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Abstract—This work discusses segmentation and ges-
ture recognition in human-driven robotic trajectories, a
technique with applications in several sectors such as in
robot-assisted minimally invasive surgery (RMIS) training.
By decomposing entire movements -gestures- into smaller
actions -sub-gestures-, we can address gesture recognition
accurately. This paper extends a bottom-up approach
used in surgical gesture segmentation and incorporates
natural language processing (NLP) techniques to match
sub-gestures with letters and treating gestures as words.
We evaluated our algorithm using two different datasets
with trajectories on 2D and 3D. This NLP-inspired model
obtains an average F1-score of 94.25% in the segmentation
tasks, an accuracy of 87.05% in the learning stage, and an
overall accuracy of 88.79% in the fully automated execu-
tion. These results indicate that the method effectively iden-
tifies and interprets new surgical gestures autonomously
without the need for human intervention.

I. INTRODUCTION

Segmentation and gesture recognition in human-driven
robot motion allow to identify and classify distinct
movements. In applications such as robot-assisted mini-
mally invasive surgery (RMIS), it has been widely used
in areas like automated surgical competence and skill
assessment [1] [2] and adaptive surgical training [3] to
quantify the surgical process without the need for expert
monitoring. This paper develops and evaluates a method
for an efficient and fast segmentation and recognition of
meaningful gestures generated by human driven robots.

To do so, we extend the bottom-up approach to sur-
gical gesture segmentation and recognition described in
[4]. A gesture is defined as an atomic unit of intentional
task activity resulting in a perceivable and meaningful
outcome (e.g., grabbing an object). Every gesture is
made up of a set of primitives called sub-gestures, which
are numerical representations of the component sub-
gestures needed to carry out a gesture. Sub-gestures,
such as ”go towards” or ”turn left,” are single-handed
motions without any semantic background.

In this paper, we propose a novel approach that
includes natural language processing (NLP) methods. We

pair sub-gesture clusters with lowercase letters consid-
ering the gesture as a word, where each word -gesture-
is then composed of a series of concatenated charac-
ters -sub-gestures-. Therefore, we use word similarity
measures from NLP to identify similar gestures by the
words their segments form. This NLP-inspired model
facilitates interpretation and analysis by using methods
such as those employed in word processing for better
identification and classification of gestures.

The remaining sections are structured as follows.
In Section II, we first decompose robotic trajectories
into sub-gestures through an unsupervised segmentation
method based on the search for abrupt changes. Given
the segmented sub-gestures, we parameterize and cluster
them by labelling them as characters and describing
gestures as words by the concatenation of the characters
in Sections III-A and III-B. In Section III-C, we use word
similarity measures from NLP to classify gestures into
reference gestures previously defined on a dictionary.
Later, the datasets and evaluation methods used are
detailed in Section IV. Finally, the results are shown in
Section V and the conclusions drawn from this work are
presented in Section VI.

II. UNSUPERVISED SUB-GESTURE SEGMENTATION

We propose a segmentation approach consisting of
four distinct steps. The first step uses the input kine-
matic data to generate additional 3D-invariant kinematic
signals and select the relevant metrics to define the prin-
cipal and dissimilarity signals matrices. It finds relevant
timestamps for temporal sub-gesture decomposition in
these signals in the next step. After that, in the third
step, temporal and spatial dissimilarities are used to
assess the importance of timestamps. In order to produce
the most relevant sub-gesture segmentation, the fourth
step ultimately chooses the most appropriate timestamps
according to the dissimilarity ranking and a minimum
segment filter.



A. Data Preprocessing

The input data consists of a temporal series of end-
effector trajectories, with positions in the 2-dimensional
or 3-dimensional Cartesian space.

In order to reduce measurement noise and record only
voluntary motions, a band-stop filter with low and high
frequencies set as 3Hz and 9Hz respectively is applied
[5].

1) Definition of Principal Signals Matrix and Dissimi-
larity Signals Matrix: We propose a new approach where
we define two signatures SP , SD. Then, selecting the
best metrics for each process simplifies and improves
the method.

First, we define the principal signature SP , which
represents the trajectory at each point with a particular
metric and will be used to propose the initial points of
separation of the subgestures by their analysis. For its
definition, the optimal signals are selected. In the most
general case, it could be defined by the metrics formed
by each point along the trajectory of the following
kinematic variables of the tooltip: positionr(t) = {X(t),
Y (t), Z(t)}, orientation q(t) = {Qw(t), Qx(t), Qy(t),
Qz(t)}, position curvature κ(t), orientation curvature
Ω(t) and their first order derivatives wrt. time κ̇(t) and
Ω̇(t).

SP = {r(t),q(t), κ(t),Ω(t), κ̇(t), Ω̇(t)}

However, in our study we only consider the position
curvature first derivative wrt. time κ̇(t) to separate the
sub-gestures of a trajectory, which is computationally
more efficient and we have empirically found that it is
the most informative term. We use the absolute values
of SP to allow for a better analysis while avoiding
duplicates in cutting trajectories into sub-gestures. The
latter because when there is a peak on curvature, the
curvature derivative has two peaks (the positive and the
negative) but it is desirable to represent only one abrupt
change. Then, the principal signature SP is defined as
follows:

SP = |κ̇(t)|, (1)

where κ(t) defines the curvature on each point of the
trajectory. κ(t) and its first derivative wrt. time κ̇(t)(t)
can be obtained [6] by:

κ(t) =
∥ṙ(t)× r̈(t)∥

∥ṙ(t)∥3
(2)

κ̇(t) =
dκ(t)

dt
(3)

where r(t) = (x(t), y(t), z(t)) is a 3D trajectory
parameterized by t, and ṙ(t) and r̈(t) are the first and
second derivatives of r(t) with respect to t.

Later, the best segmentation candidates will be se-
lected according to the dissimilarity ranking that will be
defined in II-C. These dissimilarities will be computed
using a new signature called dissimilarity signature SD,
which also represents the trajectory at each point with
new particular metrics. While [4] uses the same signa-
ture vector including position/orientation and curvature,
torsion and their derivatives, this study focuses on con-
sidering only the Cartesian positions of the tooltip for
the dissimilarity signature SD for capturing the notion
of dissimilarity in a more data-efficient manner, i.e.:

SD = {X(t), Y (t), Z(t)}

Therefore, both signatures of interest SP and SD are
computed and stored as matrices.

B. Initial Candidates Selection
Each sub-gesture is defined by a first and final point

that delimits it. The goal now is to detect when the
operator performs a change of sub-gesture. We tackle
this problem by identifying this change finding abrupt
turns on the trajectory. These turns can be captured by
studying the curvature of the trajectories. However, the
interest does not fall in whether the curvatures present
either high or low values, but rather on those points of the
trajectory where there is a strong change of the curvature.

Then, the timestamps in which the operator makes an
abrupt change of direction either by changing to a higher
or lower curvature are identified. Other studies use the
notion of persistence to detect these change points [7]
[8] [9]. This method can be related in some way to the
notion of persistence homology, since also segments the
trajectory according to the change of the signal on time.

Here, we follow a similar methodology as that in [10].
The original algorithm segments the trajectory around
which it curls detecting the points where the curvature
is large compared to most of the trajectory. In our
approach, we use the same segmentation algorithm but
now using the first derivative of the curvature instead of
the curvature.

Also, two additional considerations are imposed: a
clipping value and a minimum filtration value. It de-
termines the maximum magnitude allowed for signals
included on SP from (1). Setting an appropriate clipping
value prevents extreme values from distorting the selec-
tion of the threshold on the presented algorithm. Here,
an appropriate clipping value for the derivative of the
curvature was empirically set to 300, as larger values
are considered outliers. At the same time, a minimum
filtration value of 30 is applied to avoid over-selection
when curvatures are low.

C. Dissimilarity Ranking
Now, we evaluate the dissimilarity of the extracted

candidate points by using the dissimilarity signature SD



to determine their significance as potential solutions for
delineating a sub-gesture. Other studies compare the
use of Hausdorff, Fréchet and Dynamic Time Warping
distances for similar purposes [4]. In our study, we
use Dynamic Time Warping (DTW) as it is proven
to be the most effective. It is used to quantify the
shape and temporal fluctuations of consecutive segments.
Our analysis quantifies this dissimilarity between the
segments divided by the proposed cutting points using
the dissimilarity signature SD.

Dynamic Time Warping (DTW) is a technique for
aligning and comparing temporal sequences while ac-
counting for differences in speed and timing. It can be
formulated as an optimization problem to find the best
alignment between two sequences A and B:

DTW (P,Q) = min
path

∑
(i,j)∈path

d(pi, qj), (4)

where d(pi, qj) represents the local distance between
elements pi and qj of sequences P and Q, respectively.
The minimum is taken over possible alignments (paths).

D. Minimum Segment Filter

Now, the best candidate segmentation timestamps are
selected according to the dissimilarity ranking. In our
study, we only apply a filter that discards segments with
a length below a predefined threshold. In such cases, we
keep as a candidate the edge of such segments that has
the highest dissimilarity distance. This process discards
those candidates trying to detect the same change of sub-
gesture. Although a pairwise Non-Maximum Suppres-
sion (NMS) procedure could be also used to filter the
best candidates like in [4], we found that to be inefficient
as it eliminated too many candidate points.

III. LEARNING AND RECOGNITION

In this section, we introduce our NLP modelling
approach. Every segmented sub-gesture is converted into
a vector of parameters, that are then clustered into
groups representing the types of sub-gestures. Finally,
we recognize our gesture classifying them into reference
gestures previously defined on a dictionary using word
similarity measures from NLP.

A. NLP modelling

In order to recognise the gestures, we gather the
segmented parts (sub-gestures) within the trajectories in
the dataset and generate clusters of sub-gestures. These
clusters will form an alphabet in which each letter is
a gesture part, and a concatenation of these letters can
form words - gestures -. We can then identify gestures by
matching their letter sequences to those on a dictionary,
with methodologies used in NLP. In particular, we used
the Levenshtein distance.

B. Sub-gesture Learning

1) Feature transformation: After segmenting a trajec-
tory - gesture - into a sequence of sub-gestures, every
sub-gesture is encoded as a parameter vector. The first
metric to study is the orientation of the trajectory wrt.
our reference basis, the canonical Cartesian coordinate
system. Also, by using principal component analysis
(PCA) with the trajectory points, we can determine
the local frame of the trajectory and align it with the
canonical frame. The eigenvectors of such PCA decom-
position V =[v1,v2,v3] represent the principal direction
of the covariance ellipsoid of the trajectory points [11].
In this variation of the PCA, our first vector w1 of the
basis is imposed to be the vector that goes from the
initial to the final point of the trajectory instead of its
first principal component vector. This change is done
in order to encapsulate the direction of the trajectory.
Then, we build a base W by setting w2 as the vector
orthonormal to w1 and within the plane formed by v1, v2.
Last, w3 = w1 × w2. From here, the rotation matrix R
that transforms W to our reference basis is computed.
Defining the reference basis O as the identity matrix,

R = OW−1 =W−1 (5)

Then, the ZYX Euler angles ϕ, θ, ψ are obtained from
the rotation matrix R, which will be the first parameters
of our characterizing vector and express the orientation
of the trajectory wrt. the canonical base. For the analysis
that follows, we rotate trajectory to our reference basis,
decontextualizing orientation from now on and creating
a standardized framework for analyzing and interpreting
trajectory new parameters across various datasets and
contexts.

Next, Lx is the greatest value along the x-axis and
represents the horizontal length on our new first axis of
the trajectory (the length of the trajectory along direction
w1). Once captured, the Lx is again decontextualized
from trajectory by normalizing it to a length of 1 to
compare trajectories of different sizes.
Ly then represents the largest value along the y-

axis and provides information about the height of the
trajectory, along direction w2. From here on, trajectories
will not be decontextualized, as the following parameters
are no longer affected by the previous ones.

The x-value (in w1 direction) at which the largest peak
Ly is located is then represented as Mxy . It quantifies the
location of the curve peak and indicates the asymmetry
of the motion wrt. its center.

Then, the area created by the trajectory in the xy
plane is denoted by Axy . This parameter uses the area
covered by the projection of the trajectory on the xy
plane to determine the absolute width of the curve. this
is intended to capture the absolute but not relative width.



Finally, the area created by the trajectory in the xz
plane denoted by Axz is also included to quantify the
lateral motion. This metric will be the only one related
to the z-axis because we want this axis to have an
existing but small impact on the characterization of the
sub-gestures. As we have already performed a kind of
PCA, our z-axis represents the w3 direction with the
smallest variance, and therefore, the least significant
when distinguishing our samples.

Therefore, the complete sub-gesture approximation
vector is d = {ϕ, θ, ψ, Lx, Ly,Mxy, Axy, Axz}, while
for a 2D case, d is reduced from eight to five dimensions
d = {ψ,Lx, Ly,Mxy, Axy}.

2) GMMs clustering: After converting each subges-
ture l of each trajectory m, gml , into a vector of param-
eters dm

l , we now propose to collect all these vectors of
parameters and cluster them into what will become the
letters of our alphabet. To do so, we applied Gaussian
Mixture Models (GMMs) [12]. GMM fits a multi-modal
Gaussian distribution on the parameters d by fitting the
mixing weights πk, and the mean and covariance of each
mode k = 1..K of the distribution, {µk,Σk}, which will
be the K letters in our alphabet of sub-gestures:

p(d) =

K∑
k=1

πkN (d|µk,Σk)

We introduce the data of all our parameterized sub-
gestures and define the number of clusters empirically
depending on the complexity of the dataset. As a result,
similar sub-gestures are grouped into clusters. Still,
miss-classification errors may occur. In this study, two
similarity approaches are studied to assess the miss-
classification: the cluster-to-cluster and the point-to-
cluster similarity approaches.

3) Cluster-to-cluster similarity: We created a simi-
larity matrix to define how similar these clusters are
and thus how likely it is that a sub-gesture has been
misclassified into one cluster rather than another.

Firstly, the Kullback-Leibler (KL) divergence, DKL

[13] is used to measure how far are the clusters between
them. The KL divergence is a dissimilarity measure that
quantifies how good a probability distribution approxi-
mates another one. In this work, it is used to assess the
how far are two clusters between them.

The next step is the transformation of the divergence
to an inverse magnitude such as the similarity to try to
capture how probable it is for a point priory classified
on one cluster to belong to another specific cluster truly.
Firstly, we construct a matrix D with each entry Dki,kj

representing the KL non-symmetric divergence between
every pair of clusters (ki) and (kj).

Dki,kj
= DKL(ki∥kj) (6)

To ensure that the divergences are within an acceptable
range, we normalize the matrix D and use a similarity
matrix Ŝ, obtained by the negative exponential of D as
Ŝki,kj

= e−Dki,kj
/λ, where λ is a normalization factor.

We then regularize Ŝ by the sums of the values of each
similarity row. This is because the sum of the odds that
a sample is part of a cluster should sum to one, in a
similar way as if they were real probabilities:

Ski,kj
=

Ŝki,kj∑N
j=1 Ŝki,kj

.

With this expression, closer clusters obtain higher
similarity scores. We set the γ parameter so that the av-
erage probability that a point found in a cluster actually
belongs to it is equal to a preset threshold.

γ =
1

N

N∑
i=1

Ski,ki

The preset thresholds can be modified depending on
whether the classification is expected to be very reliable
or not. The higher the expected reliability, the higher the
lambda term should be. The preset threshold by default
is defined empirically as γ = 0.7.

4) Point-to-cluster similarity: As an alternative
cluster-to-cluster similarity, we study the use of point-to-
point similarity by evaluating the probability of individ-
ual data entries belonging to every cluster. The cluster-to-
point correspondence provided by the clustering process
allows to define a probabilistic association between every
point and every cluster. While the previous cluster-to-
cluster measure needs to be normalized to interpret the
divergences as probability, the point-to-cluster probabil-
ities are a direct outcome of the GMM clustering and
are inherent as true conditional probabilities and thus do
not need to be rescaled. The probability of a point d
belonging to cluster k in the GMM framework is:

p(k|d) = πkN (d|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

,

where p(k|d) is the posterior probability that point d
belongs to cluster k. Analogous to the previous cluster-
to-cluster, the similarity matrix is created for collecting
all cross probabilities, denoted Sx,k = p(k|d).

On the comparison of the two presented methods, a
point-to-cluster approach gives probabilities as an output
rather than ambiguous divergences, hence enabling users
to interpret outcomes better, reducing the need for further
normalizing. However, in the individual evaluation the
accuracy strongly depends on how well the real data
fits the GMMs model. Nevertheless, the cluster-to-cluster
approach has a reduced computational load.



C. Gesture Recognition

As in other works, [14] [15] [16], we use a dictionary-
based approach that uses a pre-defined set of gestures
where the letter sequences of these reference dictionary
words are learned through a training set.

1) Gesture Vocabulary and Dictionary Definition:
A key feature of the process is the definition of a
dictionary, a collection of the possible tasks to do to
classify gestures into several types. In our study, four
gestures/tasks, which be explained later on IV-A, have
been contemplated: S-shaped, U-shaped, Place-and-place
and Eating soup trajectories.

The next step is to learn which concatenation of
sub-gestures represents each of the presented gestures.
Firstly, we annotate what gestures are each trajectory
from the training sets. Then, the reference gesture dic-
tionary is constructed by concatenating the predominant
sub-gesture clusters from a training set. In other words,
the most frequent concatenation of letters is assigned as
the dictionary word for each gesture. Hence, we obtain
a reference dictionary of gestures where each type of
gesture is defined by a word.

2) Gesture Classification: For the recognition step,
the objective is to recognize new gestures/trajectories
by classifying them in the correct gesture of the dictio-
nary. Firstly, an estimation of the concatenation of sub-
gestures is done by the segmentation, the sub-gesture
learning and classification. Secondly, these estimated
gestures already coded as a word are compared to all
the words of the dictionary. The gesture is classified as
the most similar word, keeping the predicted gesture and
the similarity measurement associated as output.

For the comparison of gestures or words, the Lev-
enshtein distance is used. It measures the minimum
number of single-character edits (insertions, deletions, or
substitutions) required to change one string into another.
The Levenshtein distance between strings G and H of
lengths |G| and |H| respectively is the following.

levG,H(i, j) =


max(i, j) if min(i, j) = 0,

min


levG,H(i− 1, j) + 1,

levG,H(i, j − 1) + 1,

levG,H(i− 1, j − 1) + 1(Gi ̸=Hj)

otherwise.
,

(7)
where 1(Gi ̸=Hj) is the indicator function which equals 0
when Gi = Hj , and 1 otherwise.

In our study, we introduce an algorithm that allows
the user to specify different weights for substitution.
On the cluster-to-cluster similarity approach, it depends
on the involved clusters. For instance, substituting ’a’
for ’b’ should be less expensive than substituting ’a’
for ’c’. The previous matrix with cross similarities S
derived from Kullback-Leibler divergence determines
these costs. The substitution cost from letter a to letter

b becomes (1− Sa,b). On the point-to-cluster approach,
the cost of substitution of that particular letter a being
the sub-gesture d to letter b is equal to (1− Sd,b). For
this purpose, let us denote GL as variable that collects
the labels of the sub-gestures involved on the string G.
Algorithm 1 summarizes the process described.

Algorithm 1 Levenshtein Distance Calculation

1: Input: G,GL,H, S
2: Output: dp[i][j]
3: m = len(G)
4: n = len(H)

Initialize the dynamic programming matrix dp of size
(m+ 1)× (n+ 1) with all elements as 0

5: for i = 0 to m do
6: dp[i][0] = i
7: end for
8: for j = 0 to n do
9: dp[0][j] = j

10: end for
11: for i = 1 to m do
12: for j = 1 to n do

Compute costs of insertion, deletion and substitution
considering general weights and similarities for sub-
stitutions

13: costins = dp[i][j − 1]
14: costdel = dp[i− 1][j]
15: if Cluster-to-cluster similarity then
16: costsubs = dp[i − 1][j − 1] + (1 −

SG[i−1],H[j−1])
17: else if Point-to-cluster similarity then
18: costsubs = dp[i − 1][j − 1] + (1 −

SGL[i−1],H[j−1])
19: end if

Select the minimum cost among insertion, deletion,
and substitution and store it in the matrix

20: dp[i][j] = min(costins, costdel, costsubs)
21: end for
22: end for

Return the edit distance between the strings
23: return dp[m][n]

IV. DATASETS AND EVALUATION

A. Datasets

1) Letters Dataset: This dataset consists on trajecto-
ries characters from A to Z in a 2D space handwritten
by an end-effector. In each trajectory only one letter is
drawn. There are ten attempts for each letter made by
the same person. Kinematic data - Cartesian positions
on 2D space - are captured at a frequency of 100 Hz.

2) 3D Trajectories Dataset: This dataset consists of
a collection of trajectories performing different tasks
recording end-effectors without opening or closing the



grippers. Their kinematic data - Cartesian positions on
3D space - are captured at frequency of 20 Hz.

S-shaped trajectory. This dataset contains trajectories
that follow an S-shaped pattern. In this dataset, there are
four attempts executed by the same person.

U-shaped trajectory. This dataset comprises trajecto-
ries that form a U-shaped pattern. In this sample, there
are seven attempts executed by the same person.

Place-and-place trajectory. This dataset includes tra-
jectories that simulate a task of placing an object from
one location and to another, and then into another. Here,
there are seven attempts executed by the same person.

Eating Soup trajectory. Formed by trajectories
recorded while feeding a person soup with a spoon.
There are twenty attempts executed by the same person.

B. Evaluation

We evaluate our method by comparing the desired
results (ground truth annotations) with those obtained
through standard classification metrics such as accuracy,
precision, recall and F1-score. We denote True/False
(T/N) Positives/Negatives (P/N), and accuracy is then
defined as the number of instances that have been
predicted correctly (Nc) compared to all frames (N ).

Accuracy =
Nc

N
(8)

In addition, precision ( TP
TP+FP ), recall ( TP

TP+FN , ob-
servations from a single class correctly identified), and
F1-score ( F1 = 2× precision×recall

precision+recall ) are also used.
We evaluated segmentation, sub-gesture learning, and

gesture classification separately. For segmentation com-
parison, timestamps of the desired segmentation are first
annotated. To evaluate the sub-gesture learning stage,
the expected clusters with which the sub-gestures should
be classified are compared using a leave-one-out cross-
validation process (LOOCV). For this purpose, each ob-
servation is considered as the validation set and the rest
of the observations as the training sets. From these train-
ing sets, the reference gesture dictionary is constructed
by concatenating the predominant sub-gesture clusters.
If the sub-gesture cluster to be validated differs from the
one collected in the reference dictionary, it is counted as
an error. To evaluate gesture classification, the expected
gesture is also noted. Then, the final classification of
the gesture is compared again for correctness through a
leave-one-out cross-validation process.

V. RESULTS

A. Segmentation Results

The results of the accuracy, precision, recall and F1-
scores for segmentation are shown in Table I, plus a
collection of pictures of the segmentation process in
the letters dataset in Fig. 1. Also, each case of 3D
Trajectories dataset are shown in Fig.2

Dataset Precision [%] Recall [%] F1 [%]
2D Letters 99.24 100.00 99.62

3D Trajectories 81.35 97.96 88.89
Total Average 90.30 98.98 94.25

TABLE I: Segmentation Performance Results

The results indicate a good performance of the evalu-
ated datasets. With an average precision of 90.30%, the
model is correct in a high percentage of the proposed
points. However, there is big difference between 2D and
3D datasets. While in 2D the algorithm is almost perfect
with a 99.24% precision, these results indicate that there
is excessive segmentation in the case of 3D dataset low-
ering the precision to 81.36%. The high average recall of
98.98% suggests that it effectively captures almost all of
the desired segmentation points in both cases. The total
average F1-score of 94.25% reflects a very strong result
for the algorithm proposed, especially on 2D dataset
but also good on the 3D. This suggests that the model
demonstrates a satisfactory ability to correctly segment
trajectories in various datasets. A future development
would be to address the problem of over-segmentation
in order to achieve an improvement in 3D precision.

(a) Letter A (b) Letter R

Fig. 1: Example of representative 2D segmentation pro-
cess for letters dataset.

B. Sub-gesture Learning

The number of clusters has been defined empirically
depending on the complexity and number of sub-gestures
of each dataset. 10 clusters have been considered for the
2D dataset, and 14 for the 3D Trajectories dataset.

The accuracy table is shown in Fig. 3a. Also, an exam-
ple of dictionaries for each dataset are shown in Tables
3b and 3c. These dictionary tables provide examples of
the words associated with the various tasks, based on the
concatenation of sub-gestures clustered into letters. In
the first columns of the tables, the desired segmentation
change-points are given as input but not the estimated
ones, as we want to evaluate the sub-gesture learning
stage without the possible errors on the previous stage.
In the second columns, the given segmentation points



(a) S-shape Task (b) U-shape Task

(c) Place-and-place Task (d) Eating Soup Task

Fig. 2: Example of representative 3D segmentation pro-
cess for 3D Trajectories dataset.

are the ones obtained by the algorithm. Hence, accuracy
can be influenced not only on the performance of this
section but on the previous segmentation accuracy.

Dataset Accuracy [%] Accuracy [%]
(Exp. Segm.) (Alg. Segm.)

2D Letters 97.75 97.75
3D Trajectories 68.23 76.34
Total Average 82.99 87.05

(a) Accuracy Metrics
Task Dict. Word Dict. Word

(Exp. Segm.) (Alg. Segm.)
A hbcc hbcc
E jb jb
K abbcc abbcc
M abcb abcb
R abc abc

(b) Letters Dataset dictionary
considering first sample as val-
idation set and remaining sam-
ples as training set

Task Dict. Word Dict. Word
(Exp. Segm.) (Alg. Segm.)

S-shape mbl edl
U-shape dfj fbe
Place-

and-place
gb gac

Eating
soup

ec fb

(c) 3D Trajectories dictionary
considering first sample as val-
idation set and remaining sam-
ples as training set

Fig. 3: LOOCV sub-gesture learning performance results
and example dictionaries

Accuracy metrics indicate a difference in performance
between the 2D Letters and 3D Trajectories datasets.
Regarding 2D Letters dataset, the high accuracy reflects
a good model performance in identifying and classify-
ing letter sub-gestures. In both expected and obtained

segmentation cases, the accuracy is above 97%. Their
similarity could be explained by the high precision on
the segmentation process. In contrast, the performance
has been lowered on 3D Trajectories dataset. The method
has an accuracy of 68.24% when the theoretical perfect
segmentation process is considered, and an accuracy
of 76.34% when considering the segmentation points
obtained by the algorithm. Essentially, it has been shown
that the identification and classification of sub-gestures
have been more difficult in this 3D trajectory dataset
either with expected or algorithm obtained segmentation.
Moreover, we can say that the inaccuracy of the learning
is not caused by previous segmentation errors, since
the results with the segmentation obtained by the algo-
rithm are better than those obtained with the expected
segmentation. To sum up, the overall average accuracy
of 83% and 87.05% provides an overall acceptable
perspective on both situations. However, there is room
for improvement in the handling of 3D Trajectories.

C. Gesture Classification

We now look at the results of the comparison be-
tween the expected gestures with those obtained by the
algorithm. As second columns again take segmentation
obtained by the algorithm as input, these last columns
are our final result and represent the accuracy of our
whole method to classify a given gesture. However, this
stage is strongly influenced by the prior learning of the
sub-gesture. In fact, the classification accuracy would
be perfect if all its sub-gestures were well classified.
Therefore, what this section really evaluates is the ability
of the algorithm to classify the total gesture well despite
possible sub-gesture classification errors. In other words,
the ability to correct classification errors of sub-gestures
in the previous stage through classification of the entire
gesture to its most probable case in the dictionary based
on edit distance and the presented cluster-to-cluster and
point-to-cluster similarities.

Dataset Accuracy Accuracy
(Exp. Segm.) (Alg. Segm.)

C-C Sim. P-C Sim. C-C Sim. P-C Sim.
2D

Letters
96.00 96.00 96.00 96.00

3D
Trajectories

68.42 73.68 73.68 81.58

Total
Average

82.21 84.84 84.84 88.79

TABLE II: LOOCV gesture classification performance.

The results indicate a good performance of the ges-
ture classification stage with an average accuracy that
reaches 84% and 88% in the expected segmentation and
algorithm situations respectively.

As we can see from these and previous tables, final
accuracy is strongly affected by misclassification in sub-



gesture learning. Nevertheless, the effectiveness of point-
to-cluster similarity is shown to be valid. Unlike point-
to-cluster similarity approach, point-to-cluster similarity
has been able to correct some previous errors and in-
crease the accuracy on 3D Trajectories. However, the
effect on the 2D Letters Dataset is difficult to analyze
since the initial accuracy was already very high, leaving
few errors to correct.

Focusing on the results of the entire algorithm pre-
sented on two last columns of Tab. II, the accuracies
are 96% and 81.59% for Letters and 3D Trajectories
datasets respectively. Considering on the state-of-the-art
results [17], the overall average accuracy of 88.79% can
be considered as a satisfactory performance on gesture
segmentation and recognition of trajectories. As seen on
all the previous evaluation stages, the differences among
datasets are significant. We show high performance on
2D charts, but an improvable result in 3D trajectories,
which could be an area for future development.

From the whole analysis, we can see that a high
accuracy is kept in the segmentation stage with an F1-
score of 94.26%. Afterward, the first notable gap in
the accuracy is generated reducing it to 87.05% due
to the inaccuracy in gesture learning especially in 3D
cases. Finally, accuracy is improved in the ultimate
classification of gestures reaching a 88.79% thanks to
NLP Levenshtein distance and point-to-cluster similarity.

As for the differences between the datasets, one possi-
ble cause of the drop on 3D sample could be the increase
of variables in the characterization of the 3D trajectories.

VI. CONCLUSIONS

Gesture recognition is a useful tool for a wide variety
of applications. In this paper we present a novel method
for automatically segmenting and recognizing gestures
generated by human-driven robots. Our method consists
of two main steps: first, we decompose trajectories into
sub-gestures, and second, we recognize and concatenate
these sub-gestures to form complete gestures and classify
them as several specific gestures. We evaluated our
algorithm using two different datasets. After comparing
our approach with the manual annotations of the surgical
gestures using a LOOCV process, we observe an average
F1-score of 94.25% on the segmentation, an accuracy of
87.05% on the learning task and an average accuracy of
88.79% for the fully automated gesture recognition. As
shown, this method can satisfactorily segment and inter-
pret new surgical gestures without human intervention.
Future extensions can include the recognition of gestures
within longer trajectories, to be able to compare it with
other methods in literature such as [17].
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