inherent to the task, the generalization of a

method needs to be demonstrated through a benchmarked experimental validation, includ-

ing standardization of the objects used.

6.1. Benchmarks

Most benchmarks tackling cloth objects evaluate manipulation in simulated environments,

since they have the advantage of automatically generating various conditions to evaluate

generalization. For instance, SoftGym (38) for deformable object manipulation and Assis-

tive Gym (108) for assistive tasks, are simulation benchmarks for reinforcement learning
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that provides a set of simulated standardized environments. However, due to the sim2real

gap, it is necessary to have benchmarks for evaluating real-world applications with physical

objects. Garcia-Camacho et al. (109) proposes benchmarks with real executions for three

cloth manipulation tasks including protocols, qualitative evaluation metrics, and several

complexity levels based on the initial state of the cloth. Alternatively, Clark et al. (110)

proposes four benchmark tasks for evaluating the performance of end-effectors in grasping

clothing items, along with protocols to normalize crumpled configurations and metrics.

An effective way to measure the generalization of a method is through the use of a

wide number of objects with varied properties. As it was done for rigid objects with the

now widespread YCB object set (111), an extension focusing on textile objects is pro-

vided in (112), which was distributed among the participants of the cloth manipulation

and perception competition (113). It includes a wide variety of cloth household objects

with benchmarking guidelines for its use. However, an important issue in defining stan-

dardized textile object sets is stock continuity, preventing the maintenance of the same

objects for extended time periods. To solve this issue, a method for building comparable

textile object sets across different publications has been proposed in (23). It proposes a

framework to characterize textile objects, enabling the quantification of variability on the

textile properties listed in Section 2 of a given set of objects. With this characterization,

the generalization of a method can be quantified based on the amount of variation that the

objects offer. This idea goes in line with the one proposed for rigid objects in (114), where

generalization is measured similarly but also adds other aspects of variability in background,

table color, etc.

6.2. Datasets

Unlike benchmarks, datasets serve the purpose of providing data for designing or learning a

task. The extent of generalization depends on the variation covered by the dataset. Datasets

are often task-specific, ensuring that the data is relevant both for training a system and

evaluating its performance. In cloth manipulation, the most common datasets include

simulated 3D models (115, 116), RGB images (62, 117, 118) or depth (90, 119).

The largest existing datasets are for classic vision problems like cloth classification

and landmark point detection, with datasets such as ClothesNet (115) in simulation or

DeepFashion (62) with real images. Datasets for segmentation of people wearing clothes

include CLOTH3D (116) in simulation or (120) with real images. Surface reconstruction

is another classic perception problem applied to cloth (117). For cloth classification or

landmark detection, images contain annotations of cloth type and location of landmarks,

but usually, images come from the fashion industry, and so clothes are either flatted, hung

on hangers, or worn by humans. For surface reconstruction, annotations need to have

realistic images with the real mesh of the object, and therefore, existing datasets are all in

simulation and subject to the sim2real gap discussed in Section 3.3.

For robotics, cloth classification and landmark point detection are also important, but

they need to be identified during the stages of manipulation where clothes are in very com-

plex configurations. Indeed, cloth classification is required but from crumpled states (26),

or when grasped by one point (121). Other features that need to be identified are corners

and edges (122) or wrinkles (123). The dataset (118) is an expansion from DeepFashion (62)

to adapt it to robotic manipulation.

One of the challenges for datasets in cloth manipulation is labelling the ground truth of
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the deformation state in real images. Only a few datasets exist with depth or point clouds

(119) and even less with labels of what points correspond to corners or edges during a

manipulation (124). So far, to encode interactions, some datasets use RGB-D images where

the action is annotated as a pick-up pixel point and a direction of motion in the image

(90), with the limitation of only representing close-to-planar configurations. More complex

actions appeared lately with Visual Language Models where a sequence of images is linked

to a sequence of positions of the end-effector (125), with corresponding datasets.

Datasets rarely annotate the variability in the mechanical properties mentioned in Sec-

tion 2, and some of the physical properties are covered depending on the requirements of

the trained system. The main issue is the difficulty in labeling the deformation ground

truth from images due to the severe self-occlusions, while datasets in simulation are only

partly useful due to the sim2real gap.

7. APPLICATIONS AREAS

We outline the applications and challenges of manipulating deformable textile objects in

scenarios requiring robots to adapt and generalize to their varying properties. Understand-

ing the physical properties of textiles is crucial for a wide range of tasks in diverse sectors

such as household chores, healthcare, and the textile industry. Table 2 provides a (non-

exhaustive) overview of work categories in these sectors, organized by the frequency at

which they are addressed in the literature. Tasks such as folding, smoothing, and dressing

receive frequent attention from the community, whereas tasks like buttoning, dyeing, and

washing remain rather underexplored. In what follows, we will discuss in detail these tasks

and the requirements concerning variations of textile properties.

Table 2 Overview of Variation of Tasks addressed by the community and their fre-

quency.

Frequency Household Healthcare Textile Industry

Frequent (4+) Folding (8, 29, 88,

90, 93, 126, 127)

Smoothing (30, 47,

68, 93, 100)

Ironing (128, 129,

130, 131, 132)

Dressing (31, 54, 127,

133, 134, 135, 136,

137, 138)

Rare(2-3) Hanging (7, 33)

Sorting (26, 71)

Wiping (139, 140)

Bedding (105, 126,

141)

Bed-making (100,

126, 141)

Bandaging (83, 142)

Recycling (71, 143)

Unaddressed (0-1) Storing Buttoning (144) Manifacturing (145)

Dyeing (146)

Quality control

Coloring

Washing
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7.1. Healthcare

As populations age worldwide (147), there is a growing opportunity for robotic systems

that provide physical assistance with activities of daily living (ADLs) and healthcare tasks.

Different assistive tasks involve manipulating textile objects, such as in robot-assisted dress-

ing (127), bedding (141), bathing (138), and medical care (142). This section examines sig-

nificant advancements in healthcare robotics, particularly robot-assisted dressing, bathing

and bedding, bed-making, and medical care, highlighting opportunities and challenges in

real-world applications.

Robot-assisted dressing is crucial for individuals with upper or lower extremity mobil-

ity impairments, requiring careful manipulation of deformable objects such as garments.

This task necessitates the ability to adapt to various object variations while ensuring the

safety and comfort of the patient. Research in robot-assisted dressing has led to the de-

velopment of robots that can assist with putting on shirts (127, 133, 134), pants (135),

and footwear (136), with challenges including ensuring physical safety, accurately model-

ing human-robot interactions during garment occlusions (54, 137, 138), and generalizing to

different garments (31).

Bed-making and blanket manipulation represent significant opportunities for cloth han-

dling in caregiving involving large, deformable textiles. Research has led to robotic systems

capable of grasping and smoothing fitted sheets (141), folding and arranging blankets and

towels (90, 126). Key to effective bed-making is leveraging physical properties like elasticity

of bedsheets during robotic manipulation (100), also for tasks like autonomously covering

and uncovering a person in bed (105).

In daily medical care, robotics research has introduced advances in handling soft ma-

terials such as gauze for bandaging (142) or adult diapers (148). These tasks, involving

physical contact with the human body, underscore the importance of incorporating various

sensory modalities and control techniques for effective manipulation of soft materials (83).

7.2. Household chores

Several instrumental activities of daily living (iADLs), such as laundry, cleaning with towels

(fabric or paper), and hanging clothes, require dexterous textile manipulation. Cloth-

like objects are ubiquitous in unstructured domestic environments and pose significant

challenges to fully automating these activities. This section outlines methodologies and

challenges in cloth sorting, smoothing, ironing, folding, hanging, and wiping tasks.

Cloth sorting involves categorizing garments and textiles by attributes such as item

class (26), fabric type, construction, color, and quality, generally before washing or recy-

cling. Accurate perception and classification of these variations can enhance sorting effi-

ciency, enabling generalization across different textile batches.While recent methods have

incorporated material identification through tactile feedback (71), few integrate physical

interaction to accurately discern mechanical properties.

Robotic tasks such as smoothing, ironing, and wiping involve manipulating fabrics

under varying physical conditions, which are primarily influenced by properties like fric-

tion and elasticity. Smoothing (30, 47, 68, 93, 100), typically performed before folding

or wiping, necessitates to account for varying friction as fabrics transition from crumpled

to flat states. Ironing further requires adjustments for temperature variations that affect

the fabric’s physical properties. Current methods mainly focus on ironing individual gar-

ments (128, 129, 130, 131, 132) and often fail to generalize across different fabric types.
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Wiping involves tackling the challenges posed by variable surface friction, which can be

influenced by the presence of dust or liquids on different surfaces (139, 140). Each task de-

mands adaptive strategies to cope with the dynamic nature of fabric properties, highlighting

the need for methods that can accommodate these variations, as discussed in Section 5.

Significant research in robotic manipulation of cloth has focused on robotic folding with

practical applications in healthcare and domestic settings (8, 29, 88, 90, 93, 126, 127).

However, challenges such as variability in garment properties (weight, friction, and shape)

affect both quasi-static and dynamic manipulation (53), impacting generalization. Notably,

material stiffness, as reflected in bending coefficients, significantly influences each fold,

potentially accumulating errors and altering outcomes in the folding process (48).

Cloth hanging involves finding a stable configuration for a garment on a hanger (7) by

identifying features like holes and loops (33). However, the impact of the physical properties

of the garment on the deformation of these features remains largely underexplored.

7.3. Textile Industry

The textile industry, encompassing sectors such as fashion, automotive, and construction,

presents numerous opportunities for autonomous robots with adaptive capabilities. This

subsection focuses on specific applications such as manufacturing, dyeing, and recycling,

directly linked to adaptability in handling, perceiving, and quality management of textiles.

Given the extensive previous discussion on sorting, smoothing, ironing, and folding, this

section will concentrate on these industry-specific applications.

In cloth manufacturing, robots are increasingly integrated into the cutting and sewing

stages of garment production (145), with potential advancements enabling them to detect

variations in fabric properties like thickness and stretchability. This ability could allow

precisely adjusting techniques for each material, significantly reducing waste and enhancing

resource efficiency, thus improving sustainability and garment quality.

The automation of dyeing processes significantly enhances sustainability by reducing dye

and water usage (146). Currently, robots in dyeing processes are mainly used for loading

and unloading yarn bobbins. Augmenting these robots to recognize variations in garment

properties could optimize dye application, tailoring it to the specific needs of each garment.

Finally, recycling is crucial for sustainability (143). Similar to sorting, enhanced interac-

tive perception of fabric types, construction methods, and material conditions can improve

this process by accurately identifying textiles suitable for recycling (71).

8. DISCUSSION AND FUTURE PERSPECTIVES

In previous sections, we examined modeling, perception and manipulation separately. How-

ever, there is significant interplay among these domains, impacting generalization and adap-

tation capabilities. Offloading computational effort to modeling allows for model-based op-

timization of manipulation trajectories, reducing the burden on control and perception (21).

However, real-world applications need perception techniques to align the parameters of the

model to the real-world object, making perception crucial for generalization (48, 83). While

model-free learning techniques like RL and IL learn end-to-end from raw data (89), reducing

perception needs, they sacrifice sample efficiency and generalizability to novel variations of

the environment and tasks. Nonetheless, not all components of manipulation tasks need

end-to-end learning; perception modules can simplify sub-tasks like flattening wrinkles (27),
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grasp point detection (65), and folding plans, bypassing the need for extensive learning. As

an example, perception can determine grasp points, how to reach the grasping point can be

resolved with a standard planning algorithm, and how to optimize the manipulation once

the cloth is grasped can be learned and performed by an end-to-end policy. Exploring when

to switch between learning and heuristics is a promising research direction. This is partic-

ularly relevant with the advent of foundation models capable of reasoning about semantics,

sequential tasks, and adapting to rules and human preferences.

In the remainder of the section, we further identify open problems and detail future

research directions and grand challenges to foster the development of perception and ma-

nipulation skills that generalize to variations of textile properties and manipulation tasks.

8.1. Open Problems

To discuss generalization and adaptation in cloth manipulation, we reviewed fundamen-

tal textile properties and their complex, intertwined roles. However, the influence of each

property in robotic manipulation is still underexplored, and the necessity of explicitly iden-

tifying each property remains unclear. An open avenue for research is identifying a subset of

pertinent features for different manipulation tasks to determine the extent to which textile

properties need to be identified.

Adding to the complexity of defining textile properties is their dynamic nature un-

der varying conditions. Aging, wetness, dirt, and dryness can alter a textile’s behavior,

necessitating continuous sensing and adaptive perception in autonomous agents. Physical

attributes like thickness, softness, and durability (73) are often evaluated alongside semantic

descriptors like smooth, absorbent, hairy, and slippery (82). Advances in Large Language

Models (LLMs) present potential to bridge these descriptors with a physical understanding

of textile properties (149).

One key aspect for manipulating a variety of textiles and addressing the variation of

properties is perception. While interactive perception with different types of sensors and

exploratory actions can enhance adaptability and reduce uncertainty, it remains under-

explored. Multimodal sensing emerges as a pivotal strategy in this context, integrating

various sensory inputs like tactile, visual, and auditory data to provide a more holistic

understanding of textile properties. This approach holds significant potential, as it allows

robots to leverage multiple temporal information sources, compensating for the limitations

of individual sensors.

A significant observation of our review of manipulation techniques is the limited amount

of work demonstrating effective generalization to a wide range of deformable objects, with

few exploring adaptation methods. Most efforts use domain randomization in simulations

for sim2real transfer, often overlooking domain adaptation techniques that allow dynamic

adjustment based on real-time feedback due to perceptual challenges. Similarly, state-of-

the-art models, such as diffusion models, in combination with imitation learning techniques,

remain underexplored. This leaves open questions about their applicability to deformable

objects and the challenges that might arise due to the complexity of state estimation and

high-dimensional state spaces of textiles.

Building on the necessity for improved generalization in manipulation techniques, bench-

marking, standardization, and datasets emerge as essential yet challenging areas. The diver-

sity in robotic embodiments, sensor configurations, and test sets complicates comprehensive

comparisons. Developing universally applicable testing datasets faces challenges like stock
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availability and accurate property measurement. Although progress has been made, stan-

dardizing test sets and benchmarks remains a significant problem. Additionally, a major

challenge in dataset availability and scalability is accurately labeling deformable object

datasets, limiting their widespread distribution and application.

8.2. Grand Challenges

To push the boundaries of robotic manipulation of textiles, we identify the following critical

challenges that may have major breakthroughs in the coming years:

(i) Perception of properties of novel objects for accurately estimating key physical

and semantic properties of new textiles, enabling robots to reduce the uncertainties about

the environment and adaptively handle a diverse range of textiles.

(ii) Adaptive multi-task and multi-modal agent capable of autonomously adapt-

ing to complex situations, performing long-horizon tasks, and using multi-modal sensory

inputs to navigate uncertainties, enabling seamless integration into homes, industries, and

healthcare facilities.

(iii) Novel datasets and benchmarks capturing real-world variations in object prop-

erties, physical interactions, and manipulation tasks to facilitate standardized benchmarking

and enable consistent comparisons of robotic systems across research institutions.

The field of robotic manipulation of textiles is extensive and includes numerous im-

portant technological areas not mentioned here. Thus, the list provided is not exhaustive.

The three grand challenges identified — perception of properties of novel objects, adaptive

multi-task and multi-modal agents, and novel datasets and benchmarks — represent critical

areas that have the potential to drive major advancements. These challenges encompass

core perceptual technologies, general and adaptive capabilities, and standardized evaluation

methods, aiming to enhance the flexibility and effectiveness of robotic systems in diverse

real-world applications.
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ception competition. Paper presented at the 2nd Workshop on Representing and Manipulating

Deformable Objects, IEEE International Conference on Robotics and Automation

114. Pumacay W, Singh I, Duan J, Krishna R, Thomason J, Fox D. 2024. The colosseum: A

benchmark for evaluating generalization for robotic manipulation

115. Zhou B, Zhou H, Liang T, Yu Q, Zhao S, et al. 2023. ClothesNet: An Information-Rich 3D

Garment Model Repository with Simulated Clothes Environment. In IEEE/CVF International

Conference on Computer Vision, pp. 20428–38. Piscataway, NJ: IEEE

116. Bertiche H, Madadi M, Escalera S. 2020. CLOTH3D: clothed 3d humans. In European Con-

ference on Computer Vision, pp. 344–59. Springer

117. Bednarik J, Fua P, Salzmann M. 2018. Learning to reconstruct texture-less deformable surfaces

from a single view. In Int. Conf. on 3d vision (3DV), pp. 606–615
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