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Abstract. This paper presents a simple yet effective approach for the
poorly investigated task of global action segmentation, aiming at group-
ing frames capturing the same action across videos of different activities.
Unlike the case of videos depicting all the same activity, the temporal
order of actions is not roughly shared among all videos, making the task
even more challenging. We propose to use activity labels to learn, in
a weakly-supervised fashion, action representations suitable for global
action segmentation. For this purpose, we introduce a triadic learning
approach for video pairs, to ensure intra-video action discrimination, as
well as inter-video and inter-activity action association. For the back-
bone architecture, we use a Siamese network based on sparse transform-
ers that takes as input video pairs and determine whether they belong to
the same activity. The proposed approach is validated on two challenging
benchmark datasets: Breakfast and YouTube Instructions, outperform-
ing state-of-the-art methods.

Keywords: Temporal Action Segmentation · Weakly-Supervised Learn-
ing · Video Alignment.

1 Introduction
Action segmentation, the task of classifying each frame of an untrimmed video
plays a fundamental role in various applications such as video surveillance,
sports analysis, and content-based video retrieval [21, 50]. Recently, this task
has received significant attention from the research community. The most reli-
able approaches for action segmentation are fully supervised methods, which re-
quire expensive data annotations [5, 6, 19, 27, 32, 48]. The need for more scalable
and practical solutions has led to an increasing interest in developing weakly-
supervised [9, 30, 31, 33, 40, 46, 49] and unsupervised techniques [7, 11, 12, 14, 23,
24, 26, 28, 35, 37, 42, 43, 45, 47].

Weakly-supervised methods learn to partition videos into action segments
using only transcript annotations for each video, typically in the form of ac-
tions transcripts (ordered lists of actions) or action sets (unique actions derived
from narrations, captions or meta-tags) [31, 40, 46, 49]. This weakly-supervised
paradigm contrasts with unsupervised methods, broadly categorized into three
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Fig. 1: Our approach compares video pairs through a Siamese network by using
binary labels indicating if the videos belong to the same activity or not. We
propose a triadic loss function modelling intra-video discrimination, inter-video
and inter-activity associations for clustering actions across videos of different
activities.

types, depending on the matching objective [13]: video-level, activity-level, and
global-level. Video-level segmentation methods aim to segment a single video
sequence into distinct actions without considering the relationships between ac-
tions in different videos [7, 16, 28, 35, 47]. While they can be effective for practical
applications requiring to segment isolated videos one by one, they fail to general-
ize actions across different videos. Instead, activity-level segmentation methods
focus on matching actions across videos that depict the same complex activity
[14, 23, 24, 26, 42, 46]. These methods generally perform poorly at video-level un-
less temporal smoothing within segments is explicitly modelled. In addition, as
they assume or estimate a transcript for each video or set of videos belonging
to the same activity, their generalization ability to other activities is hampered.
Only Ding et al.[14] directly addressed global-level segmentation railing on com-
plex activity labels to help discover the constituent actions; however, they do
not explicitly model the alignment of actions across videos of the same activity.

In this paper, we propose a strategy to discover actions across various com-
plex activity videos, offering a broader and more generalized understanding of
actions. Our approach does not require knowledge of video transcripts, but only
binary labels indicating whether each pair of videos belongs to the same activity.
Therefore, as a weakly-supervised method, it occupies a unique position in the
spectrum of action segmentation methods.

Our solution, depicted in Figure 1, aims to enhance the clustering of ac-
tions in videos on a global scale through the implementation of a Siamese network
based on transformers. This network is designed to address the task of deter-
mining whether two videos depict the same activity. Instead of using a standard
cross-entropy loss, we propose a triadic loss function capturing the temporal
dynamics within individual videos, between similar videos, and across various
activities. Our contributions are as follows:

1. We propose a novel weakly-supervised framework for the task of global action
segmentation that relies on binary activity labels to discover action clusters
across videos of different activities.
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2. We introduce a transformer-based Siamese architecture, that takes input
pairs of videos, determines if they belong to the same activity or not and
aligns them temporally if predicts that they depict the same activity.

3. We introduce a triadic loss function that models intra-video action discrim-
ination at the video-level, inter-video and inter-activity action associations
at activity and global-level respectively, for robust action understanding.

4. We achieve state-of-the-art results on the Breakfast (BF) and Inria Instruc-
tional Videos (YTI) benchmark datasets, demonstrating the method’s effec-
tiveness and generalization ability across activities.

2 Related work
2.1 Action Segmentation

For a comprehensive and recent survey on temporal action segmentation tasks,
readers are referred to [13].

Supervised Action Segmentation. Supervised approaches have seen signif-
icant advancements over recent years [5, 6, 19, 27, 32, 48]. Recently, UVAST [6]
integrates fully and timestamp-supervised learning paradigms via sequence-to-
sequence translation. This method refines predictions by aligning frame labels
with predicted action sequences. LTContext [5] iterates between windowed local
attention and sparse long-term context attention, effectively balancing computa-
tional complexity and segmentation accuracy. Lastly, FACT [32] performs tem-
poral modelling at both frame-level and action-level, facilitating bidirectional
information transfer and iterative feature refinement. However, being fully su-
pervised, all these methods are not scalable and not suited for real applications.

Weakly-Supervised Action Segmentation. Weakly-supervised techniques
have been developed to reduce the need for large annotated datasets. These
approaches typically learn to partition a video into several action segments
from training videos only using transcripts or other human-generated informa-
tion to generate pseudo-labels for training [30, 31, 33, 40, 46, 49]. Transcripts have
been shown to outperform action set-based methods, while timestamp-based ap-
proaches achieve the best results. This suggests that higher levels of supervision
generally lead to better performance. In recent years, DP-DTW [9] has advanced
weakly-supervised segmentation by training class-specific discriminative action
prototypes. This method represents videos by concatenating prototypes based
on transcripts and improves inter-class distinction through discriminative losses.
Some methods leverage machine learning models to infer video segments, such as
TASL [30]. Recently, more efficient alignment-free methods have been proposed.
MuCon [40] learns from the mutual consistency between two forms of segmenta-
tion: framewise classification and category/length pairs. POC [31] introduces a
loss function to ensure the output order of any two actions aligns with the tran-
script. Conversely, ATBA [46] propose an approach that incorporates alignment
by directly localizing action transitions for efficient pseudo-segmentation gener-
ation during training, eliminating the need for time-consuming frame-by-frame
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alignment. None of these methods explicitly addresses the problem of global
action segmentation.

Unsupervised Action Segmentation. Unsupervised approaches have been
explored by several studies to eliminate the need for annotations [1, 7, 11, 14,
16, 23, 24, 26, 28, 35–37, 42, 43, 45, 47]. As the estimated clusters, lack of semantic
labels, the evaluation process requires finding the Hungarian correspondence be-
tween the clusters and the actual action classes. The Hungarian matching can be
performed for video-level segmentation [1, 7, 16, 28, 35, 36], activity-level segmen-
tation [14, 23, 24, 26, 37, 42, 43, 45, 47], or for a global scope across an entire set
of videos [14, 23, 26]. Depending on the hierarchical level used, methods aim to
improve segmentation through these correspondences. Unsupervised techniques
in action segmentation typically involve a two-step process: first, learning action
representations in a self-supervised manner, followed by employing clustering
algorithms to perform action segmentation, assuming a prior knowledge of the
number of clusters.

In the realm of video-level action segmentation, LSTM+AL [1] introduced
a novel self-supervised methodology for real-time action boundary detection.
Furthermore, it is worth noticing that clustering approaches based on specific
similarity metrics have been relatively under-explored in the field of action seg-
mentation. One such method is TW-FINCH [35], which captures spatio-temporal
similarities among video frames. This employs a temporally weighted hierarchi-
cal clustering algorithm, grouping video frames without the need for extensive
pre-training, as it directly operates on pre-computed features that augment the
conventional FINCH approach with temporal considerations [36]. In a similar
vein, ABD[16] identifies action boundaries by detecting abrupt change points
along the similarity chain between consecutive features.

Action representation learning at the individual video level has also gained
interest. TSA [7] proposed a method that focuses on this aspect, employing a
shallow neural network trained with a triplet loss and a novel triplet selection
strategy to learn action representations. These learned representations can be
processed using generic clustering algorithms to obtain segmentation outputs.
Lastly, the OTAS framework has emerged, offering an unsupervised boundary
detection method that combines global visual features, local interacting features,
and human-object relational features, contributing to the evolving landscape of
action segmentation techniques [28].

Some approaches at the activity-level leverage the order of scripted activities,
emphasizing the minimization of prediction errors, like CTE [23]. Other works
combined temporal embedding with visual encoder-decoder pipelines with visual
reconstruction loss [43] or with discriminative embedding loss [41]. ASAL [26]
explored deep learning architectures, such as ensembles of autoencoders and clas-
sification networks that exploit the relationship between actions and activities.
CAD [14] introduced a framework that discovers global action prototypes based
on high-level activity labels. One notable aspect of these methods is the recogni-
tion that actions in task-oriented videos tend to occur in similar temporal con-
texts. As a result, strong temporal regularization techniques have been developed



2by2: Weakly-Supervised Learning for Global Action Segmentation 5

to partially obscure visual similarities [23, 37]. Recently, optimal transport has
gained popularity in unsupervised learning to generate effective pseudo-labels
and train for frame-level action classification. TOT [24] proposed a joint self-
supervised representation learning and online clustering approach that directly
optimizes unsupervised activity segmentation using video frame clustering as a
pretext task. UFSA [42] extends TOT by combining frame and segment-level
cues to improve permutation-aware activity segmentation. Furthermore, TOT
and UFSA use a Hidden Markov Model (HMM) approach to decode segmenta-
tions given a fixed or estimated action order, respectively. In contrast, ASOT [47]
proposed a method via optimal transport that yields temporally consistent seg-
mentations without prior knowledge of the action ordering, required by previous
approaches. Suitable for both pseudo-labeling and decoding.

Although global-level understanding provides the most comprehensive in-
sight into the relationships between activities and actions in videos, only a
few methods have explored training at this level. CAD [14] is the first work
to operate at the highest level of global matching. In CTE [23], the methods
extended their configuration considering all complex activities. Firstly, the pro-
tocol executes a bag-of-words clustering on the videos to divide them into mul-
tiple pseudo-activities. Subsequently, they perform action clustering within each
pseudo-activity individually. In other words, they apply their action segmenta-
tion at the activity level within classes of pseudo-activity. Their approach still
does not accommodate potential actions shared between activities. ASAL [26]
and CAD [14] present their results aligned with this protocol.

2.2 Video Alignment

Video alignment is a process aimed at synchronizing and matching video se-
quences for various applications, such as action recognition model creation, be-
havioural analysis, and multimedia content generation. This field encompasses a
range of techniques. Traditionally, methods like Dynamic Time Warping (DTW),
Canonical Correlation Analysis, ranking or match-classification objectives, and
the differentiable version of DTW, Soft-DTW, have been used to tackle the
challenging task of aligning video frames [3, 4, 10, 38] in videos depicting a same
action. Recently, LAV [20] have utilized Soft-DTW combined with temporal
intra-video contrastive loss to align video frames effectively. Drop-DTW [17], an
extension of DTW, introduces a "trash bucket" to the cost matrix, allowing for
the classification of background frames and robust alignment in the presence of
outliers. VAVA [29] employs optimal transport with a bi-modal Gaussian prior
and a virtual frame for unmatched frames.

TCC [18] was the first to introduce cycle-consistency for aligning video frames
by maximizing cycle-consistent embeddings between sequences. GTCC [15] ex-
tends the TCC approach to manage more complex alignment scenarios. However,
most of these techniques were developed for general video alignment or related
tasks, and their direct application to unsupervised action segmentation has been
never explored so far. In this paper, we propose for the first time to leverage video
alignment for action segmentation.
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Fig. 2: Overview of the proposed 2by2 framework. The figure illustrates our tri-
adic learning approach: intra-video action discrimination, which enhances cross-
temporal consistency within a single video (first box); inter-video action as-
sociations, which align action frames among similar videos (second box); and
inter-activity action associations, which establish global correspondence between
different videos (third box). The red arrows indicate steps specific to the training
phase.

3 2by2: Learning Unknown Actions in a Global Manner

This section presents a weakly-supervised, triadic action learning approach for
global action segmentation (see Figure 2), aiming at modeling:

(i) Intra-video action discrimination (video level): Video frames sharing the
same action with their nearest neighbours exhibit temporal consistency.
Moreover, actions typically do not occur at the beginning or end of videos.
Thus, a video can be interpreted as a cyclic temporal sequence.

(ii) Inter-video action associations (activity level): For videos categorized under
the same activity, segments within these videos exhibit similarity, facilitating
the alignment of actions across them.

(iii) Inter-activity action associations (global level): Videos representing different
activities that share common actions should be closer in the representational
space compared to those that do not share actions.

3.1 Problem Formulation

Given a large set V of complex activity videos from a dataset belonging to C
complex activities, each video vi in V is annotated with a complex activity label
a ∈ [1, C]. Our objective is to associate each video frame xt, with an action label
n from N possible actions. These N actions are constituent steps shared among
the C complex activities. For each video vi, we define the feature matrix Fi,
where each row F t

i corresponds to an d-dimensional feature vector at time t in
a video vi. Given the initial features of a video Fi, our objective is to learn a
parametric function ϕ that categorizes video frames into the N possible actions,
resulting in embeddings Ei, obtained as Ei = ϕ(Fi),∀vi ∈ V .
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3.2 Architecture

To learn ϕ, we propose a Siamese architecture that takes as input pairs (Fi, Fj)
for all vi, vj ∈ V with i ̸= j. This architecture consists of two identical LTContext
networks [5], specifically designed to capture long-term temporal dependencies,
that work in tandem and compare the similarity between their outputs, denoted
as (Ei, Ej) at the end.

During training, to ensure that videos sharing the same activity have well-
aligned representations, we introduce a context-drop function c, inspired by [15].
This function is designed to handle background and redundant frames by en-
forcing multi-cycle consistency for alignable embeddings and poor alignment
for droppable embeddings. The context-adjusted embeddings are calculated as
Ai = c(Ei),∀vi ∈ V .

3.3 Triadic Loss

Intra-video Discrimination Loss. The output of ϕ at different stages, de-
noted as ϕs, is used to calculate the loss at video level, enhancing the model’s
ability to learn fine-grained temporal structures. We incorporate a mean squared
error smoothing loss, as introduced by [19] and used in [5, 27, 48]. Considering
that actions occurring in an activity video should be temporally contiguous, this
loss is applied to the per-frame actions to alleviate over-segmentation. Moreover,
we also propose a cyclic variant, based on the assumption (i) described at the
beginning of Section 3. Specifically, this variant compares the embeddings at the
end of the output sequence with those at the start, across different stages of
the feature extraction network ϕ. This is driven by the fact that actions often
exhibit cyclical patterns in videos. Mathematically, our video-level loss is defined
as follows:

Lvideo(i) =
1

|S||T + 1|

(∑
s

∑
t

∣∣log ϕs(F
t+1
i )− log ϕs(F

t+1
i )

∣∣
+

∣∣log ϕs(F
T
i )− log ϕs(F

0
i )
∣∣ ), (1)

where T is the total number of frames and S is the number of stages in ϕ in a
video i, ∀vi ∈ V .

Inter-video Associations Loss. For segment-level learning, we adopt the
GTCC loss function proposed by [15], denoted as Lactivity, to synchronize frames
of videos depicting the same activity. We utilize context-adjusted embeddings
Ai generated by our context-drop function layer c. Specifically, for each pair
vi, vj ∈ V of videos, GTCC computes the probability of dropping vti given vj for
all t ∈ T using the function c. The loss function is defined as:

LGTCC(vi|vj) =
∑
t

(
(1− Pdrop(v

t
i |Aj)) · Lmulti−cbr +

Pdrop(v
t
i |Aj)

Lmulti−cbr

)
, (2)
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where Lmulti−cbr is a multi-cycle back regression loss, and Pdrop(v
t
i |Aj) is the

probability of dropping each video frame vti given Aj (refer to [15] for more de-
tails). Our activity loss, Lactivity is defined as the sum of GTCC loss of vi given
Aj and vice-versa. This loss leverages the principle of Temporal Cycle Consis-
tency (TCC) [18], ensuring that corresponding frames in videos with identical
action sequences are closely aligned in the feature space. This approach addresses
variations in action order, redundant actions, and background frames, thereby
enhancing the quality of video representations. To the best of our knowledge, this
marks the first application of video alignment for temporal action segmentation.

Inter-activity Associations Loss. We learn the global representation of a
video clip by using a contrastive loss. We employ contrastive learning to minimize
the distance between videos of the same activity while maximizing the distance
between videos of different activities. This ensures that videos depicting the
same activity are closer in the feature space than videos that are not. The global
contrastive loss has the following formulation:

Lglobal(i, j) = (1− y) · d(Ei, Ej) + y ·max(0,m− d(Ei, Ej)) (3)

where d(Ei, Ej) denotes the distance between the representations Ei and Ej

obtained by ϕ, and y ∈ {0, 1} is a binary value such that y = 0, if the two videos
belong to the same activity (ai = aj), and y = 1, if they belong to different
activities (ai ̸= aj). The margin m ensures sufficient separation between videos
of different activities. The term (1−y)·d(Ei, Ej) minimizes the distance for videos
of the same activity, while y ·max(0,m− d(Ei, Ej)) maximizes the distance for
videos of different activities by pushing them apart by at least the margin m.

The combined loss function that governs the training for all pair videos {vi, vj} ∈
V of our model is formulated as:

Ltrain(ϕ, c)) =


αLglobal(i, j) + (1− α)Lactivity(i, j)

+β(Lvideo(i) + Lvideo(j)), if vi = vj

Lglobal(i, j) + β(Lvideo(i) + Lvideo(j)), if vi ̸= vj

(4)

where α, and β are hyperparameters that balance the contributions of the global,
activity, and video loss components. Incorporating this loss in our model allows
us to leverage the weak supervision effectively, making the clustering of video
frames more discriminative and improving the overall performance of action
segmentation and classification tasks in a global manner.

4 Experimental Setup
Datasets. We present results on two well-known datasets used for temporal ac-
tion segmentation: Breakfast Action Dataset (BF) [22] is one of the largest
fully annotated collections available for temporal action segmentation. It includes
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1712 videos, featuring 10 activities related to breakfast preparation. These ac-
tivities are performed by 52 individuals across 18 different kitchens. Each video
has an average of 2099 frames. Remarkably, only 7% of the frames are back-
ground frames. Youtube INRIA Instructional Dataset (YTI) [2] includes
150 instructional videos from YouTube, covering 5 different activities such as
changing a car tire, preparing coffee, and performing cardiopulmonary resusci-
tation (CPR). The videos have an average duration of 2 minutes. A significant
challenge with this dataset is the high proportion of background frames, which
make up 63.5% of the total frames.

Features. To ensure a fair comparison with related work, we utilized the same
input features as recent methods. For the BF dataset, we used the IDT features
[44] provided by the authors of CTE [22] and SCT [34]. These features capture
motion information by tracking dense points in the video and computing de-
scriptors such as Histogram of Oriented Gradients, Histogram of Optical Flow
(HOF)[25], and Motion Boundary Histogram. Additionally, for further compari-
son in the BF dataset, we employ I3D features [8] extracted from the Inflated 3D
ConvNet, which leverages both spatial and temporal convolutions to learn video
representation. For the YTI dataset, we use the same features as [2, 14]. These
3000-dimensional feature vectors are formed by concatenating HOF descriptors
with features extracted from the VGG16-conv5 layer [39].

Metrics. To evaluate the performance of our temporal action segmentation
methods, we employ 1) Mean over Frames (MoF), which calculates the accuracy
as the mean percentage of correctly classified frames across all videos, providing
a direct indication of overall segmentation performance; 2) F1-Score, which is
the harmonic mean of precision and recall, accounting for both false positives
and false negatives. Precision is the ratio of correctly predicted action frames
to the total predicted action frames, while recall is the ratio of correctly pre-
dicted action frames to the total actual action frames; 3) MoF with Background
(MoF-BG), which calculates the accuracy considering both action and back-
ground frames, essential for understanding how well the segmentation method
distinguishes between action and non-action frames, especially given the high
proportion of background frames in the YTI dataset. To enable direct compar-
ison, we follow the procedure used in previous work [7, 28, 23, 16, 37], reporting
results by removing the ratio (τ = 75%) of the background frames from the
video sequence.

Evaluation Setting. In our study, we adopt the global evaluation methodol-
ogy proposed by [23]. This methodology involves grouping videos into coherent
subsets K and representing them using a bag-of-words (BoW) approach. These
representations are then clustered into K ′ groups of pseudo-activities and K
subgroups of actions are inferred. Each video is temporally segmented by as-
signing each frame to one of the ordered groups using the Viterbi decoder. A
background model is introduced to deal with irrelevant segments. Throughout
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the results of this work, the inclusion of BoW and Decoding refers to the inte-
gration of the aforementioned global inference process, which we will refer to as
the post-processing protocol.

For evaluation, we perform a Hungarian matching between the inferred clus-
ters and the ground-truth labels to compute the metrics. Specifically, we assume
in the case of the Breakfast dataset K ′ = 10 activity clusters with K = 5 sub-
actions per cluster. Subsequently, we match 50 different sub-action clusters with
48 ground-truth sub-action classes, with frames of the leftover clusters set as
background. Finally, we assess the accuracy of the unsupervised learning con-
figuration on the YouTube Instructions dataset, employing K ′ = 5 and K = 9,
subsequently matching 45 distinct sub-action clusters with 47 ground-truth sub-
action classes.

Training Details. To ensure that each video in our training set has at least one
pair from the same activity and one pair from a different activity, we construct
the training set by including all possible combinations of videos belonging to
the same activity. Since segment-level learning requires a strong initialization to
align actions between videos, we adopt a two-stage training approach. Initially,
the model is trained with global-level and video-level modules using Eq. 1 and
3, respectively. Subsequently, the model is used to initialize the second stage,
where it is trained using the full loss function in Eq. 4. In a stratified fashion,
we select a subset of pairs from different activities, ensuring an equal number of
same-activity and different-activity pairs. Given a large number of combinations,
in each epoch, we take a batch including 50% of the dataset of possible pairs
for each epoch. Note that each epoch uses a batch size of 32 pairs for the BF
dataset and 8 pairs for the YTI dataset. We simultaneously train a 4-layer feed-
forward neural network for the drop-context function, c, along with ϕ. To enhance
computational efficiency, we down-sample all videos to 256 frames per video by
randomly removing frames distributed throughout each video, similar to [24, 42].
This technique reduces frame redundancy and ensures that the frames represent
the entire video. We use the same parameters as specified in [5] and [15] for each
network. The training process employs the ADAM optimizer, with a learning
rate of 2e−4 and a weight decay of 10−4. For the parameters α and β, we select
the values 0.15 and 0.5, respectively.

4.1 Comparative methods.

The method more similar to ours in terms of scope, i.e. global action segmen-
tation, and information used, i.e. activity labels, is CAD [14]. For the sack of
completeness, we compute results with a global matching scope of state-of-the-
art methods conceived for action segmentation at activity level. These include
on the one side unsupervised methods such as ASOT [47], CTE [23] and ASAL
[26] that train a network for each activity hence using our same pseudo-labels;
on the other side, they include weakly-supervised methods such as ATBA [46]
that instead use a transcript for each video, resulting in a much stronger level
of supervision.
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BF

Supervision Approach F BoW D F1 MoF

Unsupervised

CTE [23] IDT ✓ ✓ - 18.5
ASAL [26] IDT ✓ ✓ - 20.2
ASOT* [47] IDT ✓ ✓ 20.2 21.6

Weak
CAD [14] IDT

✗ ✗ - 10.9
✓ ✗ - 17.7
✓ ✓ - 23.4

2by2 IDT ✓ ✓ 20.6 24.6

Unsupervised ASOT* [47] I3D ✓ ✓ 16.9 18.1
Weak-transcripts ATBA* [46] I3D ✓ ✓ 20.0 17.7

Weak-activity labels CAD [14] I3D ✗ ✗ - 19.2
2by2 I3D ✓ ✓ 17.5 20.7

YTI

Supervision Approach BoW D F1 MoF MoF-BG

Unsupervised CTE [23] ✓ ✓ - 19.4 10.1
ASOT* [47] ✓ ✓ 15.26 18.6 9.9

Weak CAD [14] ✗ ✗ 12.10 15.7 -
2by2 ✓ ✓ 16.53 23.6 11.4

Table 1: Action Segmentation results on the BF and YTI datasets by applying
the Hungarian matching at global-level. The dash indicates "not reported." (*)
denotes results computed by ourselves. "F" denotes the type of features used.
"D" indicates the use of Viterbi decoding. Both marks denote evaluation as per
[23]. The best results are marked in bold.

5 Results

5.1 Comparison with the State-of-the-art

Breakfast dataset (BF). The results obtained by using the IDT features as
input demonstrate a consistent performance improvement over prior methods
(refer to left-hand table 1). We achieved a +1.2% improvement in MoF with
respect to CAD, highlighting the efficacy of our global training approach with
binary labels.

We computed the results at the global level of ASOT [47], by following the
evaluation protocol described above. 2by2 outperforms it in terms of MoF by
+3% and in terms of F1-score by +0.4%. Similar trends are observed when
using I3D features as input. Compared to state-of-the-art methods, the 2by2
framework proves effective regarding MoF and F1-score. ATBA [46] exhibits a
higher F1-score but a lower MoF than 2by2, likely due to its use of transcripts
for each video, providing stronger supervision with respect to our method but
poorer generalization across activities. This could be attributed to the fact that
these methods were not specifically designed for global training, highlighting the
critical importance of inter-activity learning which is currently lacking in other
unsupervised methods.

Inria Instructional Videos (YTI). The performance of our 2by2 frame-
work also shows marked improvements over previous methods on the YTI (re-
fer to right-hand table 1). We achieve an increase in MoF of +4.2% without
background and +1.3% with background. This improvement in the F1 score is
likely attributed to the non-repetitive nature of actions within activities in this
dataset. Our 2by2 framework effectively enhances segmentation accuracy com-
pared to ASOT, the leading unsupervised activity-level segmentation method.
Similar to BF, our results underscore the effectiveness of inter-activity training.
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YTI
Lvideo Lactivity Lglobal MoF

✓ ✓ ✓ 23.6
✗ ✓ ✓ 21.9
✓ ✗ ✓ 22.5
✗ ✗ ✓ 21.8

Base 23.6
No k_means init 21.1
No cycled MSE 21.0
No k_means init and cycled 20.4

Table 2: Ablation studies on the
YTI dataset, highlighting the im-
portance of the three loss terms, as
well as of the concept of temporal
cycles and the initialization with k-
means.

2by2

GT

2by2

GT

P54_scrambledegg

P37_friedegg

Fig. 3: Examples from BF ("scrambled
egg" and "fried egg" activities). Compar-
ison of ground truth (GT) segmentation
and our 2by2 framework. 2by2 discov-
ers common action steps across activities
(see yellow segments) and captures the
cyclic nature of the videos (see purple seg-
ments).

Furthermore, leveraging global-level training with CAD, we observe significant
improvements of +7.9% in MoF and +4.4% in F1 score.

The observed performance improvements in both datasets are likely due to
the framework’s ability to identify better shared actions among pseudo-activity
classes caused by inaccurate pseudo-labels and the enhanced initialization of the
Bag of Words (BoW) model through video alignment.

Qualitative Result. In Fig. 3, we observe examples closely aligning with the
ground truth segments, accurately capturing both large and small segments.
The enhanced segmentation arises from multi-level processing within our frame-
work. The activity-level component (GTCC) facilitates precise segment align-
ment, while the global aspect improves activity differentiation and reduces mis-
classification. At the video level, our framework maintains temporal consistency
and cyclic patterns, reducing over-segmentation and enhancing alignment.

5.2 Ablation study

In Table 2, we show the importance of modelling all three levels of learning, by
using Lvideo, Lactivity and Lglobal. Specifically, we observe that the elimination
of the intra-video component significantly impacts our method’s performance,
highlighting the detrimental effect of relying solely on the global loss. Addi-
tionally, since the inter-video component is introduced in the second stage, it
becomes clear that robust initialization in the first stage is essential for Lactivity
to effectively guide the alignment and segmentation processes. This underscores
that the global loss alone in the first stage is insufficient for achieving optimal
performance.

Furthermore, we ablate the effect of initializing the activity cluster for the
last layer used for Lglobal by using k-means instead of random initialization.
Additionally, the negative impact of removing the cyclic component from Lvideo
is evident.
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6 Conclusion
This paper introduced 2by2, a novel framework for weakly supervised tempo-
ral action segmentation in untrimmed videos encompassing different activities.
The proposed architecture consists of a Siamese transformer-based network that
takes input pairs of videos and determines if they belong to the same activity or
not. If they do, the videos are also temporally aligned. A key innovation of our
approach is the direct action alignment between videos, crucial for accurately
matching corresponding segments. This is enabled by the Siamese two-stage ar-
chitecture that ensures robust initialization for temporal alignment. By explicitly
modelling intra-video action discrimination, inter-video action associations, and
inter-activity action associations, our method significantly outperforms state-of-
the-art approaches on the challenging BF and YTI datasets.
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