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Abstract—In this paper we present an application of plan
negotiation for distributing work in Human-Robot Teams (HRT),
engaging in a shared plan generation process. This model has
been experimented over data collected from a real-life table grape
vineyard field in Corsira (Aprilia, Italy) on the context of the EU
CANOPIES project. In this work we describe a complete system
up to negotiation agreement, the perception system to detect the
grapes position and quality, the grape map generation process
and the proposed plan negotiation approach, and protocol used
to interactively generate harvest plans. Our proposed approach
tackles harvest plan generation as a two step negotiation process
on negotiation domains of increasing embedded information. The
shared planning process was evaluated using both a subjective
user study and teammate quantitative models.

Index Terms—plan negotiation, grape harvesting, human-robot
collaboration

I. INTRODUCTION

Modern agriculture faces the challenge of meeting the
increasing global food demands while minimising resource
consumption and environmental impact. This is particularly
important in fruit production given the significant labour
shortages that the sector has been facing in recent years which
has become a critical problem for farm managers [1]. Specially
harvest and pruning activities imply a high demand for human
labour, becoming the most expensive management activities
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in fruit agroindustries [2] [3]. In response, technological ad-
vances in crop management have emerged as a transformative
approach, being the partial or complete automation of these
tasks becomes a game-changer to the economic sustainability
of farms.

Collaborative teams of humans and robots appear as an
interesting solution to overcome labour shortages, overcome
failures or uncertainties in the some of the harvesting sub tasks
(e.g., failure in quality grape detection) or increase efficiency
of the harvesting processes and generate traceability of the
harvested product based on objective data collected by the
perception systems embedded in the robot.

As of now, the process of grape harvesting presents many
challenges as information reliability or occlusions, which are
hard to tackle with an automatic system. In this work we focus
on how the negotiation between a farmer and a robot have to
be done to distribute the harvesting task plan and what will
be the recommended path trajectories for each of them.

In this article, we present a collaborative harvesting opera-
tion of a human-robot dyad, where the final goal is construct
and agree on a harvest path plan. In the first part of this work,
we explain how a grape map of the vineyard is build, including
spatial and quality information of the grape bunches. In the
second part, we tackle harvest planning as a human-robot
team shared planning activity, constructing plans through a two
step negotiation process. Finally, in the third part, we present
the followed experimental methodology for the negotiation
process, discuss the human preferences distribution over the



Fig. 1: Field Scenario. Images of the robot and the field where the grape images where captured. These images were shown
to the participants used to introduce them to the presented contexts.

shared planning process and the obtain results.
In Section II we first will make a short review of the

related work. In Section III, we explain how the detection
and localization of grapes, quality detection and mapping
processes are performed. In Section IV, we explain the task
representation and planning methodologies used by the robot
to generate plan proposals, the negotiation domains over which
the HRT has to reach an agreement and the negotiation
protocol applied on each of them. In Section V, we describe
the negotiation experiment methodology, the environmental
domain, the participants’ selection policy and demography, the
experiment design and the results. Finally Section VI contains
conclusions extracted from the work.

II. RELATED WORK

Detection and localization of grape bunches have been done
by [4] and [5] using neural networks. Automatic harvesting of
grape bunches using a dual-arm robot has been performed for
horizontal trellis cultivation [6] and for canopies grape bunches
[4].

On the explainability field, previous studies considered
including information exchange with humans in the planning
process. Some have included verbal communication in task
planning [7]–[9], planned requests to human managers to make
usage of a resource [10] or asked for assistance when needed
[11]. Alternativelly, [12] includes human in the planning
process through the usage of mixed reality for intuitive drone
navigation path planning and visualization.

Lately, more attention has been brought into the human
agreement on plans and the nature of making plan proposals.
Recently, both Chackaborti et al. [13] and Porteous et al. [14]
introduced visualization tools for interactive plan visualization
and selection and Porfirio et al. [15] proposed a goal-oriented
planning system to balance control of non-expert users in the
robot planning process. A previous study dynamically adapted
to new human preferences to generate plan proposals for
navigation tasks [16], Moon et al. [17] explored the usage of
hesitation trajectories as implicit proposals to enable human-
robot non-verbal negotiation and in [18] human preferences
over different navigation plan negotiation domains where
explored for different human-robot team contexts.

In this work, we are exploring the usage of both assignation
and navigation plan negotiations in human-robot teams in
the context of grape harvesting to construct team-generated
harvest plans.

III. BUILDING THE TASK MODEL

In this section we describe the basic operations to detect
and localize the grapes (or bunches), to detect the quality of
the grapes and to do the mapping operation to create the map
of bunches.

A. Detection and localization of the grapes
The detection and localization of the grapes is done by

a farming robot (Fig. 1) developed in the EU CANOPIES
project [19], which has three different Realsense D435i RGB-
D cameras located in the head and the wrists of the robot,
to detect the grapes, compute the quality of the grapes and
localize the grapes and their peduncles. The detection and
localization of the grapes is based in method explained in
detail in the article [4], which consists in two parts: (1)
detection of the grapes and peduncles; (2) computation of the
grape and peduncle localization. The detection of the grapes is
performed by a method that combines monocular depth [20]
and Mask Region-based CNN [21] methods. The computation
of the localization of the peduncles is done by combining two
methods: (1) depth estimation of peduncle using the depth
map; (2) direct measurement method. Both methods are fused
to obtain better results. The resulting depth estimation achieves
a mean squared error of 2.66 cm within a distance of 1 m in
the CANOPIES dataset.

In the right bottom Fig. 2, it can be seen the detection of
grapes and peduncles with a score above 0.9. Since the grape
detection method computes relative distances using monocular
depth, the grapes that are further a specific distance of the
others are not considered for detection, that means only grapes
closer to the robot arm are taking into account. The detection
method can detect several grapes although they are partially
overlapped, and in this case, only the area of the seen bunches
can be computed, and the border between one bunch and the
other is separated by a straight vertical line. In some of the
bunches, several peduncles can be detected, and in this case,
the point to cut it is the closer to the vineyard cane from where
the peduncle is connected.



Fig. 2: Grape Bunches Detection. On the left, virtual robot
model and detected bunches’ localization. On the right top,
images of some bunches taken by the robot’s head camera.
On the right bottom, detection of bunches of the top right
image

Fig. 3: Feature design. Grape bunches are cropped after the
detector bounding box. The resulting image is then binned
and some bins are dropped, as with high probability contain
background information.

B. Quality detection in grapes

The Quality Estimation Module (QEM) in the robot percep-
tion systems assesses bunch size, color class, and Soluble Solid
Content (SSC), the latter indicative of sugar level in Brix°.
In the EU CANOPIES project, dedicated estimators were
developed for these characteristics [22]. Except for size, which
utilizes stereo-cameras and geometry, estimators rely on data-
driven methods. Integrated within the robot’s perception as the
QEM ROS service, they evaluate readiness for harvest based
on defined thresholds. System effectiveness is documented in
[19], with the following sections detailing each estimator’s
operational principles.

1) Size Estimation: The estimator employs the RealSense
D435i depth camera for object metric measurements, achiev-
ing millimeter accuracy through scene pixel triangulation,
based on the pinhole camera model.

The model estimates grape bunch sizes by bounding boxes,
avoiding inaccuracies from edge fitting and undefined depth
map pixels. Depth sampling at the object’s center enhances
measurement reliability, with size estimation errors under
11%, typically less than 1.5cm, and a 20cm height threshold
for harvest readiness.

2) Color and SSC estimation: The estimations for color
and Soluble Solid Content (SSC) leverage the correlation
between the fruit’s external characteristics and its ripeness.

Fig. 4: Grape Mapping. Bird’s eye and lateral views of the
robot and the detected bunches from a particular viewpoint.
The robot stays stationary when scanning for grapes. The
quality of the grapes is represented by color, green for good
bunches and red for poor quality bunches.

This system balances computational efficiency and estimation
accuracy, employing histogram features to conserve computa-
tional resources for other robotic functions. Ridge Regression
was utilized for SSC, while color estimation applied Logistic
Regression with L2 regularization.

The dataset was collected in Aprilia, Italy during Summer
2021 (UTM: 33T, 310858.24, 4597049.60). It comprises 212
images, split into 178 for training and the remainder for valida-
tion. SSC labeling used an ATAGO Hikari PAL2 refractometer,
assessing Brix° without berry damage. Brix° sampling adhered
to agronomic standards, measuring top, middle, and bottom
berries per bunch, averaging for the bunch’s nominal Brix°.
Color was categorized chromatically across six quality levels,
with 1 indicating the highest quality.

A ”cross” shaped pattern was employed to eliminate back-
ground pixels (Fig. 3). Key hyper-parameters for the final
estimator, besides the regularization parameter for ridge re-
gression, included the initial image size, grid dimensions ,
selective cell drops using a “cross pattern,” and preference for
HSV over RGB color channels. Hyper-parameters for both
tasks were optimized using 5-fold cross-validation, yielding
a Mean Absolute Error (MAE) of 1.45◦ for Brix° estimation
and 79% balanced accuracy for color classification.

C. Mapping operation

The models presented in sections III-A and III-B were used
in a section of the field in September 2023 to create a map of
the bunches and store their estimated quality. The localization
of the bunches and their peduncles are obtained in the bunch
detection process, and their position in global reference is
computed using a combination of RTK-GNSS system, robot
odometry and 3D Lidar information (Fig. 4). Though grape
bunches’ position can vary during harvesting, this localization
can be used for planning and as an estimate to approach the
grape and relaunch the visual detection module immediately
before the harvest operation.

In the process of gathering the pose of the bunches, some-
times the robot captures the same bunch in more than one
image and in this case we aggregate the different poses,
computing a pose average of the bunch. Finally, for each



Fig. 5: Grape Map. Bird’s eye visualization of the grape map
used in the negotiation interface (graphical legend in Fig. 7).

one of the bunches, we include the quality of the bunch,
good or bad bunch, obtained by the quality detection module
explained in III-B. Fig. 4 shows an example of the bird’s eye
and lateral views of the bunches and Fig. 5 shows the bird’s
view visualization used in the experiment interface.

IV. SHARED PLANNING

We approach harvest planning as a human-robot team (HRT)
shared planning activity of a collaborative navigation task. To
do so, the HRT engages in a plan negotiation where the subject
of agreement is the final plan. Following the possible planning
domains introduced in [18], we define two plan negotiations:
assignation plan negotiation and navigation plan negotiation.
Both are explored in the presented experiments, which applied
the shared planning process as a two step process.

The first step is a negotiation where the team work distri-
bution is agreed upon. This negotiation works by exchangin
grape bunches’ harvest assignation proposals. Let proposal
ω be an assignation plan Γ = {Γτ1

1 ,Γ
τ2
2 , ...,Γ

τN
N } where

Γ
τj
j = {γτjij(1), ..., γ

τj
ij(nj)

}, Γj = {γij(1), ..., γij(nj)},
ij(kj) ∈ {1...n} ∀kj ∈ {1...nj} and:

τj ⊆ τi ∀i ∈ {i|γi ∈ Γj} (1)⋃
j∈N

Γj = T,
⋂
j∈N

Γj = ∅ (2)

The second step is a negotiation where teammates actions
are defined. In this negotiation navigation proposals fulfilling
the agreed upon assignation are exchanged and the agreed
assignation may be revised if needed. Let proposal ω be a
team navigation plan x ∈ X constructed by the agents’
movements x = {xa1 , ..., xam}, where X denotes the set of
feasible team plans. Then, each agent movement xa ∈ X a can
be defined as an ordered sequence of basic movement actions
xa = {xa1 , xa2 , ..., xak}, being X a the possible action sequences
of agent a. Basic movement actions xai are defined by their
goal, encoding the action of moving to it. Each xai may have
an associated finish time tai only if it has been specified and
agreed upon by the team.

A. Robot Plan Generation

To engage in these negotiations, the robot should be able to
generate the team path plans, one for the robot and the other

Fig. 6: Task Representation. Social Reward Source (SRS)
representation of the harvesting task. Each grape bunch harvest
has an associated cylindrical source of reward of radius equal
to the maximum harvest distance. Initially, sources’ targets are
τ = {h, r} for those with a positive quality assessment and
τ = {h} for those with a negative one. Once the team has
an assignation agreement, source targets are defined by the
assignation.

for the human. Our approach to do so has been to make use
of the Social Reward Sources (SRS) world representation and
a Monte Carlo Tree Search (MCTS) algorithm to explore it,
both previously published in [16].

The harvest task has been represented as a set of consumable
reward sources Ψh = {ψh1

, ψh2
...}, each related to the harvest

of one of the grape bunches detected in the considered area.
Each source ψhi

is defined by a cylindrical boundary of radius
equal to the maximum harvest distance, a set of targets defined
by the bunch quality, a null external reward function re = 0
and an internal reward function proportional to the probability
of success in the harvest ri ∝ ph(a, d). For simplicity, in these
experiments the harvest probability was set to one for all actors
in any reaching positions, so ph(a, d) = 1 ∀a, d. Thus, for
the presented experiments the source s‘ reward is in practice
a step shaped function. You can observe a graphical depiction
of the task representation in Fig. 6.

Additionally, the SRS world representation also includes a
set of Gaussian sources linked to the trees’ trunks, Gaussian
reward functions representing the collision danger of robot
proximity to these obstacles. Similarly, movement cost reward
sources where defined for each agent.

On the robot side, the MCTS algorithm constructs team
navigation plans to tackle the collaborative task. Such plans are
taken at face value when constructing a navigation proposal or
abstracted through a task contribution computation to generate
assignation proposals.

B. Negotiation Protocol

These experiments study one-human-one-robot teams. In
both negotiations, the robot initiates the interaction and the
team members have asymmetrical roles.

The first negotiation is initiated by a robot assignation
proposal. Upon receiving a proposal, the human participant
can either accept it, request for a different assignation plan or
draw themselves a new assignation proposal. If being asked
for a different plan the robot will either propose another



Fig. 7: Interface. From left to right: a) User interface used for the negotiaiton process and b) legend presented to the participants
to ensure their comprehension of the interface symbolic codes.

of its already computed plans or generate a new one from
scratch. This process can be repeated until satisfaction (the
human accepts the plan) or proactive action (the human
decides to make a proposal). The robot will always accept
the participant’s proposal, under the assumption their selection
are prioritised in this setting, but participants where not make
aware of this beforehand. Either way, the final assignation plan
is considered as agreed upon be the whole team.

Similarly, the second negotiation initiates through a robot
proposal, this time being a navigation proposal. The navigation
proposal is constructed over the agreed assignation, reducing
the exponentially large search space. As before, upon receiving
a proposal, the human participant may either accept it, request
for another navigation plan or modify it themselves. This time,
however, the human will still be only given the possibility to
construct assignation plans. As before, the robot will agree to
the new assignation and make a new navigation plan proposal
abiding by it. This second negotiation will continue until
the human participant accepts one of the navigation plans
proposed by the robot.

V. NEGOTIATION EXPERIMENTS

In this Section, the reader may find an explanation of the
experiment domain, the experiment design and a discussion
on the experiment results.

A. Environment Domain

The negotiation experiments have been conducted on a
remote fashion. The selected participants were introduced to
the harvest context, robot and field characteristics through the
images of Fig. 1 and, afterwards, asked to interact with the
robot as if being on the field. They received an explanation on
the interface usage (Fig. 7) and told that they would interact
with a robot to negotiate how the harvesting has to be handled.

Data used in the experiments was composed by the grape
map constructed in the field, though the quality assessment of
the grapes was modified by hand to enrich the environment.
The interface used in this experiments allow the participants to
perform the actions listed in the protocol. Both assignation and
navigation proposals from the robot are depicted on the map
image of the field (see Fig. 7) . Human assignation proposals
are also drawn in the same fashion through the colouring of

the bunches. Acceptance of a proposal and requests for new
proposals are both handled through buttons situated at the
upper left of the screen.

B. Participants
The target population of the experiment consisted of stu-

dents and professors of the Degree in Agronomic Sciences
of the School of Agri-Food and Biosystems Engineering of
Barcelona (EEABB) of the UPC-BarcelonaTech, located in
Castelldefels (Spain). In this way, sufficient knowledge of
agronomic and fruit production methods was guaranteed, while
at the same time, basic knowledge of engineering was also
ensured. From this population, a total of 21 participants were
recruited for the experiment based on their availability and
knowledge, avoiding students from the 1st and 2nd year of the
degree. Demographic data of the participants can be observed
in Fig. 8.

C. Experiment Design
Participants were divided into three groups corresponding to

each of the detection confidence suppositions (case A, B, and
C) for the quality assessment classification algorithm (Table
I). Each participant received the instructions to conduct the
experiment and a clear explanation of the functionalities avail-
able in the interface for human-robot negotiation. Furthermore,
verbal instructions were given during the experiment and a
short explanation was provided by the leading researcher in
every section of the interview.

1) Methodology: Each participant was set in the position
of a farm operator in charge of harvesting a table grape
field while assisted by a robot. The participant answered
the first part of the interview consisting of the demographic
information, and subsequently started the experiment using the
human-robot negotiation interface.

After the robot proposed the first fruit assignation plan, the
participant rated the plan based on four characteristics that
were verbally explained by the leading researcher:

• Robot leadership: is the robot leading the situation when
proposing the harvest plan?

• Robot intelligence: is the plan coherent and proposed
based on some kind of logic, or does it seem random?

• Robot control: is the robot taking control of the situation,
or is it relying on what the human has to say?
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• Robot collaboration: do you have the perception that the
robot wants to collaborate equitably with the operator?

Once the participant had rated all the attributes for the first
fruit harvest assignation plan, the leading researcher proposed,
verbally, three scenarios: Accept the current plan, ask for one
or more plans from the robot, or take the lead and change
manually the plan based on its preferences. It is important
to say that, before taking any decision, it was mentioned
to the participant that after changing the plan there was
no possible way to go back to plans already discarded. In
case the assignation plans were modified, and after accepting
the definitive plan, the participant was asked to evaluate it
following the respective parameters listed in the survey.

The third block of the survey consisted of evaluating the
harvest routes proposed by the robot. The same protocol listed
above was used in this third block, with a verbal definition of
robot leadership, intelligence, control, and collaboration. The
route proposed by the robot was evaluated and the participant
had the opportunity to accept it, ask for a new route or go back
and change the fruit assignation agreement with the robot.

The final step in the experiment was to assess the influence
of knowing, before the negotiation with the robot, the accuracy
of the quality assessment classification algorithm.

Case Accuracy of Pos-
itive Assessment

Accuracy of Neg-
ative Assessment

A 70% 95%
B 95% 95%
C 95% 70%

TABLE I: Detection accuracy Accuracy of both positive and
negative assessment of bunch quality for each of the cases
presented in the study.

D. Results
The distribution of participant decisions over robot pro-

posals on each negotiation timestep can be observed in Fig.
9. We can see that most interactions reached an agreement
before the second robot assignation proposal, 28, 6% due to
the participant accepting the robot proposal and 33.3% due
to the participant drawing their own assignation proposal. The
median finishing timestep in the navigation negotiation was the
second timestep. Remarkably, however, there can be observed
important differences between the different contexts. Context
B shows a 0% acceptance rate over the first robot proposal,
while context C shows an acceptance rate of the first robot
proposal a little over 50%.1

1) Participants Evaluation: Participants in the experiments
were asked to answer a questionnaire about their perception of
the plan proposals involved in both negotiations and the im-
portance they gave different factors when deciding what action
to take upon receiving a robot proposal. Fig. 10 summarises
the outcomes of this questionnaire.

After finishing the assignation negotiation, all participants
were asked to rate the last plan proposed by the robot in
the interaction. Then, those who decided to modify the plan
by making a proposal themselves were asked to rate the
assignation plan they built themselves. In general, participants
perceived their handmade assignation plans to be better than
the robot proposals in almost all factors. Then, they were asked
to rate the importance of the evaluated factors in their decision
to replan and modify. It is noticeable that some participants
having both asked for a new plan and modified it, decided to
only answer one of the two importance sections.

Similarly, participants were asked to rate the navigation plan
proposals involved in the second negotiation step. Participants

1https://www.iri.upc.edu/groups/mobrobotics/grape negotiation/data.csv
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model considered.

having modified the previously agreed upon assignation plan
were asked to rate the last navigation plan proposed by the
robot before modifying it, while all participants were asked
to rate the agreed upon navigation plan. Data in this case is
too limited to make affirmations but it seems that, as before,
they perceived a subjective improvement stemming from their
decision. Moreover, participants were once again asked to rate
the importance of the proposed factors to their decision.

2) Teammate Modelling: In an attempt to capture par-
ticipants’ selections, we decided to build different possible
utility models of human decision-making. We proposed three
possible models that may explain human decisions in this
context:

The subjective fairness model attempts to capture a desire
to achieve a plan that makes an equivalent work distribution
between the human and the robot. It is computed by calcu-
lating the geometric mean of the harvest rewards collected by
each teammate.

U =

 ∥α∥

√√√√ α∏
a

Ra
T

 (3)

The robot contribution model assumes an selfish perspective
attempting to maximise the robot’s work share. It is computed
as the sum of the robot harvest reward.

U = Rr
T (4)

The movement effort model assumes the participant’s per-
ception of their required effort is not measured by the amount
of grape bunches harvested, but the amount of distance they
have to cover while doing so.

U = Rh
A (5)

Fig. 11 depicts each robot proposal value both in the robot
utility model and the three proposed human utility models.
None of them exhibit a growing tendency over negotiation
steps, perhaps due to the participants acceptance policy chang-
ing over time. Studying time-dependent human utility models
requires, however, a bigger dataset and is left for a future
study.

Fig. 12 depicts previous data when considering the action
taken by the participant upon receiving a proposal from the
robot. Data here is grouped independent to the negotiation
time-step where it occurred. Also, many samples from the
same participant may be included in assignation replan, navi-
gation replan and navigation modify decisions.

VI. CONCLUSIONS

In this article, a human-robot system for doing a collab-
orative harvesting plan negotiation is presented. The final
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Fig. 12: Comparison of utility models. Utility distribution of the first robot proposals compared to utility distribution over
human feedback actions.

goal is to obtain a team agreement on human-robot harvest
distribution and navigation plans for performing this task.
This study shed light in human action selection and factor
importance in decision making. Participants having proactively
modified the plan subjectively perceived the final agreement to
be better than the previous proposals, even though that can’t
be captured on any of the tested quantitative utility models.

Additionally, the study provides a first approximation on
human-robot plan negotiation length expectancy. On both plan
negotiation domains, more than half of the negotiations were
settled before the third proposal. Although it could perhaps be
expected, this confirms that human-robot negotiation will be
a particularly challenging field due to the constrained number
of available opportunities to make proposals. Whilst in agent
negotiations a large amount of proposals are usually expected,
here one should maximise the amount of explicit and implicit
information extracted from and conveyed through proposals.
Moreover, attempts to construct models of human behaviour
over negotiation steps will confront with the quick decrease
in data. As for these experiments, there is no sufficient data
to explore decision-making differences over time steps, but
the data provides a foundation to compute statistical potential
when attempting to do so in the future.
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