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ABSTRACT

Accurate segmentation of wind turbine blade (WTB) images
is critical for effective assessments, as it directly influences
the performance of automated damage detection systems.
Despite advancements in large universal vision models, these
models often underperform in domain-specific tasks like
WTB segmentation. To address this, we extend Intrinsic
LoRA for image segmentation, and propose a novel dual-
space augmentation strategy that integrates both image-level
and latent-space augmentations. The image-space augmenta-
tion is achieved through linear interpolation between image
pairs, while the latent-space augmentation is accomplished by
introducing a noise-based latent probabilistic model. Our ap-
proach significantly boosts segmentation accuracy, surpassing
current state-of-the-art methods in WTB image segmentation.

Index Terms— Latent-space Augmentation, Diffusion
Models, LoRA, Image Segmentation, Wind Turbine Blade.

1. INTRODUCTION

Operational damages to wind turbine blades (WTBs) can
greatly impact their efficiency [1] and may even lead to com-
plete failure [2]. Regular visual inspections and preventive
maintenance are crucial to ensure timely repairs. These in-
spections are typically conducted using drones that capture
high-resolution images, allowing for detailed analysis to
guide maintenance decisions [3]]. As the wind energy sector
rapidly expands, the need for automated WTB assessment
solutions is increasing, with image segmentation emerging as
a key image processing task in this process [4].

Deep learning methods, particularly convolutional neural
networks (CNNs), have driven significant advances in image
segmentation research. Encoder-decoder architectures [5, (6]
have become foundational frameworks by effectively captur-
ing and reconstructing spatial relationships. Some notable
models like DeepLabv3+ [7] and ResNeSt [8] achieve re-
markable success by utilizing atrous convolutions and multi-
scale feature extraction techniques. The integration of atten-
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Fig. 1. General schema of Segmentation-based Intrinsic
LoRA (SI-LoRA) with dual-space augmentation.

tion mechanisms with CNNs, such as U-NetFormer [9], have
further enhanced segmentation capabilities by improving
global context understanding [10} [11]]. In the realm of WTB
segmentation, these advancements have inspired tailored
models like BU-Net [4]], which incorporates a post-processing
hole-filling algorithm to refine segmentation results.

There has been growing interest in universal image seg-
mentation models trained in a zero-shot manner using vast
amounts of data, particularly large vision models like SAM
[12]] and DINO [13]. These models employ self-supervised
vision transformers that learn meaningful representations
from data through self-attention mechanisms. However, in
practical applications, these universal segmentation methods
often underperform compared to state-of-the-art models and
cannot be trained directly due to the lack of comprehensive
datasets. Intrinsic LoRA [14] presents a promising approach
by fine-tuning generative models trained on large datasets,
enabling supervised learning with minimal labeled data.

In this work, we extend Intrinsic LoORA for image seg-
mentation and demonstrate its effectiveness in a real-world
application. Specifically, we adapt pretrained Stable Diffu-
sion models [15] for WTB segmentation by modifying the
segmentation masks to meet the dimensional requirements of
the pretrained model. These initial results, however, produce
suboptimal performance. To address this, we explore sev-
eral augmentation techniques. Initially, we apply traditional
data augmentation methods to the input images [16} 17} [18]],
which prove particularly effective. Then, inspired by prior re-
search that stabilizes the training of generative models in the
latent space [19, 20} 21]], we introduce a Bayesian adaptation
of Intrinsic LoRA for image segmentation, modeling the la-
tent vectors in a probabilistic augmented framework. By inte-
grating both image-level and latent-space augmentations (see
Fig. [T), our dual-space augmentation approach substantially
improves segmentation performance, surpassing state-of-the-
art methods in WTB segmentation by a large margin.



2. METHODOLOGY

This section outlines our adaptation of the Intrinsic LoRA [[14]]
method for image segmentation. We begin by reviewing the
core principles of Intrinsic LoORA and its application in ex-
tracting image intrinsics. Next, we proceed by illustrating
how we tailored this approach to create segmentation maps.
Finally, we propose a novel dual-space augmentation method
that operates in both image and latent spaces.

2.1. Intrinsic LoRA

Intrinsic-LoRA [14]] harnesses the implicit understanding
of image intrinsics within generative models to produce
high-quality supervised outputs. By introducing learnable
LoRA [22] adaptors 8, an image-to-image generative diffu-
sion model can be fine-tuned with minimal labeled samples
to generate the desired outputs y € R7Z*Wx3,

Given a pretrained Stable Diffusion model [15]], the in-
put image x € R¥*Wx3 is encoded by the encoder E to a

lower-dimensional latent space zch) = FE(x). The obtained

latent vector zch) is fed to the denoising U-Net [23] model Ug
along with a text prompt ¢. This prompt is the image intrin-
sic to be extracted like ”depth”, "normal” and so forth, and is

encoded by a pretrained CLIP [24]] tokenizer 7', obtaining the

transformed output latent vector 2V = Ug(zch)7 T(t)).

Intrinsic-LoRA adapts the diffusion model to a supervised
task by optimizing the LoRA adaptors on top of the self- and
cross-attention layers [25] of a single step dense predictor U-
Net model. The adaptors 8 are optimized to minimize the
differences between the transformed latent vector in) and
the encoded ground-truth zg,E) = E(y):

: U E
mBmIEx[d(z,(( ),zg, ))} , (1)

where d is a specific-task dissimilarity metric. Finally, the
decoder D transforms back zch) to the image space, obtaining
the predicted intrinsic map y = D(in)). Both the encoder

E and decoder D are frozen during training.

2.2. Segmentation-based Intrinsic LoRA (SI-LoRA)

Intrinsic LoRA is built upon image-to-image generative mod-
els, thus, it handles 3-channel inputs and outputs. However, in
our image segmentation problem, we need to distinguish be-
tween background and foreground, requiring a single-channel
output. Hence, we define y as the concatenation along the
third dimension of the ground-truth segmentation mask m €
RH*W  Similarly, the model’s decoded output § remains a 3-
channel image, which we convert back into a single-channel

mask m by averaging across the three channels ¥ ., obtaining
3
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where 13 is a 3-dimensional vector of ones, and ® denotes
the outer product. Additionally, two adjustments were made
to ensure effective segmentation: the dissimilarity metric d
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Fig. 2. Segmentation-based Intrinsic LoRA (SI-LoRA) ar-
chitecture with dual-space augmentation (DSA).

between latent vectors is measured using Mean Squared Error
(MSE), and the text prompt ¢ is set to ’segmentation map.”

2.3. Dual-space Augmentation (DSA SI-LoRA)

After successfully adapting the Intrinsic-LoRA method for
our segmentation task, we shift our focus to enhance its per-
formance. Data augmentation techniques in the image space
have been widely explored and implemented to improve
learning-based models [[17, [18]. One particularly notable
method is MixUp [16], which generates synthetic images
through the linear interpolation of multiple samples. Specif-
ically, given two images and their corresponding labels from
the training set, (x1, m;) and (x2, ms), MixUp produces a
new augmented sample (x’, m’) as follows:

xX' =X+ (1-XN)x2, m'=Xm;+(1-XNmz, (3)

where A € [0, 1] is a mixing coefficient sampled from a Beta
distribution with parameters «, 5 = 0.4, which governs the
interpolation between the two images and their labels.

While these techniques have proven effective, our contri-
bution lies in extending augmentation to the latent space. Tra-
ditional diffusion models operated in the image space, how-
ever, Stable Diffusion demonstrated the effectiveness of shift-
ing the diffusion process to the latent space [15]. Drawing

inspiration from this and VAEs [26], we augment the training
(E)

by parametrizing the latent vector z,,” as a Bayesian input for

the U-Net Uy. In particular, the augmented z’ Sf) is modeled
as an isotropic Gaussian with an identity covariance matrix:

7% ~ N(E(X),14) . o
This probabilistic approach enhances the U-Net’s robust-
ness by accommodating a wide range of latent inputs, instead
of relying solely on deterministic encodings. To manage the
stochastic nature of the sampling during backpropagation, we
reparameterize the sampling process to a fixed base distribu-
tion. Consequently, the augmented latent input z’ Ef) is com-
puted by introducing a noise variable €, drawn from a stan-
dard multivariate Gaussian distribution:

7P —Bx)+e e~N(0Id). (5)

An overview of Segmentation-based Intrinsic LoRA (SI-
LoRA) with dual-space augmentation is illustrated in Fig. 2]



3. EXPERIMENTAL RESULTS

In the following section, we first present the implementation
details used to successfully train our model, along with the
dataset employed. Next, we provide an in-depth evaluation of
the performance of SI-LoRA, including each data augmenta-
tion strategy. This is followed by qualitative assessments that
highlight the effectiveness of our dual-space augmented SI-
LoRA. We then compare our model with various state-of-the-
art segmentation algorithms. Finally, we demonstrate its ro-
bustness by comparing its performance across different wind-
farms in the test set, showcasing exceptional results across
diverse environments.

3.1. Dataset and Implementation Details

The dataset utilized to train (1712 images) and evaluate (320
images) the proposed method is taken from [4]. The input
images and ground-truth segmentation masks are resized to
512 x 512. Decoupled regularization [27]] with a weight de-
cay of 102, an initial learning rate of 10~* and a batch size
of 2 is employed. The training is stopped after 30 epochs.
For LoRA adaptors, we choose the rank 8, consistent with
the original study [[14]. For generating binary masks, we use
Otsu’s method to threshold the model predictions. The exper-
iments were performed on an NVIDIA GeForce RTX 3090.

3.2. Ablation Study

Ablation studies were conducted to better understand the in-
dividual contribution of different augmentation techniques
in the image and latent space. We compare four different
model configurations: (1) SI-LoRA (Sec. without data
augmentation, (2) SI-LoRA with image-space augmentation
implemented in terms of MixUp [16], (3) SI-LoRA with
latent-space augmentation implemented in terms of noise-
based probabilistic model (Sec. [2.3), and (4) SI-LoRA with
both image- and latent-space augmentation. Distinct metrics
are evaluated to highlight the contributions of each data aug-
mentation strategy, including the overall performance metrics
of accuracy, recall, F1-score, and mean IoU (mloU).

Tab. [T] showcases that applying no augmentation tech-
niques (row 1) results in the lowest performance across all
metrics, serving as a baseline for comparison. Introducing
latent-space augmentation alone (row 2) shows a significant
improvement in all metrics, particularly a 22.03% increase in
F1-score and a 20.48% improvement in mloU. This suggests
that augmenting the latent space helps the model generalize
better by simulating diverse, realistic variations in feature
representations. When only image-space augmentation is
applied (row 3), the model further boosts performance, effec-
tively enriching the training data with more variability. Fi-
nally, combining both augmentation strategies (row 4) yields
the highest performance across all metrics, with an accuracy
of 99.15%, F1-score of 98.84%, and an mloU of 97.69%.
These results demonstrates the synergistic benefits of apply-
ing both image- and latent-space augmentation techniques in

Table 1. Dual-space augmentation ablation study.

MixUp Latent Accuracy Recall F1 mloU Relative  Relative
[16] Noise (%) (%) (%) (%) F1 (%) mloU (%)
No No 82.30 73.86 7648 76.15 100.00 100.00
No Yes 95.22 91.93 9333 91.76 122.03 120.48
Yes No 97.59 96.75 97.23 9524 127.13 125.05

99.15 98.60 98.84 97.69 129.24 128.28
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Fig. 3. Qualitative comparison of distinct data augmen-
tation strategies. From left to right: Input image, SI-
LoRA (Sec. 2.2), SI-LoRA with image-space augmenta-
tion (MixUp [16]), SI-LoRA with latent-space augmentation
(Sec. , and SI-LoRA using both augmentations.

the SI-LoRA framework. While each augmentation method
contributes independently to model performance, their com-
bined effect leads to the most significant improvements across
all evaluated metrics.

3.3. Qualitative Evaluation

To qualitatively illustrate the segmentation masks produced
by various augmentation strategies, Fig. [3| presents five exam-
ples where dual-space segmentation is essential for achieving
high-quality results. As discussed in Sec.[3.2] SI-LoRA strug-
gles to generate smooth maps, leading to poor segmentation
in many instances. While SI-LoRA can detect some edges
of the wind turbine structure (see the second and third exam-
ples in Fig. [3), it fails to identify all the turbine components,
focusing only on a single section.

When applying image- or latent-space augmentation, we
observe that SI-LoRA produces smoother maps, and the gen-
erated masks include the inner regions of the wind turbine
blade (WTB), rather than just outlining the structure’s edges.
However, even with this improvement, SI-LoRA still falls
short of fully capturing all parts of the wind turbine, as seen
in all five instances. By combining both augmentation strate-
gies, the model effectively resolves these challenging cases,



Table 2. Quantitative comparison with competing models.

Method Accuracy  Precision Recall F1 mloU  IoUpckg  10Ublade
(%) (%) (%) (%) (%) (%) (%)
SW [6 93.48 93.57 91.71 9137 8744 88.64 86.23
DeepLabv3+ [7 94.14 96.36 87.38 89.03 87.47 9031 84.62
ResNeSt [8 94.23 96.84 91.47 9277 89.63  90.40 88.86
SAM [12] 94.36 97.29 9122 92.60 91.66 92.31 91.01
DiffSeg |28 96.37 83.20 89.74 8573 86.40 91.67 81.13
U-NetFormer [9 96.20 97.31 9351 9442 9175 92.53 90.96
BU-Net [4 97.39 99.42 9335 9573 9380 94.70 92.90

SI—LoRA(Sec. 82.30 97.01  73.86 7648 76.15 7956 7274
DSA SI-LoRA (Sec.p3] 9915 9920  98.60 98.84 97.69 97.56  97.83

generating highly accurate segmentation masks. In particular,
it successfully captures all parts of the wind turbine, including
darker regions on a secondary plane, as evident in the first and
second examples. These results demonstrate the effectiveness
of our approach in handling complex segmentation scenarios.

3.4. Quantitative Evaluation

To evaluate our proposed method, we conducted a compar-
ative analysis as shown in Tab. 2] benchmarking SI-LoRA
against popular segmentation models. The evaluation was
performed on a test set of 200 turbine images from various
windfarms [4]. In its initial form, SI-LoRA underperformed
across all metrics, lagging behind all competing models. This
was primarily due to overfitting on the training masks, which
significantly hindered its ability to generalize to newly ac-
quired, unseen test images. This limitation prompted us to
explore augmentation techniques aimed at enhancing its per-
formance and generalization capabilities.

By introducing dual-space augmentation (DSA), combin-
ing MixUp [16]] for image-space variability with noise-based
probabilistic models for latent-space diversification, we de-
veloped DSA SI-LoRA. As shown in the table, DSA SI-LoRA
dramatically outperforms the original SI-LoRA, surpassing
state-of-the-art models by a large margin across all major met-
rics, except precision. These results highlight the effective-
ness of our augmentation strategies in enhancing generaliza-
tion and overall performance, overcoming overfitting and im-
proving segmentation models’ robustness in real-world appli-
cations. This demonstrates that pretrained generative models
can be efficiently fine-tuned with limited data to perform real-
world supervised tasks, such as WTB segmentation.

3.5. Windfarm Dissimilarity

The test dataset used in our study comprises 20 images from
various windfarms [4]], captured using different drone con-
figurations and locations. To evaluate the robustness of dual-
space augmented SI-LoRA (DSA SI-LoRA), Fig. ] presents a
boxplot illustrating the performance across 10 distinct wind-
farms. This figure offers insights into the robustness of DSA
SI-LoRA in WTB image segmentation.

The boxplot reveals consistently high average perfor-
mance metrics, including accuracy, F1-score, and mloU, with
minimal variability in performance distribution. These results
indicate that DSA SI-LoRA effectively generates accurate
masks across a range of input environments.
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Fig. 5. Failure Cases. From left to right: Input Image, SI-

K[- -—
LoRA using both augmentations (Sec. [2.3)), and ground-truth

segmentation masks. On both sides of the figure, the same
information is displayed.

Nevertheless, the boxplot also highlights a few outliers,
with lower performance observed for windfarms 1, 3, and
4. Fig. ] displays four representative examples where the
method encounters difficulties. In these instances, high con-
trast between the WTB and the background, or within the
WTB region itself, can lead to parts of the WTB being mis-
classified as background. Despite these isolated cases, they do
not detract significantly from the overall robustness demon-
strated by the method.

4. CONCLUSION

In conclusion, this paper presents a significant advancement
in wind turbine blade (WTB) image segmentation through
the development of the dual-space augmented Segmentation-
based Intrinsic LoRA (SI-LoRA). By extending the capabili-
ties of Intrinsic LoRA to image segmentation and employing
an innovative dual-space augmentation strategy, our method
fine-tunes generative pretrained models using minimal data,
addressing the limitations of large vision universal models
in specialized domains. In particular, the dual-space strat-
egy integrates linear interpolation in the image space and
probabilistic augmentation in the latent space, leading to
substantial improvements in segmentation accuracy. Our ex-
periments demonstrate that dual-space augmented SI-LoRA
consistently outperforms existing state-of-the-art models in
WTB segmentation, delivering robust performance across
windfarms. These results highlight the potential of SI-LoRA
as a powerful tool for improving the automation and reliabil-
ity of wind turbine maintenance, ultimately contributing to
the sustainability and efficiency of wind energy operations.
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