Safety Methods for Cartesian Control of Redundant
Robotic Arms

Juan Antonio Delgado-Guerrero, Adria Colomé, Sergi Foix, and Carme Torras
Institut de Robotica i Informatica Industrial (CSIC-UPC). Spain
{jdelgado,acolome,sfoix,torras } @iri.upc.edu

Abstract—Over the last years, the interest in robot safety
has increased, due to the improvements in applications such
as assistive robotics, co-manipulation or manufacturing cobots.
In these scenarios that include physical interactions between
humans and robots, it is of upmost importance to have both
passive and active safety layers that prevent robotic arms to
behave in an unsafe manner. Ultimately, the safety measures
that can be applied might depend on the sensors installed on a
robot. Robots with joint torque sensors often base their safety in
reactive behaviors when a contact is detected. However, robots
should be able to also have safety layers that do not depend
on detected contacts. In this paper, we show several additions
to robotic Cartesian controllers that can significantly improve
safety in human-robot physical interaction for robots with joint
position encoders only.

I. INTRODUCTION

In recent years, approaches to have shared spaces between
humans and robots have become more popular because of the
increasing needs and applications in collaborative and assistive
robotics [1]. In the first place, collaborative robots are designed
to work together with people in shared spaces. This requires
these robots to be very adaptive and respond fast to human
actions, which are often hard to predict. The difficulty in
predicting future human behaviors makes prediction unreliable
for a safe human-robot physical interaction. Therefore, many
robotics platforms use joint torque sensors and implement
safety layers based on unforeseen contacts. However, how to
improve safety in these interactions when we do not have a
force/torque sensor feedback? In these scenarios, approaches
like feed-forward controllers, that add a model of the robot’s
inverse dynamics to the control action, allow for lower gains
that are intrinsically safer. This then facilitates the implemen-
tation of Variable Impedance Control (VIC), which can adjust
the robot stiffness and damping dynamically, increasing safety
and effectiveness in collaborative tasks according to specific
situations. Thus, by modulating their impedance, robots can
become compliant and behave gently when necessary, and
adapt to be more precise and robust when handling delicate
tasks.

Furthermore, VIC has proved to be very useful when it
comes to applications such as assistive robotics [2]-[4],
which are generally addressed to aid the elderly and disabled,
or telemanipulation [5]. In such cases, this kind of control
allows for personalizing the degree of assistance in terms of
support and resistance, tailoring them to the specific needs and
conditions of the users.
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Fig. 1. A Barret’s WAM robot performing an assistive robotics task of
dressing a human. In these scenarios where human-robot physical interaction
is present, safety measures must be prevalent and ensure that the robot will
move compliantly.

However, controllers become more complex in the Cartesian
space where, through a Jacobian, the desired end-effector
forces can become joint torques. It is well known that the
robot’s singularities can result in dangerous behaviors [6] that
limit the applicability of controllers in Cartesian coordinates.
But since motion specifications are usually assigned in the
operational space, safety in Cartesian controllers is of upmost
importance.

This paper addresses some safety issues in Cartesian control,
oriented at human-robot physical interaction, and proposes,
from a practical perspective, a diverse set of layers of safety
to ensure that the robot behavior is stable, effective, and safe.
We will firstly introduce the necessary control problems in
Sec. II, and then safety layers for robot learning and control
in Sec. III. Some of these methods’ effects are tested in Sec.
V.

II. PRELIMINARIES
A. Robot dynamics and feed-forward control
The dynamics equation of a robot in joint space, for a certain

joint configuration q is [7]:

M(q)q—!—C(q,q) +G(q)+Ffrzc = U — U, (1)



where M(q) is the inertia tensor of the robot, C(q, q) is the
term containing the coriolis and centripetal forces, G(q) the
gravity, Fs.;. the robot friction, u. the controller torque and
u, the external forces on the robot, represented by their effect
in the joints. In general, G(q) can be easily estimated from
the geometry and mass of the robot, while the velocity terms
C(q, q) are not so straight-forward to compute, but can also
be obtained. Furthermore, M(q) can be easily calculated, but
the accelerations q can become very noisy if they are obtained
by differentiating position twice. Moreover, the friction forces
are of a complex nature and can come from static and viscous
friction in the joints, motors, or cables in cable-driven robots.
Even magnetic friction within the motors may occur, resulting
in Fy,;. being a black box which can be partially modelled
[8], but will often be one of the main sources of dynamics
modelling error.

Feed-forward controllers [7] are a common control approach
[9] for human-robot interaction. In this case, an approximation
of the inverse dynamics of the robot is obtained, i.e., the left
side of Eq.(1). If we define the inverse dynamics as:

n(q,q,q) := M(q)q + C(q,q) + G(q) + Fyric, (2)

then, an approximation fi(q, q, q) will yield a modelling error

of €, = n(q,q,q)—n(q,q, q). Now, feed-forward controllers
[7] take the form:

u. = 1n(q,q,q) + upp, 3)

where upyp is a classical Proportional-Integral-Derivative con-
troller. Now, inserting u. into (1), we obtain:

upip = €, + Ue.

This equation has a high relevance as it indicates that, by using
a feed-forward controller, our PID term will be responsible
for compensating the dynamics modelling error €, and the
effect that external forces have on joints, u., in order to
track a certain trajectory. In most robotics applications, where
the robot velocities and accelerations are rather small, the
inertia and Coriolis effects are not the most relevant terms of
the dynamics of the robot, especially in cable-driven robots
such as the Barrett’s WAM. Robots that have the motors
on their joints do have more inertia and therefore those
terms gain relevance. Nevertheless, from the terms in Eq.(2),
the most relevant is usually the gravity G(q), followed by
the frictions Fj,;., while the inertia terms are smaller for
relatively small motions. Therefore, it is also common to use
n(q,q,q) = G(q) as a simplified dynamics model. Also note
that the integral part of the PID controller is often omitted for
robotic trajectories with variable impedance control. This is
due partly to the fact that a PD controller can impose a second-
order differential equation’s behavior to the system (the robot)
[7]. Empirically, an integral part can also be added in order to
reduce steady-state error.

Up to now, we have considered control from a joint perspec-
tive, assuming that we will control the d degrees of freedom
of the robot. However, in most robotic tasks, controlling the

Cartesian pose (including position and orientation) is of most
importance. Therefore, in the following section we develop
how to extend this feed-forward control formulation to the
Cartesian space.

B. Cartesian control with jacobian transpose

Jacobian transpose Cartesian control [10] is a well-known
method to calculate the torques required to apply at joints to
follow an end-effector (EE) pose (position and orientation)
trajectory. By using the principle of virtual work on the
manipulator system, it can be easily seen that the relation
between the 6-dimensional Cartesian force-moment vector
acting at the end-effector f, (wrench) and the d-dimensional
vector of torques at joints u is the transpose of the geometric
Jacobian J := J(q) of the manipulator:

u=JTf. 4)

Note that this equation allows us to work in the operational
space without using any inverse kinematics. In fact, we do
not need the dynamics terms in Eq. (1) expressed in the
Cartesian space in order to control the robot, but instead, we
will compute the error in the Cartesian space and multiply it
by a Cartesian gain matrix to obtain a desired force on the
end-effector:

fe = Kpe+ Kpe, (5)

where K p and K p are the proportional and derivative gains
matrices, and e and e are the Cartesian position and velocity
errors, including orientation if necessary. In this paper, we
calculate the forces in Eq. (4) as a proportional-derivative (PD)
law (see Figure 2).
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Fig. 2. Jacobian transpose control scheme.

C. Orientation error representation

As mentioned before, the geometric Jacobian is used for
control, due to how easy and simple it is to compute. However,
it implies that the angular velocities that are associated with it
are expressed in twist coordinates. Here, we present a way to
derive the orientation error associated with it. Moreover, from
now on, we define the norm of a Cartesian pose vector |e|
with the equivalence of 2rad=1m. Now, given that we have the
current and desired orientations of the end-effector, expressed
as rotation matrices R, Ry, the orientation error in twist



coordinates that matches the geometric Jacobian representation
is:

1
co -1 (R(l) " R((;) + R® R5l2) L R® « RE{:%)) . (6)

where R(® is the i-th column of matrix R.

D. Impedance control

Several control schemes can be used to control the manipu-
lator executing the task. In particular, we consider Impedance
Control (IC) in Cartesian space, as it is particularly suitable
for the Learning from Demonstration (LfD) scenario [7].
Impedance Control, and its extension Variable Impedance
Control (VIC) [11], is a popular control scheme that, combined
with an inverse dynamics model as in Eq. (3), allows to obtain
the following control law with a PD controller, for stiffness and
damping matrices Kp and Kp, reference x4 and measured
EE position and velocity x, x:

uPD:JT[KP(Xd—X)+KD(Xd—X)]. @)

If Kp and Kp are diagonal, the manipulator is controlled by
means of diagonal control. This control action, as mentioned
before, can be theoretically shown to stabilize the system by
means of Lyapunov functions, and imposes a second-order
behavior.

III. CONTROL FEATURES TO ENHANCE SAFETY

As already mentioned, in this work several techniques have
been implemented in order to improve safety:

A. Joint limits in kinesthetic teaching

A common method for teaching a robotic task is to set the
robot in gravity compensation mode and manually guide it.
This has the advantage of requiring close to no knowledge
on robotics, it being an easy approach to teaching robots.
However, a commonly ignored issue with this approach is the
fact that, like humans, robots have their joint limits and, during
kinesthetic teaching of a redundant robotic arm, a human does
not usually pay much attention to the robot redundancy and
might accidentally be pushing a joint towards its limit. This
results in a dangerous encoding of the robot motion, which can
lead to harming the hardware in execution. In order to prevent
teaching trajectories too close to joint limits, a simple im-
provement can be done for robots with gravity compensation
and variable control frameworks. Usually, kinesthetic teaching
implies setting the robot in a gravity compensation mode,
while deactivating any other control action. However, we have
found that, in order to prevent such dangerous situations when
the teaching pushes joints towards their limit, we can activate
a controller that pushes the joint away from its limit. Such
controller’s gain K, will be independent for each joint j
(therefore K, = diag(K}, ..., K{)) and we will set a threshold
&, as the distance from a joint limit in which the passive
controller will push the joint away from its limits for each joint
J» 4™, ¢*]. Then, we define the joint torques in kinesthetic
teaching as

Case g; € [¢]* — &, ¢7**]. We set a desired position

qf = qi* — &,
which results in
i d
uj = Kj(q5 — ¢;)-

min ,min

Case g; € [qj g+ 5] We set a desired position

g = 4" + €,
which results in
ji(.d
uj = Kj(q5 — q5)-

Otherwise, we deactivate this controller.

This layer of control over a theoretically non-controlled
robot has an effect that prevents the robot from being too
close to its joint limits while being taught and, given that
anthropomorphic arms usually have one redundant degree-of-

freedom (DoF), such redundancy can still allow for tracking
the trajectory the human is teaching.

B. Error value saturation

It has been empirically proved that high error value signals
lead to unstabilities and undesired behaviors in the robot con-
trol system. This is why a first measure consists in saturating
the position and orientation error values so that they cannot be
higher than certain limits, in absolute terms, for each Cartesian
coordinate j. Therefore we update e components ¢;, into a new
vector €:

é,:{ g if|ej|.<e;nax
J sign(e;) - €% otherwise

This limitation on the Cartesian coordinates error has a rele-
vant effect, as we will see in Sec. IV, of indirectly limiting
the torques applied. This has a positive impact in situations
like a large initial error on a trajectory, or a deviation from
the desired pose due to an external effect, e.g. a human action
or environmental constraint, that could otherwise result in a
high-torque, high speed backlash that would not be suitable
for physical human-robot interaction.

®)

C. Time dependency on error

If motion is parametrized, e.g. with a movement primitive,
the time can be slowed down with respect to error, so that
error stops growing and prevents backlashing.

LA
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where p is a flag variable that becomes 0 if the error is larger

than a certain threshold, |e|| > €nax, and 1 otherwise. Also, «
is defined as:

©))

lpt1 =t

1 .
a = 5 Ko (1+ sign(er — emin))

K, being a gain factor (which we have empirically found that
a suitable value for it is 100). The sign operation means that,
if the error is below a certain minimal threshold €p;,, then «
will be zero, and therefore t;,1 = t; + dt. However, once
the error e, grows beyond ey, the difference between tj.1



and t; will be smaller than the usual time-step dt, therefore
slowing the time used for the trajectory generator, until a point
where a threshold is reached |eg| = €max, at which p = 0 and
tk+1 = tr. Slowing the time evolution and even stopping it
has an impact on the desired pose. First, it allows the robot
not to drift too far away from the reference. Imagine a robot
being held by a human while it performs a motion. If the
trajectory time continues to evolve, the desired pose will be
increasingly further away from the current state. This means
that the backlash happening once the human releases the robot
can be potentially large, but also that the robot will not follow
a trajectory with a shape according to what was expected,
but rather try to quickly catch up to the current position.
Depending on the task, one might want one or the other.

D. Elbow and wrist singularities

A manipulator is kinematically redundant when it has more
DoF than the dimension of the operational space [7] - 6 in
case of Cartesian control -. These extra DoF can be exploited
to achieve a secondary goal while performing a task as, for
instance, making the redundant joints to keep the robot as far
as possible from people. To this end, a secondary controller
can be constructed by projecting the secondary goal T,
into the null-space orthogonal projection of the Jacobian, with
I-J Ty ! ), where J T is the Moore Penrose pseudo-inverse,
obtaining:

r=J"f+g(q)+ T - I TV Kymam, (10)

where K, is a diagonal matrix used to select the relevance
of the secondary goal and JT s the pseudo-inverse of the
transpose Jacobian matrix. A deep study on kernel projection
methods can be found in [6].

In the case of serial robotic arms, it is often recommended to
avoid singular positions in the robot while it is moving. Such
singular positions can cause, in the Cartesian space, abrupt and
fast motions that might damage the robot or its environment.
It is therefore recommended to avoid such situations, and
we can do so by projecting a gradient, pushing the joint
pose away from the singular position using the manipulability
index [12]. However, in the case of anthropomorphic arms, the
singularities are known, and happen when the wrist is straight
(i.e., g¢ = 0) or when the elbow is straight (g4 = 0). In
those cases, the Jacobian matrix, which is 6 x 7 for the case
of anthropomorphic arms and usually has rank 6, becomes ill-
conditioned and looses one rank. That expands the redundancy
of the manipulator, which is, under normal circumstances, a
rotation of the elbow point around the axis defined by the
shoulder and wrist points. The added redundancy dimension
is a rotation with g5 = —qy when gg = 0 (wrist singularity)
and g3 = —q5 when g4 = 0 (elbow singularity). These
redundancies manifest in potential vibrations of fast motions
that do not affect the end-effector’s pose, but can cause
instability, send an error of velocity at an electronic level, or
be dangerous to the surroundings.

To avoid these vibrations we propose to control the kernel of
the Jacobian matrix. A torque vector T,,;; proportional to the

gradient of a function H,, is defined. This function expresses
how fast joints 5 and 7 are moving, therefore the goal is to
minimize this function so the wrist joints move as minimum
as possible and, hence, avoid their swap.

Tnull = _N4V(H4) - eV (Hg)
Hy = (63 + 63)
Hg = (62 + 62);

Note that regulating factors pu4, pg are defined. These
variables are 1 when the robot is in the singular configuration
(g2 = 0,96 = 0, respectively) and exponentially decay to O
when far from it:

(1)

fta = exp(—4q3)

f16 = exp(—4q3).
This control measure mitigates the free, uncontrolled motion
that might occur in the additional kernel space generated in a
singularity, by minimizing the velocities in such dimension of
the kernel of the Jacobian.

12)

E. Derivative term tuning

In the previous section, we discussed how a PD controller
can impose a second-order behavior on the robot’s Cartesian
state by modulating the proportional and derivative gains:

e+ Kpe+ Kpe=0 (13)

?+Kpt+Kp=0 (14)

From Eq. (14), we can impose a critically damped behavior
on the dynamical system by solving the ordinary differential
equation and setting the eigenvalues to have no imaginary part
and be negative. This comes down to imposing the discrim-
inant I(D2 — 4Kp = 0, which results in Kp = 2/ Kp.
This derivative gain provides a theoretical critical damping.
However, the robotic platform can often have unpredictable
dynamical behaviors in the transfer to reality, discretized
control time, or state measurement errors. This can result
in chattering in certain joints, due to the derivative term.
Therefore, we recommend to use this restriction as an upper
bound Kp < 24/ K p. This could result, theoretically, in small
oscillations in the step response of the controller. However,
remaining unmodelled frictions act as an additional damping
on the robot that alleviate these potential oscillations.

F. Control signal saturation

Similarly to the way we proceeded in III-B, we can also set
boundaries for the control signal, in order to avoid undesired
jolts. Thus we can update u components u;, into a new vector
a:
if |U7‘ < Uj,max

otherwise (a5)

. { "

e = sign(w;) « i max
This is often already considered as a safety layer at a lower
level, due to the fact that the electrical currents applied on the
joints have a limited amount of power that they can supply, but
having control over it also improves the safety of the robot’s
behavior.



G. Joint limit avoidance

One last measure has been implemented in order to ensure
safety. In this case, we set the corresponding torque compo-
nents to 0 if the robot configuration is close to some joint
limit and it is still pushing towards it. We apply this measure
to as in Sec. III-A, but if, for instance, ¢; € [¢I™ — &, ¢7*],
we set the torque to u; = min(u;,0) if ¢; > 0, thus not
pushing away from the joint limit, but rather ensuring that the
robot, if close to the joint limit and moving towards it, will
not apply additional torque to such joint that would generate
an acceleration towards its limit.

IV. EXPERIMENTAL EVALUATION

Dedicated experiments have been conducted to analyze
the robot’s behavior under the influence of some of the
proposed control features. The experiments were performed
in a Barrett’s WAM robot (as seen in Fig. I). We used a
Cartesian controller based on the described methods in Sec.
II, with a compensation of the gravity term and a derivative
term depending on the proportional gain as in Sec.III-E:

. = G(q) + JT[Kp(xq — x) + Kp(kq — X)]

With this base controller, we tested the terms considered
throughout this paper and assessed their qualitative perfor-
mance.
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saturation while, in blue, without error saturation.

A. Error value saturation

We compared the controller’s performance with and without
a Scm error saturation limit. While moving the robot in a
horizontal, linear trajectory, a 25cm perturbation in position
was applied. Figure 3 shows the positional error in the x,
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Fig. 5. Orientation error values in the Cartesian space. In black, with a

reduction of the derivative term; in blue, without.

y, and z components for both cases. Figure 4 displays the
corresponding Cartesian forces in each direction.

With no perturbations, the tracking error in Fig. 3 is similar
between the two cases. However, the forces applied to the end-
effector during perturbations are significantly larger without
error saturation. For instance, in the y-component, these forces
reach up to 40N without saturation in Fig.4, compared to less
than 20N with the error saturation limit.
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Fig. 6. Joint torque values for the wrist joints of the robotic arm. In black,
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B. Reducing the derivative gain

In this experiment we compared the different behaviors of
the robot when reducing the derivative gain below the theoret-
ical limitation and when not. Figure 5 shows the orientation
errors along a predefined L-shaped trajectory with no external
disturbances. Figure 6 displays the robot’s wrist joint torques
for such motion. We can clearly see how, when we do not
reduce the derivative gain below the limit, an undesirable
high-frequency oscillation of the torque appears. Contrary
to one’s intuition, one would think that oscillations would
occur when we reduce the derivative term but, as discussed
in Sec. III-E, the oscillations from reducing such term are
damped by the robot’s unmodelled friction. On the contrary, a
critically damped derivative term might destabilize some joints
due to unmodelled phenomena.

C. Nullspace singularity control

We applied the singularity control defined in Sec. III-D,
and compared its behavior against a controller which used
the redundant DoF of the robot to keep the elbow in a vertical
position. The performed trajectory started with the robot 15cm
away from the an arbitrary initial desired position, generating
a step response on the controller. Moreover, the initial joint
position of the robot was with g¢ = 0, i.e.: in the wrist
singularity position. Then, at the end of the trajectory, a human
operator pushed the elbow of the arm to a horizontal position,
and then released it afterwards. We also removed the error
saturation safety measure, and we can observe the positioning
error results of this experiment in Fig. 7 with the singularity
control (in black) and with the elbow positioning in the kernel
of the Jacobian (in blue). Here we see:

- When not using the singularity control and starting at
a singular, or close to a singular position, a high frequency
oscillation might occur in the last joints. This is due to the
phenomena discussed in Sec. III-D.

- When pushing the elbow, the singularity control layer
allows for a free motion of the elbow as long as we do
not cross a singular position. Meanwhile, the controller with
the secondary objective of keeping the elbow vertical tries to
prevent that motion, and therefore increases the end-effector
error. Moreover, due to friction and the kernel force colliding
with the main end-effector task, the robot has a larger error in
steady state once released.

V. CONCLUSION

In this work, we identified common challenges encountered
when implementing Cartesian control on redundant robotic
arms, specifically using a 7-DoF Barrett WAM manipulator as
a case study. We introduced the Cartesian control framework
in a tutorial manner, and provided tools to enhance safety.
First, artificial forces in a kinesthetic teaching for preventing
situations that are foo close to a danger zone. Also, a way
of modulating the derivative of the control timer so as to
slow trajectories in execution and prevent backlashes when
a contact occurs. Then, we tested how saturating the error
values in addition to joint torque values can help a controller
to prevent large forces, especially in cases where the initial
desired position is not the current initial position. We have
also shown how a reduction of the derivative gain can reduce
oscillations, and a nullspace control of the redundancy prevents
the free motion in the nullspace to be too fast and, while the
theoretical derivative term of a PD controller can be obtained
analytically, it is shown in this paper that a smaller value might
actually be safer for real robot executions.

Our experimental results show how the robot responds with
and without these safety features, highlighting that some are
universally necessary while others depend on the specific task.
Future work will focus on developing a hierarchical safety
control taxonomy to guide the selection of appropriate safety
capabilities based on task requirements.
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