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Abstract

Model Predictive Control (MPC) has recently gained increasing interest in the adaptive manage-

ment of water resources systems due to its capability of incorporating disturbance forecasts into

real-time optimal control problems. Yet, related literature is scattered with heterogeneous applica-

tions, case-specific problem settings, and results that are hardly generalized and transferable across

systems. Here, we systematically review 149 peer-reviewed journal articles published over the last

20 years on MPC applied to water reservoirs, open channels, and urban water networks to identify

common trends and open challenges in research and practice. The three water systems we consider

are inter-connected, multi-purpose and multi-scale dynamical systems affected by multiple hydro-

climatic uncertainties and evolving socioeconomic factors. Our review first identifies four main

challenges currently limiting most MPC applications in the water domain: (i) lack of systematic

benchmarking of MPC with respect to other control methods; (ii) lack of assessment of the impact

of uncertainties on the model-based control; (iii) limited analysis of the impact of diverse forecast

types, resolutions, and prediction horizons; (iv) under-consideration of the multi-objective nature

of most water resources systems. We then argue that future MPC applications in water resources

systems should focus on addressing these four challenges as key priorities for future developments.
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1. Introduction

Adaptive water resources management is a priority for resilient development and adaptation to

increasing hydro-climatic variability and socio-economic transformations (Brears, 2018; Şen, 2021;

Stevenson et al., 2022; Zhao and Boll, 2022). Global physical and socio-economic changes add

pressure on governments and policy-makers to urgently address water-related multi-sector chal-

lenges including energy and food security, human and environmental health, economic develop-

ment, and climate change mitigation and adaptation (e.g., GWP, 2021; Srivastava et al., 2022;

Miralles-Wilhelm, 2022). To address these challenges, improve the sustainability and efficiency of

water resources management, and adapt to transformative changes, new opportunities may come

from adaptive control techniques and hydro-meteorological forecasts (Coelho and Andrade-Campos,

2014; Ding et al., 2018; Dobson et al., 2019; Yuan et al., 2019; Wu et al., 2020b; Abioye et al., 2020;

Giuliani et al., 2021; Şen, 2021; Bwambale et al., 2022).

Control methods and tools have been used in the water management community to design opti-

mal water resources operations for several decades already, since the 1955 Harvard Water Program

(see Reuss (2003) for a historical perspective, the pioneering work by Maass et al. (1962) and the

reviews in Yeh, 1985; Malaterre, 1995; Malaterre et al., 1998; Labadie, 2004; Mareels et al., 2005;

Castelletti et al., 2008b; Coelho and Andrade-Campos, 2014; Garćıa et al., 2015; Creaco et al., 2019;

Macian-Sorribes and Pulido-Velazquez, 2020; Van Der Werf et al., 2022). Yet, this is still a very

active research field, as water systems are uncertain dynamic systems with challenging features that

make the use of optimal control tools particularly complex. First, water systems’ disturbances and

related risks are ever-changing, as the variability induced by changing hydro-climatic conditions has

been expanding in recent decades (e.g., Hall et al., 2014; Sreeparvathy and Srinivas, 2022), along-

side the frequency and intensity of extreme events that are being exacerbated with climate change

(Trenberth et al., 2014; IPCC, 2021; Stevenson et al., 2022; Gründemann et al., 2022). Second, hu-

man pressure on water resources has been augmenting with population and socio-economic growth,

leading to increased water and energy demands at the global scale (e.g., van Ruijven et al., 2019;

Boretti and Rosa, 2019; Wu et al., 2020c). This, in turn, has shifted decision makers’ preferences

2



and risk perception (e.g., Poff et al., 2016; Giuliani et al., 2021). Third, water systems usually

serve multiple stakeholders with often conflicting and time-evolving objectives (Soncini-Sessa et al.,

2007), which makes the exploration of trade-offs essential (e.g., Reed et al., 2013).

The advantages of using real-time adaptive model-based control techniques are evident in the

context of hydro-climatic and socio-economic changes, as the use of forecasts unlocks the control

potential to anticipate and, therefore, adapt to changes in the system’s characteristics and distur-

bances. These approaches can be grouped under the umbrella of Model Predictive Control (MPC)

(Bertsekas, 2005; Scattolini, 2009), which is a popular approach, mostly well-established for indus-

trial applications (e.g., Qin and Badgwell, 2000; Forbes et al., 2015; Schwenzer et al., 2021) yet

attracting increasing attention from the water systems community (e.g., Giuliani et al., 2021) due

to recent advances in monitoring and forecasting systems and increasing computational capabilities

(e.g., Wu et al., 2020a). Hydro-meteorological forecasts have constantly been improving in quality

and accessibility over the last few decades (e.g., Buizza, 2019; Wu et al., 2020a). Similarly, hydro-

logical and water systems’ models have been substantially refined in recent years, allowing both the

representation of physical processes at the highest resolution (e.g., Bierkens et al., 2015; Nair et al.,

2020) and the efficient emulation of high-fidelity models via surrogate models based on machine

learning techniques (e.g., Wu et al., 2014; Miro et al., 2021; Huang et al., 2021). Today, it is possible

to assimilate earth observations and operational forecasts in real-time and run optimization and

simulation models within a reasonable time thanks to recent technological advances (Blair et al.,

2019; Creaco et al., 2019; Camporese and Girotto, 2022; Baardman et al., 2022).

In this context, we believe that a review of MPC applications to water management problems is

timely and important to stimulate reflections on MPC benefits and challenges in the water sector

and set the path for further research and practice developments. While previous reviews focused

on discussing the use of different optimal control methods in specific water systems (e.g., water

reservoirs), here we contribute a comprehensive analysis of the most recent advancements in MPC

for different types of water systems. The heterogeneous features of these systems introduce distinct

challenges to optimal control techniques and often require diverse MPC approaches. In this review,

we focus on three key types of interconnected water systems designed and operated to store, convey,

and distribute water for human and environmental needs as well as to manage sewer and drainage

flow at the basin to urban scales: water reservoirs, open channels, and urban water networks. To

build our comprehensive review of 149 peer-reviewed journal articles, we follow an automatic search
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procedure and then refine the paper selection using a set of eligibility criteria, as detailed in the

Methods.

The Methods section first recalls the MPC methods used for water systems’ operations. Then,

the three types of water systems within the scope of this review are introduced, explaining why

these systems are relevant and detailing the models used in the MPC applications. The Results

Section then provides a detailed summary of the reviewed papers across the three types of water

systems. Finally, the Discussion and Conclusions Sections summarize the limitations and merits of

the applications reviewed and highlight the most urgent needs for future developments.

2. Methods

2.1. Model Predictive Control

Model Predictive Control is a control strategy based on the sequential, online resolution of

multiple open-loop control problems defined over a finite, receding time horizon (Bertsekas, 2005).

At each time step, the resolution of an MPC problem yields a sequence of optimal control actions

(i.e., the releases for reservoirs, gate openings for channels, etc.) over the future horizon [t, t + h],

given a predicted trajectory of the disturbances over the same horizon. The optimization is generally

formulated considering a single objective; when the problem involves multiple objectives (e.g., water

supply, hydropower production, flood control, environmental protection, irrigation, transport, etc.),

these are generally aggregated using a scalarization function (e.g., weighted combination) or via the

lexicographic goal programming technique in cases where there is a clear hierarchy of priorities

across the objectives (e.g., Horvath et al., 2022). The online optimization scheme is reiterated

forward in time over a receding horizon during the operational life of the system. After each

optimization, only the first control action of the optimized control sequence is actuated, before

reiterating the optimization at the next time step. Through this reiteration of the model-based

optimization, MPC determines the control law implicitly in a closed-loop form, as it computes the

optimal control action at each time step t based on the observed state of the system (xt). The

current state of the system can be directly observed in most of the cases for the water systems

considered in this review. A state estimator is needed otherwise.

MPC requires a model of the system (see Section 2.2), also known as internal or prediction

model, to predict the effect of control actions on the controlled system’s dynamics, and to determine
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the set of actions that yield the optimal performance with respect to the considered objectives

subject to physical and operational constraints. The choice of the model plays a major role in the

performance yielded by the MPC. The flexibility of the direct use of any models available for the

systems to be controlled is one of the main advantages of this approach, particularly in terms of

controlling highly non-linear systems. The requirement for computational efficiency is the main

factor that can limit the use of fully physically-based models of large-scale complex water systems

like urban water networks, for which reduced-order data-driven models can be developed to be

used in MPC (see Section 3.3). The flexibility in working with (nonlinear) constraints is another

advantage of MPC compared to other control methods. And this advantage is particularly relevant

for water systems, as explicit physical constraints (with non-linearities), like limits of actuators, or

legal constraints, like a minimum release from reservoirs, are often required.

Another advantage of MPC with respect to other control approaches is the mitigation of the

curse of ‘dimensionality’ (Bellman, 1957) that limits the applicability of Dynamic Programming

family methods to large water systems because of the challenges associated with the computation

of the value functions for increasing dimensions of state and control vectors. Moreover, the use of

real-time information and probabilistic/ensemble forecasts in the optimization process allows MPC

to adapt to evolving external conditions and mitigate the impacts of uncertain extreme events.

Different configurations of MPC exist depending on how they handle the control of multiple

actuators in large-scale systems (centralized, decentralized, or distributed MPC), the parameter

estimation problem (adaptive or non-adaptive MPC), and the uncertainty in disturbance forecasts

(deterministic or robust and stochastic MPC; see Sections 2.1.1 and 2.1.2).

A centralized MPC configuration assumes that a single controller processes measurements from

all sensors/gauges and determines optimal actions to be applied by all actuators. However, water

systems are usually spread over large, often transboundary regions, and several water boards can

be involved in their management. In such large systems, centralized management may become

unfeasible or computationally cumbersome, and may also be undesirable with regard to system

reliability, scalability, and responsiveness. Thus, multi-agent control, whereby the control effort is

divided among local agents (also referred to as controllers), each in charge of part of the overall

system, emerges as a possible way to circumvent the drawbacks arising from centralized implemen-

tations. Two main criteria by which to classify multi-agent control approaches are the existence of

communication links and hierarchy among local controllers. On the one hand, an approach is said
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to be decentralized if interactions among local controllers are neglected, and distributed if com-

munication links among local controllers are enabled for the sake of improved overall performance,

although at the expense of increased computation times. On the other hand, an approach is said

to be single-level if all local controllers are at the same hierarchical level, and multi-level if a subset

of local controllers has ascendancy over the rest.

Regarding the problem of reducing model uncertainties, in standard (non-adaptive) MPC, the

model used for prediction is often assumed to be accurate and fixed in time, while only its state

is updated. However, by using a fixed model parameterization the changing uncertainties within

the system are not taken into account, which can reduce the MPC performance. In contrast, in

adaptive MPC, the model parameters can be updated online by using available measurements, and

the estimation problem is addressed by including a parameter estimation procedure as part of the

control strategy. The control action is then calculated not only based on the estimated current state

but also on the updated model, which can help reduce the dynamic model uncertainties affecting

MPC (Lemos et al., 2009).

2.1.1. Deterministic MPC

In cases where a single deterministic prediction of the systems’ disturbances is available, the

formulation of the (single-objective) MPC problem over the prediction horizon (h), to be solved at

each control time step, is as follows:

min
ut,...,ut+h

t+h−1∑
τ=t

gτ (xτ ,uτ , ε̂τ+1) + gt+h(xt+h) (1)

subject to:

xτ+1 = fτ (xτ ,uτ , ε̂τ+1) (2)

c (xτ ,uτ , ε̂τ+1) ≤ 0 (3)

ε̂τ+1 given for τ = t, . . . , t+ h− 1 (4)

xt given (5)
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where: xτ is the state of the system at time step τ (e.g., the reservoir storage, the water level

in channels, and the state of other dynamical components); uτ is the control vector including all

control actions for the actuators (e.g., gates or pumps); ε̂τ+1 is the deterministic forecast of the

system’s disturbances provided by a prediction model for each time step τ over the prediction

horizon [t+1, t+h]; gτ (·) is a time-separable cost function associated with the transition from time

step τ to τ + 1; gt+h (·) is a penalty function associated with the final state (xt+h ) that represents

the future costs beyond the prediction horizon. It should be noted that the control horizon, i.e.

the time span for which the control inputs are allowed to vary, can be shorter than the prediction

horizon, though often they are assumed to be equal as in Eq. 1.

The optimal control problem 1 is subject to the dynamic constraints provided by the state

transition function (Eq. 2) along with different types of physical constraints (e.g., limits of actu-

ators) and operational/legal ones (e.g., minimum environmental flows) that can be expressed as

(non linear) inequality constraints (Eq. 3).

2.1.2. Robust and Stochastic MPC

One of the limitations of Problem (1) is that it requires the availability of the sequence of future

system disturbances {ε̂}t+h
t+1 , which is unrealistic to expect to be perfect in many practical situations.

To deal with this issue, the MPC framework includes strategies that handle uncertainties in a

robust manner via worst-case formulations, e.g., min-max and robust MPC. While these methods

guarantee the satisfaction of the problem constraints as long as some assumptions are satisfied

(mainly, that disturbances are bounded), they also generally lead to very conservative control

policies because a worst-case scenario approach is followed. To remedy this situation, stochastic

MPC approaches exploit the characterization of the forecasted uncertainties, to obtain a trade-off

between closed-loop constraint satisfaction and performance. Stochastic MPC approaches typically

employ so-called chance constraints, i.e., constraints that should be satisfied with a predefined

probability level (Mesbah, 2016). Thus, occasional violations of the constraints might occur, but

system performance will be increased during normal system operation because the controller will

be allowed to work closer to the constraints in comparison to worst-case approaches.

Here, we propose a classification of existing robust and stochastic MPC approaches used in

the water systems literature so far into two categories, based on the way the knowledge of the

probability distribution function (pdf) of the disturbances is implemented into the optimization
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problem: (i) explicit robust and stochastic approaches, that use the explicit information on the pdf,

and (ii) implicit approaches, that rely on a set of scenarios (or ensemble forecasts) which encode

information about the disturbance evolution and its uncertainty in an implicit manner.

(i) Explicit approaches, require an explicit (probabilistic) characterization of the disturbance

behaviour. A classical strategy to deal with uncertainty explicitly is the use of Open-loop

feedback control (OLFC), as introduced by Bertsekas (1976). This approach presents the

future disturbances according to their probability distribution and computes the objectives

through a function to filter the disturbances (e.g., expected value). The OLFC performance

can be improved by adopting a partial open-loop feedback control (POLFC) formulation (e.g.,

Castelletti et al., 2008a; Pianosi and Soncini-Sessa, 2009), which explicitly assumes that in

the future the state of the system will be measured and a new problem will be reformulated.

The POLFC problem, therefore, computes at each time step the optimal release decision for

the first time step reflecting first-step uncertainty and the optimal operating policy for the

following time steps.

(ii) Implicit approaches rely on the use of a set of scenarios of the disturbances. The set of scenar-

ios can be either built using data from previous realizations or using real-time probabilistic

forecasts. A classical implicit approach that uses scenarios in MPC is the Scenario-based MPC

which allows optimizing the system behaviour for several disturbance realizations. This ap-

proach has been generalized in Calafiore and Campi (2006); Calafiore and Fagiano (2013a,b),

and has been applied to water systems in van Overloop et al. (2008); Tian et al. (2019); Ve-

larde et al. (2019); Tian et al. (2017b). An interesting feature of this approach is that multiple

models can be considered, thus allowing to consider model uncertainty in addition to distur-

bance uncertainty. The scenario-based MPC approach can be extended via the Tree-based

MPC (TB-MPC) formulation to provide the controller with enhanced closed-loop control ca-

pabilities so that it can adapt to future events, as uncertainty is resolved via bifurcation points

along the prediction horizon, as first applied to water systems in Raso et al. (2014). Implicit

approaches are particularly relevant for water systems as the forecasts are often provided in

the form of an ensemble of multiple time series, usually generated by running the forecast

model multiple times with perturbed initial conditions or using multiple models. Given their

capacity to account for the inherent forecast uncertainty, ensemble forecasts have become a

standard in hydro-meteorological forecasting (Gneiting and Raftery, 2005; Buizza, 2019; Zhao

8



et al., 2021). This ensemble is then transformed into a tree where similar ensemble members

are bundled together into one trajectory (branch) up to the point when some of them start

to significantly diverge from the others. The tree structure is then used to optimize a control

tree defining a distinct control sequence for each branch. Control sequences are constrained

to be the same up to the time when two ensemble members diverge. Examples of applications

of TB-MPC can be found in Maestre et al. (2013); Raso et al. (2014); Ficchi et al. (2016);

Uysal et al. (2018a).

Explicit knowledge about the disturbance (pdf) might be available and can used to build a

set of scenarios for implicit approaches, such as multi-scenario MPC or TB-MPC, so as to achieve

approximate robust MPC strategies (Lucia et al., 2013). Alternatively, one may proceed the other

way around, by using historical data (e.g., previous realizations of the disturbances or reforecasts)

to generate an explicit model (possibly with some limitations) and use that in explicit stochastic

approaches.

Finally, stochastic approaches can be considered robust as well if very strict requirements are

imposed regarding the probability of closed-loop constraint violation. As the imposed probability

of constraint violation tends to zero, the controller becomes more and more robust as it needs to

increase the safety margin with respect to the problem constraints. For this reason, there are some

articles in the literature that present stochastic approaches from a robustness viewpoint (Shang

et al., 2020; Chen et al., 2021; Chen and You, 2021).

2.2. Models for water systems applications

This section provides an overview of the models used for representing the different water systems

considered in this review, namely water reservoirs, open channels, and urban water networks. It

is worth mentioning that despite we illustrate and discuss these systems separately, they are often

interconnected with water reservoirs feeding either open channels and/or urban water networks.

2.2.1. Water reservoirs

A water reservoir is a regulated storage or lake, controlled by a dam that either blocks the flow of

a watercourse that is drained from upstream catchments (in-stream reservoir) or creates a retention

basin collecting water supplied by an adjoining stream, a canal, pipeline or aqueduct (off-stream).

Reservoirs can be part of networks of different levels of complexity, with two or more reservoirs in
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Figure 1: Schematic representation of a multi-reservoir network, adapted from the Zambezi river system’s scheme

reported in Giuliani and Castelletti (2013).

parallel or in series (see Figure 1 for a schematic representation), connected with water users via

natural or artificial canals.

Reservoirs are usually multi-purpose systems, serving power plants, irrigation districts, urban

and industrial water users, as well as contributing to other targets like flood control, environmental

management, navigation, water quality, etc. Traditionally, reservoir control is implemented by a

human operator that can act based on static rule curves or control actions suggested by a Decision

Support System (DSS) in real-time. Since the control time step is discrete, the model for a reservoir

is typically written in time-discrete form too, even though the physical processes involved in the sys-

tem are time-continuous. The control time step varies based on the type of systems and objectives,

with control frequencies typically ranging from hourly or daily for smaller systems and for flood

control or hydropower generation, to monthly for large systems and for water supply objectives.

The generic model for a system of N reservoirs is based on the mass-balance equation describing

the dynamics of the water storage at each reservoir j as:
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xj
t+1 = xj

t + qjt+1 − rjt+1 (6)

where: xj
t is the state of reservoir j at time step t, i.e., the reservoir storage; qjt+1 is the net

inflow volume (i.e., inflow and direct precipitation minus evaporation and seepage losses) from time

step t to t + 1; rjt+1 is the actual release from the reservoir in the same time interval. In the

notation in Eq. 6, the time subscript of each variable indicates the time instant when the value is

deterministically known. The reservoir storage is measured at time step t and thus is denoted as xj
t ,

while the net inflow and the actual release are denoted as qjt+1 and rjt+1, respectively because they

can be known only at the end of the time interval. For multi-reservoir systems, the global model

is obtained by aggregating the models of the N reservoirs that compose it, i.e., all the variables in

Eq. 6 become vectors (e.g., xt, qt+1) and the network topology can be represented by an incidence

matrix (Giuliani et al., 2021).

The actual release rjt+1 is a function of the control variable uj
t (i.e., the release decision at time

step t), of the storage xj
t and of the net inflow qjt+1:

rjt+1 = Rj
t

(
xj
t , u

j
t , q

j
t+1

)
(7)

where the function Rj
t (·) is called the release function and it is a nonlinear function, which binds

the actual release within a range of physical acceptability. The range is defined by the minimum

and maximum releases that would occur from time step t to t + 1 by keeping all the sluice gates

completely closed and open, respectively (Castelletti et al., 2008b). Thus, the release function allows

for the inclusion of physical constraints on reservoir storage and release into the model. The actual

release may differ from the control decision when the available water is not sufficient to realize the

decision or when a spill takes place. The release function is inherently stochastic because between

the time step t at which the release decision is taken and the time step t+ 1 at which the control

action is completed, the uncertain net inflow qjt+1 affects the reservoir storage.

The net inflow qjt+1 is an aggregation of several hydro-meteorological contributions including

upstream and lateral flows from tributaries and runoff, direct precipitation over the reservoir minus

evaporation and infiltration losses. The net inflow is often modelled as a system disturbance (i.e.,

qjt+1=εjt+1 ), aggregating multiple sources of uncertainty, though its contributions can also be sepa-

rately modelled as distinct disturbances. On the other hand, the hydrologic processes contributing
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to the net inflow can be represented using dynamic hydrological models of different types, from

conceptual to physically-based, lumped or spatially distributed, deterministic or stochastic models.

Data-driven alternatives or simple statistical models are often preferred because of their compu-

tational efficiency (e.g., Wang et al., 2009) and, recently, efforts are being made to move towards

hybrid models (a combination of pure data-driven and process-based models) that can be more

interpretable by users (e.g., Chakraborty et al., 2021). These models can be used to provide a set

of deterministic or stochastic forecasts of the disturbance, that can be issued before every control

time step and used in an optimal control problem.

2.2.2. Open channels

Open-channel systems are large-scale networked systems that consist of natural rivers and ar-

tificial canals and serve multiple purposes. As part of the integrated urban water management

cycle, open-channel systems can be used to convey treated water to consumer areas, which may

then be supplied to consumers (using pressurized pipeline networks) or used for irrigation purposes.

Open-channel systems can also be employed for freight and passenger transportation, provided

that water depth and width are sufficient. Moreover, the watercourse should not be interrupted too

frequently by elements that must be avoided, e.g., reefs, rocks and sandbanks, and bridges should

have sufficient clearance. Although not strictly in the scope of this paper, it is interesting to note

that research on inland waterborne transport is attracting increasing attention, as it is one of the

most environmentally friendly and cost-effective transport modes. A schematic representation of

an open-channel system is given in Figure 2, which shows its main constitutive elements. On the

one hand, canals are stretches of the watercourse bounded between two control structures. On the

other hand, actuators are hydraulic infrastructure, e.g., gates, weirs and dams, available for wa-

ter control purposes (see examples above). Finally, nodes represent canal junctions, i.e., locations

wherein a stream flows into or branches off from the main stream (these are known as tributary

and distributary, respectively).

Open-channel dynamics are most accurately described by the Saint-Venant equations, a set

of coupled nonlinear partial differential equations that can be formulated as follows (Litrico and

Fromion, 2009):
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Figure 2: Schematic representation of an open-channel system.
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∂A(l, t)

∂t
+

∂Q(l, t)

∂l
= 0, (8a)

∂Q(l, t)

∂t
+

∂

∂l

(
Q2(l, t)

A(l, t)

)
+ gA(l, t)

(
∂Y (l, t)

∂l
+ Sf (l, t)− Sb(l)

)
= 0. (8b)

Equations (8a) and (8b) represent the mass and momentum conservation equations, respectively,

the latter comprising inertia, advection, gravitational force and friction force terms. Moreover, l

is the longitudinal abscissa (continuous independent variable), t is the time (continuous variable),

A(l, t) is the wetted area [m2], Q(l, t) is the discharge [m3/s] across section A, V (l, t) = Q(l, t)/A(l, t)

is the average velocity [m/s] in section A, Y (l, t) is the water depth [m], Sf (l, t) is the friction slope

[m/m], Sb(l) is the bed slope [m/m] and g is the gravitational acceleration [m/s2].

Equation (8) must be completed with initial and boundary conditions. On the one hand, the

initial condition is given in terms of (Q(x, 0), Y (x, 0)), for all x ∈ [0, L], where L is the length of the

canal. On the other hand, boundary conditions must be chosen depending on flow characteristics:

subcritical flow requires an upstream and a downstream condition; supercritical flow requires two

upstream conditions; and intermediate situations require to specify one, two, or three conditions,

depending on the situation (Litrico and Fromion, 2009). Furthermore, available measurements and

controls must be specified. It is typically the case in practical situations that available measurements

and controls are boundary water levels and gate openings, respectively (Litrico and Fromion, 2009).

Because of their accuracy, the Saint-Venant equations constitute the basis of state-of-the-art

simulation software, e.g., SOBEK1 and SICˆ22. However, they are demanding in terms of compu-

tational resources and provide too much information for applications such as controlling average

water levels, two facts that render their direct use impractical for control purposes (hence the

variables in (8) are not directly connected with the notation introduced in Figure 2). For this

reason, the use of alternative and simpler models as prediction models (i.e., internal MPC models)

is commonly encountered in the literature. These simplified models generally compensate the loss

of precision with a significant reduction of the computational burden, which in turn allows to use

more elaborated formulations within the MPC framework. Several classes of simplified models have

1https://www.deltares.nl/en/software/sobek/
2http://sic.g-eau.net
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been developed:

• Some models are obtained directly from the Saint-Venant equations, discretizing the system

in space (e.g., using a staggered grid) and linearizing. The kind of discretization method

employed plays a crucial role in the stability of the obtained model. On the one hand, certain

time-implicit methods yield stable models regardless of the step size chosen, even for nonlinear

hyperbolic systems (Hirsch, 2007). On the other hand, the stability of explicit discretization

methods depends on the discretization step size (Conde et al., 2021).

• Other models are based on strong mechanistic simplifications of the behaviour of the canal

dynamics:

– One of the first proposals was the Integrator Delay (ID) model (Schuurmans et al., 1995,

1999), an approximation model for flow in an open channel with a backwater effect. The

integrator term captures the canal volume change according to the water level variation,

and the time delay indicates the required time for a disturbance generated at one end of

the canal to have an effect at the other end. It is worth noting that some authors simplify

the ID model even further, considering only the integrator term (I), thus assuming that

the canal behaves like a reservoir.

– A modification to the ID model was proposed by Litrico and Fromion (2004) to represent

the high-frequency phenomena and thus describe a canal in any flow condition. This new

model, which features a zero in the transfer function to represent the direct influence of

the discharge on the water level in high frequencies, is known as the Integrator Delay

Zero (IDZ) model.

– The Integrator Resonance (IR) model was proposed by van Overloop et al. (2010b),

to characterize the effect of reflecting waves on the water levels, which dominate the

behaviour of the short and deep open-channel flow.

• System identification techniques have also been employed for the purpose of open-channel

modelling. In particular, black-box models, which do not make use of any physical insight,

have proven to perform well (Weyer, 2001; Rivas-Pérez et al., 2014).

The common feature shared by the different simplified models is the connection between dis-

charges and water levels. However, some of these models are formulated using continuous time
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input-output representations (e.g., ID, IDZ and IR), and must be discretized for implementation

purposes. On the other hand, models with full space-time discretization are directly described in

discrete-time state-space form.

With some minor adjustments, all these models can be framed within the more general control-

oriented model given below:

xt+1 = F (xt,ut,wt,dt), (9a)

0 = G(xt,ut,wt,dt). (9b)

The variables used in Eq. (9) follow the notation introduced in Figure 2, and their meaning is

as follows: the vector of states xt contains the water levels (and possibly other terms, depending

on the simplified model that is employed), ut denotes the vector of control inputs (e.g., actuator

flow or position setpoints; for an exhaustive list of control variables see Section 3.2), wt represents

the vector of uncontrollable flows due to environmental phenomena (e.g., rainfall, infiltration and

percolation), and dt is the vector of water demands (e.g., off-takes by farmers) that act as system

disturbances εt+1. Note that (9) includes differential and algebraic equations: the former represent

the system dynamics, and the latter account for the mass balances that must hold at the nodes.

2.2.3. Urban water networks

The integrated urban water cycle is composed of several infrastructural and operational com-

ponents, including water sources management, water treatment, water transport and distribution,

sewer/wastewater collection, and rainwater/stormwater drainage systems (Loucks and Van Beek,

2017), which have the main goal of providing water for human needs reliably, efficiently, and safely,

and then returning it to the environment with the lowest possible impact (Walski et al., 2003). The

problem of optimal operation of large-scale urban water networks has been extensively investigated

in the literature in the last 50 years (Mala-Jetmarova et al., 2017), with the main focus on water

transport and distribution networks and optimal management of sewer and drainage infrastructure,

beside smaller-scale applications that focus on solving local optimization problems of individual

network components, such as individual pumps/pumping stations and water treatment processes

in water/wastewater treatment plants.

Taking water transport and distribution networks for instance (see Figure 3 for a schematic

representation), an optimal control problem is typically formulated as an optimal pump operation
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Figure 3: Schematic representation of a water distribution network, adapted from the Epanet 2: user manual

(Rossman et al., 2000).

control problem targeting resources and economic savings in energy use and related cost, while

ensuring that water is conveyed to final users to satisfy their water demands. Modelling a water

distribution network requires modelling its main components, which can be classified into nodes

- which include demand junctions (where water leaves or enters the network), reservoirs (water

sources), and tanks (where water is stored) - and links - which include pipes connecting different

nodes and valves and pumps, which are the actuators in the system to be controlled. Accounting

for all aforementioned system components, a control-oriented model of a water distribution network

can be formulated as in Wang et al. (2017):

xt+1 = F (xt, zt,ut,wt,dt), (10a)

0 = G(xt, zt,ut,wt,dt), (10b)

where the dynamic states in vector xt are the water storage levels (heads) of the network tanks at

time step t, the algebraic states zt is the vector of hydraulic heads in all other nodes of the network,

resulting from flow balance, ut is the vector of control inputs (pump operations and valve status),

and wt is the vector of non-controllable flows through pipes. dt is the vector of water demand

intended as system disturbances εt+1. Pump and valves might vary in type and size. For instance,

pumps might be with fixed-speed or variable-speed drives, valves might be pressure modulating or
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pressure reducing valves, non-return valves, head control, etc., which should be accounted for in

modelling such components, as their characteristics also constrain the type and range of available

controls.

The above discrete-time model includes difference and algebraic equations, based on mass and

energy conservation. The mass balance should be guaranteed at the network nodes, implying that

the flow rate of water q in node n from all its connected pipes p is balanced by the actual demand

in that node dact,nt in each time step t (Rossman et al., 2000):∑
p∈Pn

qp,nt − dact,nt = 0. (11)

Energy conservation is formulated to satisfy the Bernoulli’s principle, while head losses in pipes

are accounted for via the Hazen-Williams formula. Once the above model is formulated for a given

water distribution network, the system can be simulated either in demand-driven mode, which,

under normal conditions, assumes that the pressure in the system depends on node demands and,

thus, the mass balance and head loss equations are solved assuming that node demands are known

and satisfied, or in pressure-driven mode, which assumes that the delivered demand depends on the

available pressure in the system and accounts for possible demand shortages. In emergency/anomaly

situations (i.e., firefighting, power outages, pipe leaks), consumers do not always receive their

requested demand in a pressure-driven scenario.

Several state-of-the-art software tools are available to model water distribution networks of var-

ious scales. Arguably, the most widely used among them is EPANET, developed as open-source

software by the United States Environmental Protection Agency (Rossman et al., 2000). EPANET

can perform also water quality simulation beside hydraulic simulations, thus allowing for coupled

hydraulic and water quality simulation, which increases the size of the problem formulated in

Equations (10) by adding states related to water quality parameters, along with the possibility of

controlling it (e.g., via chlorine dosage). Yet, EPANET model implementations are not straight-

forward as control-oriented models, since they often include several switches and discrete operation

conditions that make them not suitable for the direct application of gradient-based optimization

approaches.

Alternative software tools exist to model other networks of the urban water cycle such as com-

bined and sanitary sewers and other drainage systems, e.g., the US-EPA Storm Water Management

Model (SWMM) (Rossman et al., 2010). A broad formulation of the system model as indicated

18



in Equation (10) and overall modelling strategy still stands, with water flows being ruled by mass

and energy conservation laws. However, individual system components to be modelled change, with

disturbances to be forecasted being most typically rainfall and inflow to the system, and controls be-

ing basin outflows, gate settings, and, more on an infrastructure planning perspective, Low-Impact

Development (LID) controls. Complementary tools such as the one reported in Riaño-Briceño et al.

(2016) allow the use of SWMM to design control strategies, in particular, applied to drainage sys-

tems, with some flexibility and considering dynamical models and a more realistic setup including

disturbances and their forecast models.

In some cases, e.g., for large-scale urban water networks, it is useful to replace the full model

of the system with a reduced model of the network that can offer higher computational efficiency

(Shamir and Salomons, 2008). This is usually done via skeletonization by reducing the number of

components of the system (e.g., by removing irrelevant pipes and nodes) while retaining a high level

of similarity between the reduced and full model outputs and performance. Alternative approaches

instead rely on the development of data-driven surrogate models.

2.3. Literature Search and Classification Methods

This section describes the search methods, keywords and criteria followed for the bibliographic

search highlighting common points and workflows across water systems, as well as differences (e.g.,

keywords, etc.). Real-time control techniques applied to water systems take sometimes different

names but can be reduced to an MPC-like approach as long as they embed the three main blocks

of MPC (see Introduction): (i) the internal model of the system, used to simulate the effects of the

control actions on the system, (ii) the use of forecasts available in real-time, either real, synthetic

or ‘perfect’ forecasts and (iii) an online optimization that is reiterated over a receding horizon. In

the water systems’ literature, several studies have adopted an MPC-like technique either referring

to it with different wordings, like ‘rolling horizon control’, ‘receding horizon control’, ‘real-time

optimization’, or proposing some theoretical modifications to the MPC approach and providing

an alternative name (e.g., Partial Open-loop Feedback Control). To account for such alternative

wordings for “Model Predictive Control” and domain-specific differences, we formulated customized

versions of the literature search string for each of the three water system types considered and used
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them to identify relevant papers in the Web of Science platform 3. The resulting search strings are

the following:

• For water reservoirs: (optimal AND water AND reservoir* AND (operation OR control OR

management) AND (predictive control OR forecast-based OR receding horizon OR rolling

horizon OR receding-horizon OR rolling-horizon))

• For water channels: (Model predictive control OR MPC OR receding horizon OR rolling hori-

zon) AND (water canal* OR water channel* OR irrigation OR inland OR inland waterway*)

• For urban water networks: (optimal AND water AND (drinking OR distribution OR transport

OR wastewater OR drainage OR grey water OR sewer OR sewage) AND (networks OR

systems) AND (operation OR control OR management) AND (model predictive control OR

predict* control OR naive feedback control OR receding horizon OR rolling horizon OR

receding-horizon OR rolling-horizon))

The search queries are not restricted to the word ‘Model Predictive Control’, so the records

found include some irrelevant studies. Exclusion criteria only regarded (i) article language (only

papers written in English were considered) and (ii) and article type (only peer-reviewed publications

in scientific journals were considered). Conference papers were excluded to avoid redundancies since

some conference publications often present preliminary versions of studies subsequently published

in full journal papers. We acknowledge that some of the most recent advanced developments, that

might be present in a few recent peer-reviewed conference publications, may not have been covered

in this review, but overall we do not expect that it would have a significant impact on the identified

trends and challenges, given the large sample of journal articles included.

Manual filtering on the resulting records was performed based on paper title and abstract, to

discard items that were out of scope for this review (i.e., not focusing on MPC or not applying it to

the water systems of interest), before evaluating the eligibility of a restricted set of papers based on

their full-text assessment. A smaller set of additional relevant papers not retrieved with the search

query (7 items) was added to the final database from other sources, namely from references in

previous review papers resulting from the search (see Figure 4 for details on the sample selection).

3https://www.webofscience.com/
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3. Review Results

3.1. MPC for water reservoirs

In the last 15 years, several studies analyzed the potential of forecast-based real-time control

techniques for water reservoir systems across different real-world problems by leveraging the in-

creasing availability and improved quality of hydro-meteorological forecasts. The query formulated

to retrieve peer-reviewed journal articles on MPC for water reservoir systems (see Section 2.3) re-

turned an initial set of 105 papers. After screening these manuscripts, we retained 33 publications

and added 7 more documents (from references in previous reviews on optimal control of reservoirs

that were found by the query), yielding a total of 40 articles that have been analyzed in detail (see

PRISMA diagram in Fig. 4). As recently highlighted in Giuliani et al. (2021), our review confirms

that MPC approaches (and analogous approaches that could be reduced to MPC) have been applied

more commonly only in recent years, with the 40 studies reviewed here that have been published

from 2008 to 2022 (see the temporal distribution in Fig. 5).

Almost all reviewed papers implement a centralized control architecture to determine the optimal

releases from one or more reservoirs, with only a few applications also dealing with the control of

pumps (e.g., Galelli et al., 2014; Javan Salehi and Shourian, 2021). Most studies implement a daily

controller (e.g., Wan et al., 2016; Anghileri et al., 2016), but we found applications working at

either sub-hourly (e.g., Breckpot et al., 2013a; Lin et al., 2020) or hourly (e.g., Delgoda et al., 2013;

Karimanzira et al., 2016; Xu et al., 2020) or monthly (e.g., Zambelli et al., 2011; Kistenmacher and

Georgakakos, 2015) frequencies. Suppose the forecast frequency is not sufficient to timely inform

the control action. In that case, the MPC results should be seen as a recommendation provided by

a decision support system that the operator can adjust, potentially taking into account local expert

knowledge and any operating factors that the MPC optimization could not cover (e.g., Roetz and

Theobald, 2019).

In almost all the reviewed studies (see Table 1), the forecast represents the inflow to the reservoir,

which is usually generated using a hydrological model fed by meteorological forecasts and any

other significant information available at each control time step (e.g., snowpack and hydrological

conditions, including the streamflow upstream, being routed using the model). Only two studies

(Galelli et al., 2014, 2015) complement the inflow with tide forecasts. Moreover, many studies

(more than half) use a deterministic forecast and MPC formulation (e.g., Giuliani and Castelletti,
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Figure 4: Flow diagram with paper exclusion/inclusion criteria. The flow diagram reports the exclusion/inclusion

criteria applied to the dataset of papers retrieved for review, represented according to the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses guidelines (PRISMA; Moher et al., 2009). nr indicates the number of

papers on MPC for water reservoirs, nuwn those on MPC for urban water networks, and noc those on MPC for open

channels. n is the number of total papers (equal to the sum of the above, i.e., n = nr + nuwn + noc).
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Figure 5: Annual counts of the 149 publications reviewed in this study by type of water system (WR: Water
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2013; Anand et al., 2013; Galelli et al., 2015), although the adoption of stochastic formulations

is increasing in the last few years (e.g., Uysal et al., 2018b; Sahu and McLaughlin, 2018; Ahmad

and Hussain, 2019). These stochastic approaches (see Section 2.1.2 and Table 2) allow the explicit

probabilistic characterization of the forecast uncertainty by relying on ensemble forecasts and,

therefore, better hedge against risk (Breckpot et al., 2013a).

The reviewed papers used a wide range of control time steps (see Table 3) and of forecast horizons

(also called lead times in the forecasting literature) ranging from a few hours for responding to rapid

events such as floods (e.g., Blanco et al., 2010; Galelli et al., 2014, 2015; Xu et al., 2020) to seasonal

or longer scales (e.g., Xu et al., 2015; Anghileri et al., 2016; Raso and Malaterre, 2017; Gavahi et al.,

2019). However, multiple timescales have never been incorporated into a seamless multi-timescale

system in any case study.

Despite changes in societal perceptions of water resources generally enlarge the number of objec-

tives considered (e.g., Giuliani et al., 2014a,b; Wild et al., 2019), a large majority of the studies we

considered formulate a single-objective control problem (e.g., Wang, 2010; Breckpot et al., 2013a;

Xu et al., 2015; Sahu and McLaughlin, 2018; Arsenault and Cote, 2019) or an a-priori aggregation

of multiple objectives (e.g., Castelletti et al., 2008a; Kistenmacher and Georgakakos, 2015; Uysal

et al., 2018a), with very few exceptions that consider either 2 or 3 competing objectives (e.g., Giu-

liani and Castelletti, 2013; Xu et al., 2020; Lin et al., 2020; Mohanavelu et al., 2022) (see Table

4). The scalability of MPC to multi- and many-objective control problems is indeed an important

limitation for the application of this control strategy to water reservoir systems (Giuliani et al.,

2021), which often has limited ability in exploring multi-dimensional trade-offs (e.g., Giuliani et al.,

2016).

About half of the reviewed articles (see Table 4) provide a comparison between MPC against an

alternative, off-line control strategy often designed via Stochastic Dynamic Programming (SDP) or

against the current operational schemes of real-world reservoirs (e.g., Castelletti et al., 2008a; Xu

et al., 2015; Sahu and McLaughlin, 2018). All these studies found that MPC outperforms other

strategies. This is often attributed to the fact that MPC ensures that the control is adapting to

extreme events that can be forecasted in the short- to long-term based on current observations

and other forecast data (e.g., Galelli et al., 2014; Ficchi et al., 2016; Ahmad and Hussain, 2019).

However, the choice of a reservoir control method is expected to depend upon multiple factors,

including the system’s characteristics, the objectives of the control, the specified constraints, data
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and forecast availability (Macian-Sorribes and Pulido-Velazquez, 2020). So large comparison studies

are needed to investigate MPC’s applicability, effectiveness, and value in different contexts.

Only a few studies benchmark MPC against multiple state-of-the-art control methods, such as

different Approximate Dynamic Programming (ADP) methods (see Table 4)). Notably, Mohanavelu

et al. (2022) compare six state-of-the-art control methods for the operation of a real-world reservoir

system in India (i.e., the Pong reservoir). They found that MPC outperforms all the other methods,

yielding the closest solution to the ideal one designed via Deterministic Dynamic Programming

(DDP). A limitation of their study is that MPC was driven by a single forecast close to perfect

forecasts, so further studies are needed to extend such comparisons for different case studies and

use real forecasts with different levels of skill and timescales within the MPC. Similarly, Kergus

et al. (2022) benchmark an MPC-based approach against SDP and the ideal DDP solution with

perfect foresight for the operation of a reservoir in Vietnam (Hoa Binh). Their MPC-like approach

(combining hierarchically MPC with an inner parametric data-driven feedback controller) uses

statistical forecasts with a random noise added on the disturbances. Despite the error in the

disturbance predictions, the MPC-based approach outperforms SDP by obtaining better trade-

offs between the two objectives (hydropower and flood control) and approaches the ideal solution

by DDP. However, as pointed out by Kergus et al. (2022), while these results are encouraging

for MPC, the robustness to prediction errors requires further investigation. Likewise, other six

studies (Castelletti et al., 2008a; Wang, 2010; Galelli et al., 2014; Sahu and McLaughlin, 2018;

Ahmad and Hussain, 2019; Payet-Burin et al., 2021) benchmark MPC with SDP reaching similar

conclusions. MPC approaches outperform the offline benchmark by better anticipating the inflow

events, especially those out of their typical season, even if a simple inflow forecasting model is

used (e.g., Castelletti et al., 2008a; Wang, 2010). MPC generally leads to better trade-offs between

objectives, with the performance increasing with increased prediction horizon (e.g., Castelletti et al.,

2008a; Galelli et al., 2014). MPC can also deal with problems that are computationally intractable

by SDP due to the number of reservoirs in the system (e.g., Wang, 2010), as it overcomes the curses

of dimensionality and modelling of SDP.

A limitation of the current body of literature on MPC for reservoir operation is that most studies

do not assess the impact of the MPC internal model uncertainty, as usually the same models have

been used for both the open-loop optimization and closed-loop simulation (with the associated

update of model states) in almost all studies reviewed. A few exceptions exist (Munier et al., 2015;
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Lin et al., 2020). For example, Lin et al. (2020) used two different models: a simplified internal

model was used in the open-loop optimization, as is usually done in MPC, and a more refined and

computationally-intensive model was employed to represent the real water system in closed-loop,

to update water levels and flows.

3.2. MPC for open channels

An initial set of 193 research journal papers was obtained using the query formulated in Section

2.3, of which only 58 were retained after the manual screening of titles and abstracts (see PRISMA

diagram in Figure 4). Inspection of the time distribution of the final set of papers (depicted in Figure

5) reveals that all papers were published less than twenty years ago (and twenty-six of them less

than five years ago), which allows identifying a growing interest in the topic (see Figure 5). It is also

worth noting that other review papers were returned by the query: although not strictly research

papers, they are surveyed for completeness. An exhaustive review of modelling and control of open-

channel irrigation systems is carried out in Conde et al. (2021), and an entire section (Section 4.5.3)

is devoted to MPC. Different applications of smart agriculture are presented in Ding et al. (2018),

including the use of MPC for irrigation systems (Section 3.1). The developments of an industrial-

scale project that culminated in the complete automation of a large irrigation system in Australia

are discussed in Mareels et al. (2005). Although MPC approaches are not explicitly developed

therein, the same research group has recently employed MPC to control a river (Foo et al., 2014)

and an irrigation canal (Nasir et al., 2021).

Control of water canals and rivers aims to satisfy human needs, which are expressed in the

form of a cost function. Most of the reviewed papers are characterized by cost functions built as

the weighted sum of individual terms (i.e., the relative importance of each term is adjusted using

weights), with the minimization of water level setpoint tracking errors and operational costs being

the most common objectives (see Table 4). Additional goals, e.g., simultaneous control of water

quantity and quality (Xu et al., 2013; Aydin et al., 2019, 2022), preservation of water levels within

safe navigation bounds (Wagenpfeil et al., 2012; Tian et al., 2019; Segovia et al., 2019; Pour et al.,

2022; Horvath et al., 2022) and pressure reduction for the pressurized part of the network (Zhu

et al., 2020), are also considered in the literature. Moreover, Foo et al. (2014) tailor a cost function

to the needs of their case study, e.g., maintain off-stream storage volume above a threshold, release

as little water from a lake as possible and keep flows for early spring to mid-summer under a
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threshold to create slack-water pockets. On a wider note, joint water and energy management in

water canals appears to be a topic of increasing interest in the water-energy nexus context (Doan

et al., 2013; Pour et al., 2022; van der Heijden et al., 2022; Horvath et al., 2022).

Operational management of water canals is carried out by manipulating the available actuators.

Inspection of the surveyed papers reveals the use of a wide variety of actuators, i.e., gates, weirs,

sluices, pumping stations, dams, turbines and electro-valves (see Table 3). Control decisions are

either actuator flow or position setpoints; an assessment of the optimal choice of the input variable

is carried out in Horvath et al. (2015b). These decisions are computed over prediction horizons (the

reviewed papers report values ranging from one minute to ten days), and are applied with fixed

frequencies (ranging from once every five seconds to once every six hours) for the whole duration of

the experiment (ranging from thirty minutes to one year). The effect of these decisions on the system

is measured using available sensors that capture relevant information, e.g., water levels, salinity and

concentration of chemical species. This information, together with estimates of unmeasurable states

(obtained using observers), allows adjusting the decisions at the next time step. It is interesting

to highlight the large variability in terms of time scales across reviewed papers (see Tables 1 and

3). These differences can be explained by the different nature of the experiments: real case studies,

either on a real system (Foo et al., 2014; Nasir et al., 2021) or in silico (Romera et al., 2013; Tian

et al., 2017a; Kong et al., 2019b), laboratory canals (Lemos et al., 2009; Figueiredo et al., 2013;

van Overloop et al., 2014; Horvath et al., 2015b,a; Aydin et al., 2017), canal benchmarks (Wahlin,

2004; Wahlin and Clemmens, 2006b; Rodriguez et al., 2020) and academic examples (Xu et al.,

2011, 2012, 2013; Breckpot et al., 2013b; Xu and Schwanenberg, 2017) are reported. In particular,

laboratory canals are characterized by reduced dimensions in comparison to the rest of the case

studies, which explains the use of smaller time scales.

It was discussed in Section 2.1 that MPC is a model-based approach and that, as such, an

internal model is required to predict the effect of control actions on the system. Existing open-

channel internal models have been presented in Section 2.2.2. On the one hand, some of the

employed models are directly derived from the Saint-Venant equations, e.g., discretizing the system

in space and linearizing (Wagenpfeil et al., 2012; Xu et al., 2012; Tian et al., 2015; Aydin et al.,

2019, 2022). On the other hand, other papers resort to the integrator delay (Hashemy Shahdany

et al., 2017; Zheng et al., 2019; Kong et al., 2019b; Rodriguez et al., 2020; Avargani et al., 2022;

Askari Fard et al., 2022; Liu et al., 2023), the integrator delay zero (Romera et al., 2013; Segovia
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et al., 2019; Pour et al., 2022) and the integrator resonance (van Overloop et al., 2014; Horvath

et al., 2015a,b) models. While a large variety of models is employed in the reviewed papers, it can

be concluded that the use of the ID model is prevalent (in its equivalent state-space form). Finally,

a model-free strategy is proposed by Ren et al. (2021), whereby control policies are obtained via

deep reinforcement learning.

The performance of MPC is also affected by disturbances. Water canals are operated under time-

varying environmental conditions, which are exogenous inputs that attenuate the effect of control

actions and thus complicate the attainment of the operational objectives. Therefore, the occurrence

of these events may have a severe effect on water levels unless properly accounted for in the MPC

design. Although the type of disturbance considered depends on the case study, uncontrolled in-

and/or outflow forecasts, e.g., rainfall (van Overloop et al., 2008; Negenborn et al., 2009; Xu et al.,

2011; Maestre et al., 2013; Velarde et al., 2019), surface-groundwater interaction (Foo et al., 2014;

Aydin et al., 2019) and sea discharges (van Ekeren et al., 2013; Tian et al., 2015; van der Heijden

et al., 2022), are typically used (see Table 1). In addition to these, operational disturbances, e.g.,

offtake flows for irrigation purposes (Wahlin, 2004; Wahlin and Clemmens, 2006a,b; van Overloop

et al., 2010a; Breckpot et al., 2013b; Hashemy et al., 2013; Shahdany et al., 2015; van Overloop

et al., 2015; Shahdany et al., 2016; Xu, 2017; Zheng et al., 2019; Kong et al., 2019a; Shahdany et al.,

2019; Kong et al., 2021), wind effect (Wagenpfeil et al., 2012) and lock operations for navigation

purposes (Segovia et al., 2019; Pour et al., 2022), are also considered. While either perfect or no

knowledge about operational demands is usually considered (scheduled and unscheduled operations,

respectively), uncertain meteorological conditions have motivated the development of stochastic

MPC approaches for water canals (van Overloop et al., 2008; Maestre et al., 2013; Tian et al.,

2017b, 2019; Velarde et al., 2019; Nasir et al., 2021), whereby different disturbance realizations

with individual occurrence probabilities are considered (see Table 2).

In terms of the architecture of controllers for water canals, given the characteristics of central-

ized/distributed controllers (as introduced in Section 2.1), distributed control architectures appear

to be preferable to overcome the computational and scalability drawbacks arising from central-

ized implementations. However, only eight papers consider distributed architectures (see Table 3),

of which four are characterized by a two-layer structure in which the top layer takes care of the

high-level problem setup: uncertainty realization (Velarde et al., 2019), reduction of communica-

tion overhead among local controllers (Farhadi and Khodabandehlou, 2016), selection of optimal
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network topology (Fele et al., 2014) and execution of risk mitigation actions (Zafra-Cabeza et al.,

2011). The remaining four papers consider distributed single-level architectures (Negenborn et al.,

2009; Maestre et al., 2013; Alvarez et al., 2013; Doan et al., 2013). The reduced number of papers

that employ distributed multi-level architectures may be explained by the fact that the choice of

control architecture depends mostly on the extent to which systems are coupled, communication

reliability and computational resource availability. Canals have been traditionally regulated either

manually or using decentralized proportional-integral (PI) controllers that adjust the setpoints dic-

tated by a centralized coordinator (Sadowska et al., 2014, 2015; Nasir et al., 2021), which means

that coupling effects might not be too relevant for their usual operation.

The benchmarking of MPC performance against other approaches is rarely included in the

literature on open-channel control, as shown in Table 4. MPC is only compared to other two

control approaches, namely LQR (Liu et al., 2023; Zheng et al., 2019; Kong et al., 2019a; van

Overloop et al., 2010a; Wahlin and Clemmens, 2006a) and PI(D) (Liu et al., 2023; Kong et al.,

2019a; Foo et al., 2014; van Overloop et al., 2015; Figueiredo et al., 2013; Lemos et al., 2009;

van Overloop et al., 2008; Wahlin and Clemmens, 2006b; Wahlin, 2004), whereby the superior

performance of MPC is demonstrated. Furthermore, although not explicitly reported in Table 4,

benchmarking MPC against manual control demonstrates that MPC leads to better performance

and thus improved system operation (Foo et al., 2014; Askari Fard et al., 2022).

As a final remark, not all papers report information regarding, e.g., nature of the forecast, system

size (number of states), prediction horizon, frequency of decisions and optimization method, in an

explicit manner. This fact complicates the analysis of the reviewed references.

3.3. MPC for urban water networks

The query to retrieve peer-reviewed journal articles on MPC developments and applications to

control urban water networks (see Section 2.3) returned an initial set of 521 papers. From this

set of papers, 453 were excluded from further analysis after manually screening each paper’s title

and abstract, and 19 more based on relevance and fit within the scope of this review (see PRISMA

diagram in Fig. 4). As a result, a subset of 48 articles was retained for detailed tagging and

classification. This group of 48 papers corresponds to 9.4% of the initial dataset of papers retrieved

with the formulated query. Many of the excluded papers were initially obtained as a result of the

search query because they include the keywords listed in the search query in their main text or
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other parts. However, they were then deemed not relevant in relation to the scope of this review

primarily either because of their actual MPC implementation (they only mentioned MPC or other

control schemes but eventually only focused on model development), or because of their spatial

scale of interest. Many studies indeed mentioned urban water systems and networks but eventually

focused only on optimal control of processes occurring in individual network components (e.g.,

water treatment plants). For the above reasons, many papers initially identified in the search were

assessed as not eligible for consideration in this review. The time distribution of these 48 articles

shows that the last 25 years have witnessed an increasing interest towards the implementation of

MPC schemes to control urban water networks. Likely motivated by the increasing amount of

(quasi) real-time sensor data from distributed infrastructure networks, which act as enablers of

real-time control schemes (Creaco et al., 2019), more than 45% of the reviewed studies (n = 22)

were published in the last 5 years only (see Figure 5).

Integrated urban water management requires optimal planning and operations of different net-

work systems which make up the urban water cycle, including drinking water networks, stormwater,

greywater, and wastewater networks. Accordingly, examples of MPC developments and applications

emerge from the literature for supply-side management of drinking water networks and stormwater

and wastewater management. In addition, other recent publications reviewed the existing litera-

ture on control schemes for urban water networks. Yet their scope is rather constrained to only

one type of network infrastructure, i.e., sewer systems (Van Der Werf et al., 2022) or water supply

and distribution networks (Coelho and Andrade-Campos, 2014), and various control schemes are

considered. Conversely, the scope of this review is only spatially constrained by the boundaries of

the integrated urban water system and thematically by the focus on MPC-like control. Still, it is

inclusive of all its sub-components. This review thus compares MPC studies focused on drinking

water networks, as well as wastewater and sewage networks, to identify the type of disturbances,

objectives, actuators, and type of MPC in each case, ultimately evaluating the benefits brought by

MPC and its related challenges.

Most of the reviewed papers address the problem of optimal control of water distribution and

transport networks (n = 34). The typical research goal in these works is to identify optimal

operations of pumps and valves, i.e., the actuators distributed in a water distribution/transport

network. The number of actuators in network infrastructure systems depends on the considered

network’s topological and structural characteristics and size. Their number affects the number of
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control variables in the optimal control problem. In our compilation of reviewed papers (see Table

3), control variables vary from less than 10 in simplified or small systems (e.g., Sankar et al., 2015;

Salomons and Housh, 2020) to more than 120 in larger, real-world systems (Ocampo-Martinez et al.,

2011). Water distribution systems are operated under varying water demand conditions. Forecasts

of water demand are thus needed as input to the underlying hydraulic or data-driven models used

in MPC. Water demand forecasts usually span over a period of 24 hours, relying on the day/night

periodicity of water demand patterns, whereas the frequency of decisions is in the range of a few

minutes (e.g., 5 minutes as in Liu et al. (2020)) and 1 hour (Wang et al., 2016, 2020). Controls in

water transport and distribution networks are computed in such a way that an economic objective

accounting for the cost of running the system (mainly due to electricity consumption for water

pumping and pump start-up costs) is minimised, while water demands in the system are satisfied

(e.g., Shamir and Salomons, 2008). Additional objectives such as guaranteeing safety storage in

water tanks, pressure control, or smoothness of the controls are also often weighted in the complete

objective function (e.g., Ocampo-Martinez et al., 2012; Wang et al., 2017; Grosso et al., 2014;

Grosso Pérez et al., 2016). Only a recent paper on optimal reconfigurations of large-scale systems

via backup actuator activation formulated a multi-objective mixed-integer programming (MIP)

problem with two separate objectives (see Table 3), which was then solved with a lexicographic

approach (Trapiello et al., 2021). A minority of works also considers water quality objectives,

typically quantified via chlorine concentration in the supplied water (Biscos et al., 2003; Muslim

et al., 2008).

The remaining 14 papers deal with optimal management of sewer and drainage infrastructure,

where pumps and gates should be controlled to guarantee cost-effective and smooth operations,

reduced peak flow to wastewater treatment plants, flood control, and avoid overflow in combined

systems (CSOs; Darsono and Labadie, 2007; Puig et al., 2009; El Ghazouli et al., 2022). Rainfall is

usually the uncertain variable to be forecasted (see Table 1) usually with a sub-hourly prediction

horizon (e.g., 30 mins in Joseph-Duran et al., 2014; Sun et al., 2020), which provides information

on the expected inflow to the system to design optimal decisions of gates to be applied with an

operational frequency of 1-5 minutes (Marinaki et al., 1999; Sun et al., 2020; Joseph-Duran et al.,

2015, 2014) to a few hours or a day (Dong and Yang, 2019).

Further, a limited yet recently growing number of articles develops control schemes based on

MPC to operate pumps as turbines and harness the excess energy that would be otherwise dissipated
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for electricity production (Venturini et al., 2017; Stefanizzi et al., 2020; Levieux et al., 2021; Pirard

et al., 2022). While they are not included in this review because they are not directly concerned

with the optimal management of water resources, it is worth mentioning them as recent literature

is shaping around joint opportunities for water and energy management within the broader context

of the water-energy nexus.

The reviewed papers present a variety of applications and case studies, with different formula-

tions of the objective function, controls, disturbances and forecasting horizon, system characteris-

tics, and overall goals. Hence, results are also often case-specific and hard to generalise. However,

in most reviewed works, MPC schemes - primarily implemented with a centralised architecture - are

benchmarked against other control strategies and comparatively attain a better performance (i.e.,

reduced operational costs and violation of physical and operational constraints). Historical/current

rule-based controls are usually taken as baseline reference (e.g., in Wang et al., 2020; Balla et al.,

2022), along with local controllers (Puig et al., 2009) and PI controllers (Martin et al., 2022).

A solid alternative for either implementing non-centralised control approaches or complementing

control strategies for the management of UWNs is based on evolutionary game theory (Quijano

et al., 2017). For the former case, several proposals have been reported towards not only designing

predictive controllers accounting for the suitable partitioning of a large-scale drinking water net-

work (Barreiro-Gomez et al., 2019; Muros et al., 2018) but also the synthesis of control strategies

entirely based on such game theory (Barreiro-Gomez et al., 2016, 2017b; Obando et al., 2022).

Regarding game-theory-based approaches that assist a predictive controller, tuning methodologies

for multi-objective predictive controllers are also reported (Barreiro-Gomez et al., 2017a).

Overall, MPC has proven to be effective in attaining substantial cost savings in comparison to

existing rule-based or set-point controllers in water distribution networks, which usually operate

based on storage level thresholds. For instance, energy cost savings between 8% and 10% were

calculated with simulations for a summer and winter month in Shamir and Salomons (2008). Other

studies considering MPC controllers in urban drainage networks found that MPC can reduce the

number of flooded nodes during an extreme weather event and lower peak flow by more than 50%

in drainage systems subject to heavy rainfall events (Shishegar et al., 2021; Kändler et al., 2022).

Case-specific results and cost/energy savings referred to different baseline values, implementations

of the objective functions, and MPC parameters, though, do not allow for a direct quantitative

comparison of MPC performance across studies. Further, several limitations and existing research
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gaps emerge from the analysis of the 48 reviewed papers. Most of the considered studies adopt, at

least to some extent, a series of simplifications to address the challenges related to (i) accounting for

uncertainties in disturbance prediction and (ii) dealing with the computational burden of simulating

potentially large real-world networks in model-based approaches.

Concerning the first group of challenges, only six studies out of 48 consider the uncertainty in

disturbance forecasts by implementing a stochastic or combined deterministic and stochastic MPC

approach. The majority instead focuses on demonstrating the superiority of MPC in comparison to

other control strategies under a deterministic scenario. This scenario is sometimes built assuming

perfect disturbance prediction (Marinaki et al., 1999; Tedesco et al., 2016) or simple statistics on

water demands from past data, while the type of forecast remains unclear in many other cases.

Concerning the second group of challenges, reducing the computational effort required to sim-

ulate large real-world networks is addressed in the literature with three different types of simpli-

fication approaches. First, some studies only consider very small networks, usually built ad hoc

as artificial systems for research purposes, composed of a handful of nodes and just a few actua-

tors (Sankar et al., 2015). This approach also makes up for the lack of data that often limits the

possibility of developing studies based on real-world urban water networks. Other studies instead

simplify the size of existing real-world systems by removing irrelevant nodes and links and obtain-

ing a skeletonised system (as, for instance, in Shamir and Salomons, 2008). Beside the physical

properties of the considered system, its operational properties and the physical characteristics of

its actuators are often simplified, too. For example, some work only consider fixed-speed pumps,

simple valve models characterised only by upper and lower bounds on the flow, and none consider

dynamic/time-varying energy prices, but a few exceptions. Our review found that 27 studies are

based on simplified or synthetic case studies, while only 10 rely on full-scale real-world systems. A

third strategy to deal with the computational effort required by the simulation of large-scale hy-

draulic networks is the implementation of data-driven surrogate (or meta) models that substitute

the high-fidelity hydraulic model with more computationally efficient yet still accurate models that

can be coupled with optimisation. Dong and Yang (2019), for instance, implement a long-short-term

memory (LSTM) neural network for operation scheduling of water diversion and drainage pumping

stations in the presence of complex hydrometeorological constraints. Many research efforts have

been recently developed revolving around surrogate models, also pushed by recent development in

artificial neural networks and deep learning (e.g., Fiedler et al., 2020). As many are pretty recent

33



Table 1: Summary of the disturbances and forecast features of the studies reviewed applying MPC to water systems,

grouped by type of system (WR: Water Reservoirs; OC: Open Channels; UWN: Urban Water Networks). Numbers

indicate the frequency for each class, with citations for rare features in the literature (up to 3 articles) to highlight

the studies with peculiar or unique features.
DISTURBANCE AND FORECAST FEATURES

FORECASTED

VARIABLE

Rainfall /

inflow
Tide

Water

demand

Electricity

demand

Lock

operations

Concentrations of

chemical species
Wind

Head /

water levels

WR 40
2 (Galelli et al.

(2014,2015))
0 0 0 0 0 0

OC 22

3 (van Ekeren

et al. (2013),

Tian et al.

(2015), Pour et

al. (2022))

33

1 (van der

Heijden et

al. (2022))

2 (Wagenpfeil

et al. (2012),

Segovia et al.

(2019))

3 (Xu et al. (2013),

Aydin et al. (2019),

Aydin et al. (2022))

1 (Wagenpfeil

et al. (2012))
0

UWN 6 0 24 0 0 1 (Dong and Yang (2019)) 0

2 (Dong and

Yang (2019),

Kändler et

al. (2022))

FORECAST TYPE

(PERFECT/REAL)

Perfect

Statistical

or ML-based

(including

synthetic)

Process-

based

Hybrid (process-based +

statistical/ML))

Complete

lack of

knowledge

Unclear

WR 15 21 16
2 (Ahmad and Hossain (2019),

Wei and Xun (2019))
0 4

OC 35 6 5 1 (van Overloop et al. (2008)) 13 9

UWN
2 (Marinaki et al. (1999),

Tedesco et al. (2016))
8

1 (Shishegar

et al. (2021))
0 0 37

PREDICTION

HORIZON

≤ 1 hour ≤ 1 day ≤ 1 week ≤ 1 month ≤ 1 year > 1 year Unclear

WR 0 5 12 9 7 4 3

OC 10 34 5
1 (Tian

et al.(2015))
0 0 9

UWN 6 28
2 (Salomons and Housh (2020),

Shishegar et al. (2021))
0 0 0 13

and only appear so far in conference proceedings, they might not have been captured by our review.

Finally, it must be noted that, while it was possible to identify the above trends and challenges,

one non-negligible finding is that many works do not report sufficient details on the type of forecasts,

system size (state variables), implemented optimisation method, benchmark, and in some cases

even the formulation of the objective function. This limits our capabilities to carry out a complete

analysis of the attributes of such studies and, in general, hampers their full reproducibility.

4. Discussion

While the three types of water systems considered (water reservoirs, open channels and urban

water networks) feature domain-specific physical characteristics and different types of actuators,
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Table 2: Summary of the disturbances representation (deterministic and stochastic approaches, uncertainty model)

of the studies reviewed applying MPC to water systems, grouped by type of system (WR: Water Reservoirs; OC:

Open Channels; UWN: Urban Water Networks). Numbers indicate the frequency for each class, with citations for

rare features in the literature (up to 3 articles) to highlight the studies with peculiar or unique features. Note: if the

ensemble is reduced, the reduced ensemble size is reported, as the one used in the optimization problem.

DISTURBANCE AND UNCERTAINTY REPRESENTATION

DETERMINISTIC/

STOCHASTIC

Deterministic Stochastic Both (Stochastic / Deterministic)

WR 23 13 4

OC 52 4 2 (Maestre et al. (2013), Tian et al. (2017b))

UWN 36 5 1 (Pedrosa et al. (2022))

TYPE OF

STOCHASTIC

APPROACH

AND ENSEMBLE

SIZE

ENSEMBLE
PDF

≤ 10 ≤ 30 > 30

WR

3 (Delgoda et

al. (2013), Ficch̀ı

et al. (2016), Payet-

Burin et al. (2021))

8

2 (Anghileri

et al. (2016),

Uysal et al. (2018))

4

OC

2 (van Overloop

et al. (2008),

Maestre et

al. (2013))

3 (Tian et al. (2017b),

Tian et al. (2019),

Velarde et al. (2019))

1 (Nasir et al. (2019)) 0

UWN
2 (Grosso et al. (2014),

Grosso et al. (2016))
0 1 (Grosso et al. (2017))

2 (Pour et al. (2020),

Pedrosa et al. (2022))

OPERATOR OVER

ENSEMBLE (IMPLICIT)

OR PDF (EXPLICIT)

IMPLICIT EXPLICIT

Expected value Tree
Min-max or

quartiles
Expected value (PDF)

WR 8 4

3 (Cuvelier et

al. (2018),

Ahmad and Hossain

(2019), Arsenault

and Cote (2019))

2 (Pianosi and

Soncini-Sessa (2009),

Wang (2010))

OC

3 (van Overloop

et al. (2008), Tian

et al. (2019), Nasir

et al. (2021))

3 (Maestre et al. (2013),

Tian et al. (2017b),

Velarde et al. (2019))

0 0

UWN
2 (Grosso et al. (2014),

Grosso et al. (2016))
1 (Grosso et al. (2017)) 0

2 (Pour et al. (2020),

Pedrosa et al. (2022))
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Table 3: Summary of the control variable characteristics of the studies reviewed applying MPC to water systems,

grouped by type of system (WR: Water Reservoirs; OC: Open Channels; UWN: Urban Water Networks). Numbers

indicate the frequency for each class, with citations for rare features in the literature (up to 3 articles) to highlight

the studies with peculiar or unique features.

CONTROL-RELATED INFORMATION

FREQUENCY

OF CONTROL

ACTIONS

≤ 1 hour ≤ 1 day ≤ 1 month ≤ 1 year > 1 year Unclear

WR 11 18 9 1 (Xu et al. (2015)) 0 1

OC 51

3 (Foo et al.

(2014), Tian et

al. (2015,2017b))

0 0 0 4

UWN 32

2 (Dong and

Yang (2019),

Shishegar

et al. (2021))

0 0 0 15

NUMBER OF

CONTROL

ACTIONS

1 ≤ 5 ≤ 10 ≤ 50 > 50 Unclear

WR 20 11

3 (Wang (2010),

Kistenmacher and

Georgakakos (2015),

Karimanzira

et al. (2016))

4
1 (Zmijewski

et al. (2016))
1

OC 8 21 10 16 0 3

UWN
1 (Kändler

et al. (2021))
9 10 6 10 0

TYPE OF

CONTROL

ACTION

Reservoir

release

Pump/valve

operations
Gate operations

Chemical

dosage
Other Unclear

WR 39 4 4 0

3 (Galelli et

al. (2014,2015),

Gavahi et al.

(2019))

0

OC
1 (Foo et

al. (2014))
14 38 0 6 13

UWN
1 (Marinaki

et al. (1999))
34 6 0

2 (Shishegar

et al. (2021),

van der Werf

et al. (2021))

5

CONTROL

ARCHITECTURE

(CENTRALIZED/

DECENTRALIZED/

DISTRIBUTED,

SINGLE-LEVEL/

MULTI-LEVEL)

Centralized,

single-level

Centralized,

multi-level

Decentralized,

single-level

Decentralized,

multi-level

Distributed,

single-level

Distributed,

multi-level

WR 40 0

2 (Giuliani and

Castelletti (2013),

Anand et al. (2013))

2 (Giuliani and

Castelletti (2013),

Anand et al. (2013))

0 0

OC 46
1 (Pour et

al. (2022))
0

3 (Sadowska et al.

(2014,2015),

Nasir et al. (2021))

4 4

UWN 35 0
1 (Martin

et al. (2022))
1 (Wang et al. (2017)) 0 0
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Table 4: Summary of the problem size (state variables), objectives (number and type), and benchmarking of the

studies reviewed applying MPC to water systems, grouped by type of system (WR: Water Reservoirs; OC: Open

Channels; UWN: Urban Water Networks). Numbers indicate the frequency for each class, with citations for rare

features in the literature (up to 3 articles) to highlight the studies with peculiar or unique features.

SYSTEM SIZE, OBJECTIVES AND BENCHMARKING

NUMBER

OF STATE

VARIABLES

≤ 5 ≤ 10 ≤ 50 > 50 Unclear

WR 30

3 (Wang (2010),

Kistenmacher and Georgakakos (2015),

Karimanzira et al. (2016) )

3 (Myo Lin et al.

(2018,2020), Salehi

and Shourian (2021))

1 (Blanco et

al. (2010))
3

OC 18 9 18 9 4

UWN 8 4 9

3 (Marinaki

et al. (1999),

Grosso et al.

(2016), Tedesco

et al. (2016))

0

NUMBER OF

OBJECTIVES

1 ≤ 4 > 4 Unclear

WR 35 5 0 0

OC 0 56 2 (Foo et al. (2014), Pour et al. (2022)) 0

UWN 37 2 0 10

OBJECTIVE

TYPE

Economic

(cost

minimization)

Flood/

overflow

minimization/

water level

control

Water supply/

demand

satisfaction

Active

actuator

minimization/

smooth

operations

Contaminant/

salinity

concentration

minimization

Environmental

protection

(environmental

flow)

Hydropower

WR 8 25 18

2 (Karimanzira

et al. (2016),

Uysal et al.

(2018a))

1 (Galelli

et al. (2015))
4 17

OC 8 55
2 (Foo et al. (2014),

Horvath et al. (2022))
47

2 (Aydin et al.

(2019,2022))

2 (Foo et al. (2014),

Horvath et al. (2022))

1 (Doan et

al. (2013))

UWN 11 8 0 11

3 (Biscos et al.

(2003), Muslim

et al. (2008),

Cong Cong

et al. (2016))

0 0

BENCHMARK

DDP

(Deterministic

Dynamic

Programming)

SDP

(Stochastic

Dynamic

Programming)

Historical operation

or current curves
PI control LQR

No

benchmark/

unclear

WR 4 8 11 0 0 19

OC 0 0
2 (Foo et al. (2014),

Askari Fard et al. (2022))
6 5 46

UWN 0 0 10
2 (Muslim et al. (2008),

Martin et al. (2022))
0 35
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objectives, and disturbances that should be accounted for in a control problem, common advan-

tages/drawbacks of MPC, trends and challenges emerge from this review.

MPC offers three primary advantages over more conventional SDP and ADP methods: (A1)

MPC overcomes the so-called ‘curse of dimensionality’ of Dynamic Programming, as it avoids the

computation of the value function, by iterating the optimal control problem over a finite receding

horizon; as a result, the computation costs of MPC do not increase exponentially with problem size

(i.e., state and control dimension), which makes MPC a more viable approach for large-scale multi-

reservoir systems with more than three reservoirs (e.g., Wang, 2010; Kistenmacher and Georgakakos,

2015; Ficchi et al., 2016), as well as for large OC (e.g., Shahdany et al., 2019; Rodriguez et al.,

2020; Kong et al., 2021) and UWN (e.g., Mart́ınez et al., 2007; Tedesco et al., 2016; Wang et al.,

2021). (A2) MPC overcomes the ‘curse of modeling’ of DP by allowing the optimization model

to take updated decisions at each time step with a real-time receding horizon strategy, making

use of existing models and optimization frameworks (e.g., Segovia et al., 2019; Nasir et al., 2021;

Mohanavelu et al., 2022). (A3) MPC can deal with hydro-climatic variability, nonstationarities

and uncertainty (e.g., Castelletti et al., 2008a; Maestre et al., 2013; Velarde et al., 2019; Payet-

Burin et al., 2021). By using real-time information and probabilistic forecasts in the optimization

process, MPC allows water systems operation to adapt to changes in the climate or catchment

and to mitigate the impacts of extreme hydrological events anticipating them, particularly those

occurring in unusual periods of the year (e.g., Castelletti et al., 2008a). These advantages make MPC

a more effective control technique and more feasible than DP for large water systems (especially

large channel and urban water networks), as shown in a few studies benchmarking MPC against

DP/ADP methods.

Although MPC has these advantages over more conventional DP and off-line methods, it also

has a few drawbacks: (D1) The iterative optimization involved in MPC can also lead to intensive

computations, especially for large-scale water systems with many actuators and a centralized con-

troller. For example, for open channels, Ren et al. (2021) discuss how the computation burden

associated with MPC can be a significant obstacle in large-scale systems with high-dimensional

state and control spaces, making it impractical to perform online calculations at each time step;

they call this a ’curse of dimensionality’ for MPC too, though this is less prohibitive than for DP.

Other authors have also paid attention to the trade-off between solution optimality and computa-

tion time, and have tested different MPC formulations to verify conditions under which optimal
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control actions may be determined within a prescribed real-time control period. For instance, Xu

et al. (2012) test quadratic-programming-based (QP) and sequential-quadratic-programming-based

(SQP) MPC, and find out that SQP-MPC achieves better control performance than QP-MPC at

the expense of highly increased computation times (execution is 30 times slower). Alternative ap-

proaches to overcome the costs related to centralized MPC controllers applied to large-scale systems

and to foster scalability have been explored also in urban water networks. Tedesco et al. (2016),

for instance, test the use of distributed approaches (command governor strategies), in which the

global control system is decomposed and local controllers are used, each responsible for the super-

vision of each subsystem. (D2) The performance of MPC is highly dependent on reliable prediction

models, which may not be available for large-scale systems over long prediction horizons, making

MPC-based control approaches ineffective in some cases (e.g., Ren et al., 2021).

Two main common trends can be identified: (T1) an increasing number of studies adopting

ML-based models to predict the disturbances (e.g., inflows, tides); (T2) an expanding proportion

of stochastic MPC applications over the last decade (since 2013), though still a minority to deter-

ministic MPC.

The main challenges currently limiting the scope of MPC studies can be grouped into the

following four categories, which should serve as main goals to formulate a research agenda for the

next few years: (C1) lack of benchmarking studies that comprehensively compare MPC against other

control schemes and assess its performance in relation to the characteristics of the physical system;

(C2) lack of assessment of the uncertainty embedded in the model-based control and simplifications

adopted in the model structure; (C3) incomplete analysis on the impact of the type of forecast,

forecast resolution, and length of the prediction horizon; and (C4) limited exploration of tradeoffs

and truly multi-objective MPC problems, to go beyond the single-objective nature of the problem

formulation (that is often achieved via aggregation of multiple objectives functions appearing in

multi-objective problems).

Related to the first challenge (C1) of evaluating the performance of MPC comprehensively and

objectively, in most of the reviewed studies, there is a lack of consistent benchmarking of MPC

with respect to other control methods and across systems with different characteristics. Only a few

studies compare MPC against multiple alternative techniques, and none compare MPC with off-line

alternatives using available forecasts in real-world settings. Most past studies across all types of

considered water systems either used only perfect forecasts to set the upper-bound performance
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used as “ideal” reference (e.g., Uysal et al., 2018a; Marinaki et al., 1999), or focused on an off-line

benchmark control scheme without actual forecasts, but rather with historical operations, typically

based on rule curves or other set-point approaches (e.g., Delgoda et al., 2013; Xu et al., 2015; Wang

et al., 2020) and Stochastic Dynamic Programming (e.g., Wang, 2010; Galelli et al., 2014; Kergus

et al., 2022). A comparative analysis of the MPC performance in different contexts and in relation to

case-specific characteristics (e.g., physical features of the system, constraints, objectives, etc.) would

be important to assess the dependence between such characteristics and expected MPC results.

However, many different factors are varying across the reviewed studies and for different types of

systems, both in terms of system characteristics and optimization problem parameters. Thus, a

direct comparison of existing quantitative results would not be meaningful. A fair comparative

analysis would instead require consistent benchmarking studies comparing the relative performance

of MPC with respect to the same benchmark control method across studies. We acknowledge

that the performance of MPC can be affected by the characteristics of the basin, hydrology of the

open channels, and other factors, which can vary significantly between different geographic regions.

Therefore, further studies carrying out comparative analyses of MPC with consistent settings and

with real-world data (beside synthetic cases, which are frequent in the reviewed papers) should be

considered for water reservoirs, urban water networks, and open channels.

As for C2, the key element of MPC is the use of a model of the system to be controlled, yet

models are always subject to errors, inaccuracies, and uncertainties. MPC leverages the accuracy

of the models of the systems to ensure the robustness of the controller with respect to uncertainties

(e.g., Schwenzer et al., 2021). Many studies reviewed recognise this aspect and provide at least some

insights into the accuracy of the chosen internal models, supporting their choice (e.g., Galelli et al.,

2014; Munier et al., 2015; Ficchi et al., 2016; Giuliani and Castelletti, 2013). However, some studies

do not analyse the model’s accuracy in sufficient detail, and few do not provide any information on

this. Moreover, most of the studies reviewed (more than 100 out of 149) do not assess the impact of

the MPC internal model uncertainty as usually the same models for both the open-loop optimisation

and closed-loop simulation (with an associated update of model states) have been used. This is

especially the case for water reservoirs and urban water networks. Only for open channels, most of

the studies (> 30 out of 58, with few studies with unclear information) test MPC with a different

internal prediction model than the model used for the closed-loop simulation. Simplified versions of

the Saint-Venant equations are usually used as an internal model in the MPC, while the full Saint-
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Venant equations, implemented in software solutions such as SOBEK (e.g., Wahlin and Clemmens,

2006b; van Overloop et al., 2010a; Fele et al., 2014; Hashemy Shahdany et al., 2017; Tian et al.,

2019; Liu et al., 2023) and SIC2 (e.g., Alvarez et al., 2013; van Overloop et al., 2014; Horvath et al.,

2015a,b; Segovia et al., 2019; Pour et al., 2022), are used as closed-loop simulation models. Using

the same internal model for the closed-loop simulation is likely to lead to an overestimation of the

MPC performance, but this is the solution adopted by many authors for two obvious reasons: (i)

computation time reduction, and (ii) lack of more (refined) models readily available. For water

reservoirs, only a few studies (e.g., Munier et al., 2015; Lin et al., 2020) have adopted a more

refined and computationally-intensive model for the closed-loop simulation, which is essential to

assess the robustness of the controller. Moreover, many studies, primarily on MPC applications

in urban water networks, rely on simplified or synthetic systems (e.g., Sankar et al., 2015) due

to the limited availability of calibrated high-fidelity models and the computational requirements of

coupled hydraulic and water quality simulations of large-scale network systems models. While more

computationally-efficient alternatives exist, including data-driven surrogate models (see Section

3.3), they often come with a tradeoff between computational savings and model accuracy. This

should also be better quantified, possibly in relation to system size and characteristics.

Regarding the type of forecasts used in MPC (C3), various forecast variables, types and models

emerge from the current literature, with differences depending on the type of water systems con-

sidered. In terms of forecasted variables, for water reservoirs, all the studies used either rainfall,

inflow or tide forecasts. For urban water networks, water demand forecasts are mostly used, with

a minority of studies also using rainfall/inflow or water levels. On the other hand, a more diverse

set of forecasts are used for open channels, with more than half using water demand forecasts, less

than half rainfall/inflow and a few other variables (see Table 1). In terms of the type of forecasts,

for urban water networks, almost all the few studies relying on real (non-perfect) forecasts used

statistical or ML-based models (e.g., Salvador et al., 2020; Dong and Yang, 2019). For open chan-

nels, six studies used statistical or ML-based models (e.g., Maestre et al., 2013; Tian et al., 2017b),

five used process-based models (e.g., Xu et al., 2013; Aydin et al., 2019), and a single study used

a hybrid approach (van Overloop et al., 2008). The picture is more complex for water reservoirs,

for which the studies adopting real forecasts used more sources and forecasting techniques: less

than half of them used well-established process-based hydrological models fed by operational me-

teorological forecasts (e.g., Wang et al., 2014; Raso et al., 2014; Ficchi et al., 2016) to produce the
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forecasts used in MPC, while slightly more than half used statistical or machine learning-based

models that are calibrated on past observed data (e.g., Pianosi and Soncini-Sessa, 2009; Giuliani

and Castelletti, 2013; Galelli et al., 2015; Gavahi et al., 2019). Only a few studies compared or

integrated these two different techniques (Wei and Xun, 2019; Ahmad and Hussain, 2019). Given

the recent increase in the availability of both real hydro-meteorological forecasts and efficient ma-

chine learning models, it is logical to expect benefits from more testing of hybrid forecast products

in MPC and further applications are needed. Along the same lines, also the availability of forecasts

at multiple timescales has been increasing, from short-range (few days) to seasonal- or long-range

(up to 6-7 months or a year), and there is growing interest in seamless forecasts (e.g., Wetterhall

and Di Giuseppe, 2018). However, there is a lack of research integrating multiple forecast products

across time scales in MPC. Moreover, there is a lack of research investigating the dependence of

the optimal prediction horizon and relative MPC performance on the accuracy of forecasts. The

optimal horizon and the MPC performance are expected to be intensely dependent on the quality

of the forecasts (e.g., Payet-Burin et al., 2021; Wei and Xun, 2019), and this dependence is not

trivial due to the receding horizon and on-line update of the control strategy.

Finally, a key point for multipurpose water systems is that only a limited number of studies

explored possible Multi-Objective (MO) MPC frameworks (e.g., Lin et al., 2020) typically required

to address the tradeoffs across sectors by providing a set of Pareto-optimal solutions (C4). The

majority of the reviewed papers rather compute a weighted sum of the objectives (e.g., Dong and

Yang, 2019; Tedesco et al., 2016), which aggregates multiple objectives in an individual objective

function, and some authors reduce the number of objectives by enforcing more constraints in the

control problem. Further work is needed to explore Pareto-optimal solutions from MPC both at

each control time step and over a long simulation horizon rolled by multiple receding horizons to

account for the multi-objective nature of water systems’ operation problems and enable tradeoff

analysis.

Lastly, we noticed that the level of detail in reporting model description, optimal control problem

formulation and explanation of the proposed control/management methodology is heterogeneous

across the collection of reviewed papers. In many cases, there is no sufficient level of detail in

the reviewed journal articles to allow for a full and fair comparison. A final recommendation is

thus to develop a standardised framework to report key information on the essential components

of future MPC studies (e.g., type of forecasts, system size and state variables, implemented optimi-
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sation method, benchmark methods, objective function, control variables, their number and their

frequency) to facilitate comparison across studies, ultimately supporting knowledge transfer and

reproducibility.

5. Conclusions

In recent years, Model Predictive Control has gained interest in the adaptive management of

interconnected water resources systems, motivated by its capability of incorporating forecasts of

evolving disturbances into a real-time optimal control scheme. Our comprehensive review of 149

peer-reviewed journal articles published in the last 20 years, selected after screening an originally

more extensive set of 826 papers and checking them for eligibility, confirms an overall increasing

adoption of MPC in all considered inter-connected sub-domains at the basin to urban scale, i.e.,

water reservoirs, open channels, and urban water networks. Despite the differences across these

three types of systems, some common advantages, drawbacks, trends and challenges were identi-

fied in relation to MPC applications. In particular, our review identifies four main categories of

challenges currently limiting most MPC applications in the water domain: (i) lack of systematic

benchmarking of MPC with respect to other control methods and lack of assessment of the MPC

performance in relation to the characteristics of the physical system; (ii) lack of assessment of the

impact of uncertainties on the model-based control; (iii) limited analysis of the impact of diverse

forecast types, resolutions, and prediction horizons; (iv) under-consideration of the multi-objective

nature of most water resources systems. We argue that future MPC applications in water resources

systems should focus on addressing these four challenges, as key priorities for future developments.
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Grosso Pérez, J.M., Ocampo-Martinez, C., Puig Cayuela, V., 2016. Reliability-based economic

model predictive control for generalized flow-based networks including actuators’ health-aware

capabilities. International Journal of Applied Mathematics and Computer Science 26, 641–654.

Gründemann, G.J., van de Giesen, N., Brunner, L., van der Ent, R., 2022. Rarest rainfall events

will see the greatest relative increase in magnitude under future climate change. Communications

Earth & Environment 3, 235. URL: https://doi.org/10.1038/s43247-022-00558-8, doi:10.

1038/s43247-022-00558-8.

GWP, G.W.P., 2021. Storing water: A new integrated approach for resilient development. volume 13

of Perspectives Papers. GWP Secretariat, Stockholm.

Hall, J.W., Grey, D., Garrick, D., Fung, F., Brown, C., Dadson, S.J., Sadoff, C.W., 2014.

Coping with the curse of freshwater variability. Science 346, 429–430. URL: https://www.

science.org/doi/abs/10.1126/science.1257890, doi:10.1126/science.1257890. eprint:

https://www.science.org/doi/pdf/10.1126/science.1257890.

Hashemy, S.M., Monem, M.J., Maestre, J.M., Van Overloop, P.J., 2013. Application of an in-line

storage strategy to improve the operational performance of main irrigation canals using model

predictive control. Journal of Irrigation and Drainage Engineering 139, 635–644. doi:10.1061/

(ASCE)IR.1943-4774.0000603.

Hashemy Shahdany, S.M., Hasani, Y., Majidi, Y., Maestre, J.M., 2017. Modern operation of main

irrigation canals suffering from water scarcity based on an economic perspective. Journal of Irri-

gation and Drainage Engineering 143, B4016001. doi:10.1061/(ASCE)IR.1943-4774.0001024.

van der Heijden, T., Lugt, D., van Nooijen, R., Palensky, P., Abraham, E., 2022. Multi-market

demand response from pump-controlled open canal systems: an economic MPC approach to

pump-scheduling. Journal of Hydroinformatics 24, 838–855. doi:10.2166/hydro.2022.018.

Hirsch, C., 2007. Numerical computation of internal and external flows: The fundamentals of

computational fluid dynamics. Elsevier.

52

https://doi.org/10.1038/s43247-022-00558-8
http://dx.doi.org/10.1038/s43247-022-00558-8
http://dx.doi.org/10.1038/s43247-022-00558-8
https://www.science.org/doi/abs/10.1126/science.1257890
https://www.science.org/doi/abs/10.1126/science.1257890
http://dx.doi.org/10.1126/science.1257890
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000603
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000603
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0001024
http://dx.doi.org/10.2166/hydro.2022.018


Horvath, K., Galvis, E., Gomez Valentin, M., Rodellar, J., 2015a. New offset-free method for

model predictive control of open channels. Control Engineering Practice 41, 13–25. doi:10.1016/

j.conengprac.2015.04.002.

Horvath, K., Galvis, E., Gomez Valentin, M., Rodellar Benede, J., 2015b. Is it better to use gate

opening as control variable than discharge to control irrigation canals? Journal of Irrigation and

Drainage Engineering 141. doi:10.1061/(ASCE)IR.1943-4774.0000798.

Horvath, K., van Esch, B., Vreeken, T., Piovesan, T., Talsma, J., Pothof, I., 2022. Potential of

model predictive control of a polder water system including pumps, weirs and gates. Journal of

Process Control 119, 128–140. doi:https://doi.org/10.1016/j.jprocont.2022.10.003.

Huang, R., Ma, C., Ma, J., Huangfu, X., He, Q., 2021. Machine learning in natural and engineered

water systems. Water Research 205, 117666. URL: https://www.sciencedirect.com/science/

article/pii/S0043135421008617, doi:10.1016/j.watres.2021.117666.

IPCC, 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis.

Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel

on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger,
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Şen, Z., 2021. Reservoirs for Water Supply Under Climate Change Impact—A Review. Water Re-

sources Management 35, 3827–3843. URL: https://doi.org/10.1007/s11269-021-02925-0,

doi:10.1007/s11269-021-02925-0.

69

https://www.frontiersin.org/articles/10.3389/frwa.2022.983228
https://doi.org/10.1002/qj.3952
http://dx.doi.org/10.1002/qj.3952
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0001390
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0001390
http://dx.doi.org/10.3390/w12102733
https://doi.org/10.1007/s11269-021-02925-0
http://dx.doi.org/10.1007/s11269-021-02925-0


List of acronyms

ADP Approximate Dynamic Programming

ANN Artificial Neural Network

CSO Combined Sewer Overflow

DDP Deterministic Dynamic Programming

DSS Decision Support System

EPANET Environmental Protection Agency Network Evaluation Tool

ESP Ensemble Streamflow Prediction

FQI Fitted Q-Iteration

IPCC Intergovernmental Panel on Climate Change

I Integrator

ID Integrator Delay

IDZ Integrator Delay Zero

IR Integrator Resonance

ISO Implicit Stochastic Optimization

ML Machine Learning

MO Multi-Objective

MPC Model Predictive Control

OC Open Channel

OLFC Open-Loop Feedback Control

PID Proportional-Integral-Derivative

POLFC Partial Open-Loop Feedback Control

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

SDP Stochastic Dynamic Programming

SWMM Storm Water Management Model

SICˆ2 Simulation and Integration of Control for Canals

SOP Standard Operating Procedure

SSDP Sampling Stochastic Dynamic Programming

TB-MPC Tree-Based Model Predictive Control

UWN Urban Water Networks

WR Water Reservoirs

70



LaTeX Source File

Click here to access/download
LaTeX Source File

MPC_Review_paper_Revised_Latex_source_20230323.
zip

https://www.editorialmanager.com/jarap/download.aspx?id=17630&guid=9c940a0a-7e9c-47c8-95b6-6d7ceb80a490&scheme=1


 1 
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perfect 
forecasts) 

n/a n/a daily 1 
release 
from 
reservoir 

centralized, single 
level 

1 1 
flood control,  
water supply 

off-line policy 
based on a 
more 
accurate 
model of the 
inflow 

 

Blanco et al. 
(2010) 

inflow (8 
inflows) 

D 

a conceptual 
hydrological 
model fed by 
rainfall 
predictions 

30 hours 1 n/a (D) hourly 12 

water 
release 
(gate 
movement) 

Centralized, single 
level 

75 1 flood control 

historical 
operation (a 
three-position 
controller 
based on a 
setpoint 
water level) 

 

Romanowicz 
et al. (2010) 

inflow D 

statistical 
predictions 
(nearest 
neighbour 
technique) 

30 days 1 n/a (D) hourly 1 
water 
release 

centralized, single 
level 

1 1 

hydropower 
generation, 
environmental 
protection 

n/a  

Wang (2010) inflow S 

statistical 
predictor, 
AR(1) model 
with error 
described as a 
white noise 
process 

from 1 
week to 1 
year 

1 n/a weekly 7 
release 
from 
reservoir 

centralized, single 
level 

7 1 
hydropower 
production 

SDP  

Zambelli et 
al. (2011) 

infow D 
statistical 
forecast using 
the monthly 

13 months 
to 24 
months 

1 n/a (D) monthly > 4 * 
water 
release 

centralized, single 
level 

5 1 
hydropower 
generation 

SDDP  
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2 

average of 
historical 
inflow records 

(depending 
on current 
monthly 
stage) 

Giuliani and 
Castelletti 
(2013) 

inflow D 

a linear 
periodic 
PAR(1) model 
(at monthly 
time step) 

3 months 1 n/a (D) monthly 5 
release 
from 
reservoirs 

(i) decentralized
noncooperative
setting; (ii)
coordinated setting,
with full information
exchange; (iii) ideal
centralized case,
fully cooperative
management.

4 2 

hydropower 
production, 
environmental 
flow 

n/a 

Anand et al. 
(2013) 

inflow D 

perfect 
predictor and 
statistical 
prediction with 
a randomly 
generated 
noise 

3 days 1 n/a (D) daily 2 
release 
from 
reservoirs 

both centralized 
and decentralized 
configurations, with 
different levels of 
cooperation 

2 1 

hydropower 
generation, 
flood control, 
water supply 

n/a 

Breckpot et 
al. (2013) 

inflow D * * 1 n/a (D) hourly 1 
discharge 
at the 3 
gates 

Centralized, single 
level 

* 1 flood control n/a 

Delgoda et al. 
(2013) 

inflow S 

inflows 
predicted by a 
rainfall-runoff 
model (URBS) 

48 hours 7 
expected 
value 

hourly 1 
release 
from 
reservoir 

centralized, single 
level 

1 1 
flood control, 
water supply 

historical 
operation 

Galelli et al. 
(2014) 

inflow and tide D 

two types: (i) 
ML-based (M5
tree), for
inflows; (ii) a
dynamic
physically-
based model,
for tide
predictions

3 hours 1 n/a (D) hourly 3 

releases 
from 
reservoir 
gates, 
pumps, and 
drinking 
water 
intake 
pumps 

centralized, single 
level 

1 1 

drinking water 
supply, 
flood control, 
pumps usage 
energy cost 

SDP 

Raso et al. 
(2014) 

inflow S 

perfect 
forecasts and 
real forecasts 
from a 
conceptual 
hydrological 
model (HBV) 

15 days 20 tree 6 hours 2 

release 
from 
reservoir 
(controlled 
releases 
from the 
turbines 
and the 
spillways) 

centralized, single 
level 

1 1 
hydropower 
production, 
flood control 

n/a 

Wang et al. 
(2014) 

inflow D 

process-
based 
(distributed 
physically-
based 
hydrological 
model) fed by 

4 days 1 n/a (D) daily 3 
release 
from 
reservoir 

centralized, single 
level 

3 1 
hydropower 
production, 
flood control 

historical 
operation 



 3 

operational 
precipitation 
forecasts  

Galelli et al. 
(2015) 

inflow and tide D 

ML-based (M5 
tree) and 
process-
based 
dynamic 
predictions 
(inflows and 
tides), 
Dynamic 
Emulation 
Modeling 
procedure, for 
seawater 
intrusion  

3 hours 1 n/a (D) hourly 4 

release 
from 
reservoir, 
comprising 
the release 
from gates, 
pumps, 
bottom 
pipes, and 
drinking 
water 
intake  

centralized, single 
level 

1 1 

drinking water 
supply, flood 
control, pumps 
usage energy 
cost, salinity 
level 
minimization 

n/a  

Kistenmacher 
and 
Georgakakos 
(2015) 

inflow S 

statistically-
based 
predictions 
(Historical 
Analog ESP) 
approach 

6 months 15 
expected 
value 

monthly 7 

releases 
from six 
reservoirs 
and delta 
pumping 

centralized, single 
level 

7 1 

environmental 
flow, storage 
target tracking, 
spillage excess 
cost reduction 
(energy 
generation 
maximisation), 
downstream 
water demand 

n/a  

Munier et al. 
(2015) 

inflow D&S 

perfect 
predictions 
and real ones 
by a coupled 
model, 
hydrological 
(VIC) and 
hydrodynamic 
simplified 
routing (LLR) 

> 30 days 20  n/a (D) * daily 1 
water 
release 

Centralized, single 
level 

* 1 

low-flow 
augmentation 
(including 
environmental 
minimum flow) 

n/a  

Xu et al. 
(2015) 

inflow D 

perfect 
predictions, 
statistical 
predictions 
(ARIMA 
model) 

13 years 1 n/a (D) annual 1 
release 
from 
reservoir 

centralized, single 
level 

1 1 

water supply 
for urban 
demand, 
industry, 
environmental 
uses 

historical 
operation; 
Standard 
Operating 
Procedure 

 

Anghileri et 
al. (2016) 

inflow  S 

Perfect, 
climatology, 
probabilistic 
(ESP), hybrid 
(perfect 
forecast with 
climatology) 

365 days 49 
expected 
value 

daily 1 
release 
from 
reservoir 

centralized, single 
level 

1 1 

flood control,  
water supply 
(for urban, 
agricultural and 
environmental 
water 
demands) 

n/a  
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Fan et al. 
(2016) 

inflow D&S 

perfect and 
real 
predictions by 
a hydrological 
model  

15 days, 
real 
predictions, 
and  60 
days 
perfect 
forecasts 

16, reduced  
(51, original)  

tree daily 1 
water 
release 

Centralized, single 
level 

1 1 
hydroelectricity 
generation, 
flood control 

n/a  

Ficchì et al. 
(2016) 

inflow D&S 

perfect and 
real 
predictions by 
a semi-
distributed 
conceptual 
hydrological 
model fed by 
weather 
forecasts 

9 days 6 (orig. 50) tree daily 4 
releases 
from 
reservoirs 

centralized, single 
level 

4 1 
flood control, 
water supply 

historical 
operation 
(based on 
rule curves) 

 

Karimanzira 
et al. (2016) 

inflow D * 21 days 1 n/a (D) hourly 10 

releases 
from 
reservoirs 
(total 
aggregated 
outflow, 
further split 
into turbine 
and spill 
flow) 

centralized, single 
level 

10 1 

hydropower 
production,  
operational 
cost 
minimization, 
environmental 
requirements  

n/a  

Raso and 
Malaterre 
(2016) 

inflow 
(forecast 
combined with 
climatology) 

D 

perfect, and 
statistical 
forecasts, 
combining 
real-time 
forecast and 
climatic 
information 

infinite 1 n/a (D) daily 2 

releases 
from 
reservoir 
(release 
through 
turbines 
and the 
release 
trough 
spillages) 

centralized, single 
level 

1 1 

flood and 
drought control, 
energy 
production 

n/a  

Wan et al. 
(2016) 

inflow S 

statistical 
predictions 
(error fits a 
Gaussian 
distribution) 

up to 50 
days 
(forecasts 
horizon 
becomes 
shorter as it 
gets closer 
to the end 
of the 
simulatino 
period) 

na 
expected 
value 

5 days 1 
water 
release 

Centralized, single 
level 

1 1 
water supply, 
flood control 

n/a  

Zmijewski et 
al. (2016) 

inflow D 

statistical 
predictions 
(based on 
historical data) 

120 hours 
(5 days) 

1 n/a (D) hourly * (>50) 
water 
release 

Centralized, single 
level 

* 1 
hydropower 
generation 

n/a  
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Cuvelier et al. 
(2018) 

inflow S * 1 year 1) na; 2) 22 

1) For 
Stochastic 
optimization, 
the max 
function 
value is 
used; 2) For 
robust 
optimisation 
confidence 
intervals 
between 
95% and 
98.5% were 
tested 

Up to a 
month 

1 
water 
release 

Centralized, single 
level 

4 1 

water supply, 
flood control, 
environmental 
flow delivery, 
hydropower 
generation 

historical 
operation 

 

Myo Lin et al. 
(2018) 

inflow D 

real forecasts 
produced by a 
semi-
distributed 
conceptual 
rainfall-runoff 
model   

2 days 1 n/a (D) 3 hours 11 
releases 
from 
reservoirs 

centralized, single 
level 

11 1 
flood control,  
water 
conservation 

historical 
operation 

 

Sahu and 
McLaughlin 
(2018) 

inflow S 

synthetically 
generated 
ensemble 
following 
given 
distribution 

* na 
expected 
value 

na (1 time 
step) 

1 
water 
release 

Centralized, single 
level 

1 1 
hydropower 
generation 

DDP, SDP,  
historical 
operation 

 

Uysal et al. 
(2018a) 

inflow D 

perfect 
forecast, and 
synthetic 
deterministic 
forecast, 
produced 
perturbing 
observations 
with random 
noise  

3 days 1 n/a (D) daily 1 

release 
from 
reservoir 
(spillway 
release) 

centralized, single 
level 

1 1 

flood control,  
water supply,  
operation costs 
(e.g., excessive 
spillages) 

feedback 
control with 
Rule Curves 
(RC, or 
Guide 
Curves) 

 

Uysal et al. 
(2018b) 

inflow D&S 

Perfect 
Forecasts and 
Probabilistic 
Streamflow 
Forecasts 
synthetically 
generated 

48 hours 50 tree hourly 1 

release 
from 
reservoir 
(spillway 
release) 

centralized, single 
level 

1 1 

flood control 
(setpoint for 
forebay 
elevation),  
water supply,  
operational 
cost 

n/a  

Ahmad and 
Hossain 
(2019) 

inflow S 

ANN fed with 
real weather 
forecasts 
(GEFS) and 
antecedent 
hydrological 
variables 

7 days 11 
min, max, 
average 

daily 1 
release 
from 
reservoir 

centralized, single 
level 

1 1 

hydropower 
production,  
flood control 
and dam safety 

historical 
operation, 
SDP 
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Arsenault and 
Cote (2019) 

inflow S 

statistical 
based on 
historical 
climate data. 
(a year is 
considered 
one ensemble 
member) 

120 days (4 
months) 

25 

Median and 
quantiles (or 
member by 
member) 

3 days 5 

release 
from 
reservoirs 
(water 
withdrawn) 

Centralized, single 
level 

5 1 
hydropower 
generation 

n/a  

Gavahi et al. 
(2019) 

inflow D 

perfect 
forecasts and 
data-driven 
forecasts 
produced by 
an adaptive 
neuro-fuzzy 
inference 
system 

12 months 1 n/a (D) monthly 3 

release 
from 
reservoir 
and water 
allocations 
to each 
water use 
sector 

centralized, single 
level 

1 1 
water supply,  
environmental 
flow 

historical 
operation 
and rule 
curves 
obtained by a 
long-term 
optimization 
model 

 

Roetz and 
Theobald 
(2019) 

inflow D 

real 
deterministic 
forecasts from 
conceptual 
rainfall-runoff 
model (HBV) 

160 hours 
(6.7 days) 

1 n/a (D) 10 hours 1 
release 
from 
reservoir 

centralized, single 
level 

1 1 

flood control,  
navigation 
(reference set 
point) 

n/a  

Wei and Xun 
(2019) 

inflow D 

hybrid, 
combination of 
conceptual 
rainfall–runoff 
model and 
multiple linear 
regression 
model 

10 days 1 n/a (D) daily 1 
water 
release 

Centralized, single 
level 

1 1 
hydropower 
generation  

n/a  

Myo Lin et al. 
(2020) 

inflow D 

real 
deterministic 
forecasts from 
conceptual 
rainfall-runoff 
model 
(Sacramento) 

2 days 1 n/a (D) 30 min 11 
release 
from 
reservoir 

centralized, single 
level 

11 3 

flood control, 
hydropower 
generation, 
reservoir 
storage 
reference 
target 
(deviation) 

n/a  

Xu et al. 
(2020) 

inflow S 

Statistical 
(errors 
modelled by a 
copula 
function) 

24 hours na 
expected 
value 

hourly 1 
water 
release 

Centralized, single 
level 

4 3 

domestic water 
supply, 
irrigation, flood 
control 

*  

Payet-Burin 
et al. (2021) 

inflow S 

nearest 
neighbor 
bootstrapping 
to generate an 
ensemble 
forecast 

2 years 2 (original 20) 
expected 
value 

monthly 4 
release 
from 
reservoir 

centralized, single 
level 

4 1 

economic 
benefits (water 
demand 
satisfaction), 
hydropower 
production;  
water supply, 
environmental 

SDP, DDP  
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flow, 
hydropower 

Salehi and 
Shourian 
(2021) 

inflow D * 15 days 1 n/a (D) daily 14 

10 
reservoir 
releases 
and 4 
pumping 
stations 
commands 

centralized, single 
level 

14 2 

operational 
costs of safe 
reservoir 
storage target, 
reduction of 
fluctuations in 
pump stations 

Metaheuristic 
search with 
Particle 
Swarm 
Optimization 
(PSO) 

Kergus et al. 
(2022) 

inflow D 

perfect 
precictions 
and stastical 
predictions 
modelled with 
a random 
noise added 
on the 
disturbances 

15 days 
(chosen 
after testing 
10, 15 and 
20 days) 

1 n/a (D) daily 1 
water 
release 

Centralized, single 
level 

1 1 
hydropower 
production, 
flood control 

SDP, 
DDP 

Mohanavelu 
et al. (2022) 

inflow D 

perfect 
forecast 
(Random 
Noise level 
assumed as 
perfect 
prediction) 

* 1 n/a (D) daily 1 
release 
from 
reservoir 

centralized, single 
level 

1 2 
flood control, 
irrigation 
supply 

DDP, SDP, 
ISO, 
FQI, SSDP 
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Table S2. Summary and classification of the 58 reviewed papers on MPC for open channels.  
 

Article 

Forecaste
d variable 
(disturban

ce) 

Determini
stic(D)/ 

Stochasti
c (S)/both 

(D&S) 

Forecast 
type 

Prediction 
horizon 
length 
(max) 

Ensemble 
size (1 for 

deterministi
c, n/a for 
explicit 

stochastic 
with pdf) 

Cont
rol 

freq
uenc

y 

Number 
of control 

actions 

Type of 
control 
actions 

MPC architecture 
(Centralized/decent

ralized/single-
level/multi-level) 

Num. of 
state 

variables 

Prediction 
model 

Num 
of 

object
ives 

Objective type 

Bench
mark 

metho
d 

               

Wahlin 
(2004) 

flow rate 
changes at 
turnouts 

D 
perfect 
knowledge 

200 minutes 1 
5 
minu
tes 

8 

changes 
in flow 
rate at 
the 
check 
structure
s 

centralized, single-
level 

29  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

PI 

Wahlin 
and 
Clemme
ns 
(2006a) 

demands D 

(i) perfect 
knowledge 
(ii) no 
knowledge 

20 hours 1 
30 
minu
tes 

31 
gate 
flow 

centralized, single-
level 

31  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

LQR 

Wahlin 
and 
Clemme
ns 
(2006b) 

offtake 
flows 

D n/a n/a 1 
1 
minu
te 

4 n/a 
centralized, single-
level 

12  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

PI 

van 
Overloo
p et al. 
(2008) 

precipitatio
n 

S hybrid 1 day 3 
15 
minu
tes 

1 
pump 
flow 

centralized, single-
level 

4  ID 4 

water level 
setpoint 
tracking, 
control 
smoothness, 
water level rate 
of change 
setpoint 
tracking, 
bounded water 
levels 

PI 

Lemos 
et al. 
(2009) 

offtake 
flows 

D 
perfect 
knowledge 

75 seconds 1 
5 
seco
nds 

4 
gate and 
valve 
position 

centralized, single-
level 

12 
spatial 
discretization 

3 

water level 
setpoint 
tracking, 
control 
smoothness, 
control effort 

PI(D) 

Negenb
orn et 
al. 
(2009) 

rainfall 
offtakes by 
farmers 

D 
perfect 
knowledge 

124 minutes 1 
4 
minu
tes 

7 
gate 
inflow 

distributed, single-
level 

30  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

van 
Overloo
p et al. 
(2010a) 

delivery 
changes 

D 
perfect 
knowledge 

2 hours 1 
4 
minu
tes 

8 
gate 
flow 

centralized, single-
level 

8  ID 3 

water level 
setpoint 
tracking, 
control 

LQR 
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smoothness 
error rate of 
change tracking  

Xu et al. 
(2011) 

rain and 
lateral 
inflows 

D 
perfect 
knowledge 

2 hours 1 
4 
minu
tes 

1 
gate 
flow 

centralized, single-
level 

10 
spatial 
discretization 

2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Zafra-
Cabeza 
et al. 
(2011) 

rainfall, 
irrigation 
demands 

D 

(i) perfect 
knowledge 
(ii) no 
knowledge 

higher level: 
5 days, 
lower level: 
5 minutes 

1 

high
er 
level: 
1 
day, 
lower 
level: 
1 
min 

higher 
level: 6, 
lower 
level: 7 

higher 
level: 
mitigatin
g 
actions, 
lower 
level: 
gate 
position 

distributed, multi-
level 

higher 
level: 8, 
lower 
level: 7 

 ID 
(i) 2;  
 
(ii) 2 

higher level: 
minimize risks 
and control 
effort, 
· lower level: 
water level and 
control setpoint 
tracking 

n/a 

Wagenp
feil et al. 
(2012) 

lock 
operations, 
wind and 
inflows 

D 

statistical 
and  
lack of 
knowledge 
(estimate) 

48 hours 1 
15 
minu
tes 

n/a 
pump 
flow 

centralized, single-
level 

46 
spatial 
discretization 

2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Xu et al. 
(2012) 

upstream 
inflow 

D 
perfect 
knowledge 

2 hours 1 
4 
minu
tes 

1 
gate 
discharg
e 

centralized, single-
level 

500 
spatial 
discretization 

2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Alvarez 
et al. 
(2013) 

offtake 
flows 

D 
perfect 
knowledge 

n/a 1 
6 
minu
tes 

5 
gate 
flow and  
opening 

distributed, single-
level 

5  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Breckpo
t et al. 
(2013) 

offtake 
flows 

D 
perfect 
knowledge 

225 minutes 1 
15 
minu
tes 

4 
gate 
discharg
e 

centralized, single-
level 

7 
spatial 
discretization 

4 

water level 
setpoint 
tracking, 
control 
smoothness, 
flooding, 
safety limits 

n/a 

Doan et 
al. 
(2013) 

n/a D n/a 5 hours 1 
30 
minu
tes 

12 

dam, 
turbine, 
and 
pump 
flow 

distributed, single-
level 

32 
spatial 
discretization 

3 

power 
production 
profile tracking, 
water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Figueire
do et al. 
(2013) 

offtake 
flows 

D n/a 6 minutes 1 
10 
seco
nds 

5 

gate 
flow, 
valve 
position 

centralized, single-
level 

85 
spatial 
discretization 

3 

water level 
setpoint 
tracking, 
control 
smoothness, 
operational 
costs 

PI 
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Hashem
y et al. 
(2013) 

offtake 
flows 

D 
perfect 
knowledge 

7 hours 1 
5 
minu
tes 

13 
gate 
discharg
e 

centralized, single-
level 

64  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Maestre 
et al. 
(2013) 

runoff (as a 
result of 
rainfall) 

D&S statistical 4 hours 6 
15 
minu
tes 

1 
pump 
flow 

distributed, single-
level 

3  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Romera 
et al. 
(2013) 

upstream 
inflow 

D 
perfect 
knowledge 

70 minutes 1 
100 
seco
nds 

3 
gate 
opening
s 

centralized, single-
level 

3  IDZ 3 

flooding, 
safe water 
evacaution, 
control 
smoothness 

n/a 

van 
Ekeren 
et al. 
(2013) 

river 
inflows and 
sea levels 

D 
perfect 
knowledge 

1 day 1 
30 
minu
tes 

3 

barrier 
and 
sluice 
position 

centralized, single-
level 

4  I 3 

flooding, 
economic costs, 
control 
smoothness 

n/a 

Xu et al. 
(2013) 

lateral 
discharges 
and 
pollution 
concentrati
ons 

D 
process-
based 

2 hours 1 
4 
minu
tes 

5 
gate and 
pump 
flow 

centralized, single-
level 

20 
spatial 
discretization 

4 

water level 
setpoint 
tracking, 
control 
smoothness, 
bounded water 
quality, 
bounded water 
levels 

n/a 

Fele et 
al. 
(2014) 

offtake 
flows 

D 
perfect 
knowledge 

50 minutes 1 
5 
minu
tes 

13 
gate 
discharg
e 

distributed, multi-
level 

39  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Foo et 
al. 
(2014) 

irrigation 
demands, 
creek 
inflows, 
surface-
groundwat
er 
interaction 

D 
perfect 
knowledge 

4 days 1 
6 
hour
s 

3 

gate, 
creek 
and lake 
flow 

centralized, single-
level 

32  ID 9 

water demand 
satisfaction, 
off-stream 
storage volume. 
environmental 
minimum flow, 
bounded water 
levels, 
flow setpoint 
tracking 
limit lake 
releases, 
water ordering 
time, 
bounded 
seasonal flows, 
control 
smoothness 

PI 

Sadows
ka et at. 
(2014) 

offtake 
flows 

D n/a 9 hours 1 
15 
min 

10 
gate 
position 

decentralized, multi-
level 

10 
spatial 
discretization 

4 
flow setpoint 
tracking, 
bounded control 

n/a 
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actions, 
water level 
setpoint 
tracking, 
water level 
setpoint reset  

van 
Overloo
p et al. 
(2014) 

downstrea
m gate 
discharge 

D 

(i) perfect 
knowledge 
(ii) no 
knowledge 

200 seconds 1 
10 
seco
nds 

1 
gate 
discharg
e 

centralized, single-
level 

1  IR 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Horvath 
et al. 
(2015a) 

offtake 
flows 

D 

(i) perfect 
knowledge 
(ii) no 
knowledge 

150 seconds 1 
10 
seco
nds 

3 
gate 
position 

centralized, single-
level 

3  IR 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Horvath 
et al. 
(2015b) 

discharge 
and 
setpoint 
changes 

D 

(i) perfect 
knowledge
(ii) no 
knowledge 

n/a 1 
10 
seco
nds 

3 

gate 
position 
and 
discharg
e 

centralized, single-
level 

3  IR 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Sadows
ka et at. 
(2015) 

delivery 
requests 

D 
perfect 
knowledge 

320 minutes, 
480 minutes 

1 
20 
min 

8 
gate 
discharg
e 

decentralized, multi-
level 

7  ID 4 

flow setpoint 
tracking, 
bounded control 
actions, 
water level 
setpoint 
tracking, 
water level 
setpoint reset  

n/a 

Shahda
ny et al. 
(2015) 

offtake 
flows 

D 
perfect 
knowledge 

7 hours 1 
5 
min 

26 
gate 
discharg
e 

centralized, single-
level 

76  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Tian et 
al. 
(2015) 

river 
discharges 
and tidal 
levels 

D n/a 2-6-10 days 1 

1-2-
3-4-6 
hour
s 

11 
gate 
position 

centralized, single-
level 

40 
spatial 
discretization 

2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

van 
Overloo
p et al. 
(2015) 

water 
orders 

D 
perfect 
knowledge 

4 hours 1 
5 
min  

14 
gate 
discharg
e 

centralized, single-
level 

13  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

PI 

Farhadi 
and 
Khodab
andehlo
u (2016) 

offtake 
flows 

D 
perfect 
knowledge 

90 min 1 
9 
min 

4 
gate 
position 

distributed, multi-
level 

22  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Shahda
ny et al. 
(2016) 

offtake 
flows 

D 
perfect 
knowledge 

2 hours 1 
5 
min 

10 
gate 
discharg
e 

centralized, single-
level 

20  ID 2 
water level 
setpoint 
tracking, 

n/a 
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control 
smoothness 

Aydin et 
al. 
(2017) 

outflow 
discharge 

D 
lack of 
knowledge 
(estimate) 

200 seconds 1 
10 
seco
nds 

1 n/a 
centralized, single-
level 

1  IR 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Hashem
y 
Shahda
ny et al. 
(2017) 

offtake 
demands 

D n/a 3 hours 1 
5 
minu
tes 

n/a 
gate 
discharg
e 

centralized, single-
level 

n/a  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Tian et 
al. 
(2017a) 

upstream 
inflow 

D 
perfect 
knowledge 

1 day 1 
1 
hour 

1 
pump 
flow 

centralized, single-
level 

1  I 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Tian et 
al. 
(2017b) 

inflows D&S statistical 
24-72-144 
hours 

20 
1-2-4 
/ 1-3-
6 h 

2 

pump 
flow, 
gate 
height 

centralized, single-
level 

3 
spatial 
discretization 

2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Xu 
(2017) 

irrigation 
offtake 
flows 

D 
perfect 
knowledge 

n/a 1 n/a 8 
gate 
discharg
e 

centralized, single-
level 

7  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Xu and 
Schwan
enberg 
(2017) 

n/a D n/a n/a 1 
1 
hour 

3 
gate 
position 

centralized, single-
level 

15 
spatial 
discretization 

2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Aydin et 
al. 
(2019) 

groundwat
er 
exfiltration 
concentrati
on, 
discharge 

D 
process-
based 

1 hour 1 
2 
min 

4 n/a 
centralized, single-
level 

24 
spatial 
discretization 

3 

water level 
setpoint 
tracking, 
salinity setpoint 
tracking, 
freshwater use 

n/a 

Kong et 
al. 
(2019a) 

offtake 
flows 

D 

(i) perfect 
knowledge 
(ii) no 
knowledge 

5 hours 1 
10 
min 

5 
gate 
discharg
e 

centralized, single-
level 

34  ID 2 

water level 
setpoint 
tracking, 
control effort 

LQR 

Kong et 
al. 
(2019b) 

offtake 
flows 

D 

(i) perfect 
knowledge 
(ii) no 
knowledge 

700min 1 
10mi
n 

26 n/a 
centralized, single-
level 

98  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Segovia 
et al. 
(2019) 

lock 
operations 

D 
perfect 
knowledge 

4 hours 1 
20 
min 

4 
gate and 
weir flow 

centralized, single-
level 

6  IDZ 4 

water level 
setpoint 
tracking, 
operational 
costs, 
control 

n/a 
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smoothness, 
navigability 

Shahda
ny et al. 
(2019) 

offtake 
flows 

D 

(i) perfect
knowledge
(ii) no
knowledge

6 hours 1 
5 
min 

16 n/a 
centralized, single-
level 

96  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Tian et 
al. 
(2019) 

inflows S statistical 6 hours 20 
1 
hour 

1 n/a 
centralized, single-
level 

1  n/a 2 

bounded water 
levels, 
water level 
setpoint tracking 

n/a 

Velarde 
et al. 
(2019) 

inflows S statistical 1 day 20 
1 
hour 

3 

 gate 
position, 
pump 
flow 

distributed, multi-
level 

2  I 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Zheng 
et al. 
(2019) 

offtake 
flows 

D 

(i) perfect
knowledge
(ii) no
knowledge

40 min 1 
2 
min 

4 n/a 
centralized, single-
level 

4  ID 2 

water level 
setpoint 
tracking, 
control effort 

PI, LQR 

Rodrigu
ez et al. 
(2020) 

n/a D 
lack of 
knowledge 
(estimate) 

215 min 1 
5 
min 

24 n/a 
centralized, single-
level 

144  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Zhu et 
al. 
(2020) 

n/a D 
perfect 
knowledge 

10 min 1 
10 
min 

2 
gate 
position 

centralized, single-
level 

3  ID 3 

reduce pressure 
at a  cross 
section, 
bounded water 
levels, 
overtopping 

n/a 

Kong et 
al. 
(2021) 

(i) 
unknown 
offtakes, 
(ii) 
scheduled 
offtakes 

D 

(i) perfect
knowledge
(ii) no
knowledge

24 hours 1 
30 
min 

13 n/a 
centralized, single-
level 

65  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Nasir et 
al. 
(2021) 

offtake 
flows 

S statistical 40 min 646 

10 
min 
(sim
ulatio
n), 
9 
min 
(field 
test) 

8 
(simulatio
n), 
3 (field 
test) 

n/a 
decentralized, multi-
level 

8 
(simulation
), 
3 (field 
test) 

 ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Ren et 
al. 
(2021) 

offtake 
demands 

D n/a n/a 1 n/a n/a 
gate 
opening 

centralized, single-
level 

n/a  model-free 3 

water level 
setpoint 
tracking, 
control 
smoothness, 
early gate 
adjustments 

n/a 
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Askari 
Fard et 
al. 
(2022) 

offtake 
demands 

D 
process-
based 

n/a 1 n/a 17 n/a 
centralized, single-
level 

n/a  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Avargan
i et al. 
(2022) 

offtake 
demads 

D 
process-
based 

n/a 1 n/a 14 n/a 
centralized, single-
level 

n/a  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

n/a 

Aydin et 
al. 
(2022) 

lateral 
flows and 
concentrati
ons 

D 
process-
based 

24 hours 1 
1 
hour 

42 n/a 
centralized, single-
level 

522 
spatial 
discretization 

2 

salinity setpoint 
tracking, 
water level 
setpoint 
tracking, 

n/a 

Horvath 
et al. 
(2022) 

in- and 
outflows of 
canals 

D 
perfect 
knowledge 

12 hours 1 
1 
hour 

28 

gate, 
pump 
and weir 
discharg
e 

centralized, single-
level 

25  I 4 

water storage 
and 
transportation, 
agricultural 
demands 
water levels for 
safety, 
navigation and 
preserve 
ecology, 
economic costs 

n/a 

Pour et 
al. 
(2022) 

tidal 
pattern 

D 
perfect 
knowledge 

12 hours 1 
20 
min 

8 
gate and 
pump 
flow 

centralized, multi-
level 

4  IDZ 5 

water level 
setpoint 
tracking, 
energy 
production, 
operational 
costs, 
control 
smoothness, 
navigability 

n/a 

van der 
Heijden 
et al. 
(2022) 

hydrologica
l forcings, 
electricity 
market 
data 

D 
perfect 
knowledge 

48 hours 1 
15 
min 

2 
gate and 
pump 
flow 

centralized, single-
level 

1  I 3 

day-ahead 
bidding costs, 
intraday trading 
costs, 
energy use in 
pumping 

n/a 

Liu et al. 
(2023) 

offtake 
flows 

D n/a n/a 1 
5 
minu
tes 

36 
gate 
flow rate 

centralized, single-
level 

n/a  ID 2 

water level 
setpoint 
tracking, 
control 
smoothness 

PI(D), 
LQR 
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Table S3. Summary and classification of the 49 reviewed papers on MPC for urban water networks. 

Article 

Forecaste
d variable 
(disturban

ce) 

Determini
stic(D)/ 

Stochasti
c (S)/both 

(D&S) 

Forecast 
type 

Prediction 
horizon 
length 
(max) 

Ensemble 
size (1 for 

deterministi
c, n/a for 
explicit 

stochastic 
with pdf) 

Cont
rol 

freq
uenc

y 

Number 
of control 

actions 

Type of 
control 
actions 

MPC architecture 
(Centralized/decent

ralized/single-
level/multi-level) 

Num. of 
state 

variables 

Network type 
and size 

Num 
of 

object
ives 

Objective 
type 

Bench
mark 

metho
d 

Marinaki 
et al., 
1999 

Inflow D 
Perfect 
predictions 

4 hours 1 
1 
min 

10 
Reservoi
r outflow 

Centralized 208 
Sewer network 
(simplified) 

1 

Minimize 
relative 
storage 
differences, 
control 
smoothness 

Nonline
ar 
optimal 
control 

Biscos 
et al. 
(2002) 

Water 
demand 

D n/a 12 hours 1 n/a n/a n/a n/a n/a 

Distribution 
network 
(Simplified: 5 
reservoirs, 2 
pump stations, 3 
splits) 

1 n/a n/a 

Biscos 
et al. 
(2003) 

Water 
demand 

D n/a 8 hours 1 
1 
hour 

5 
Valves 
and 
pumps 

Centralized n/a 

Distribution 
networks (Small, 
artificial: 5 
reservoirs, 4 
valves, 1 pump) 

1 
Economic 
cost, chlorine 
concentration 

n/a 

Rao and 
Salomo
ns 
(2007) 

n/a D n/a 24 hours 1 
1 
hour 

3 
Valves 
and 
pumps 

Centralized n/a 

Water 
distribution 
network 
(simplified) 

1 n/a n/a 

Darsono 
et al. 
(2007) 

n/a D n/a 1 n/a 28 Pumps Centralized n/a 
Combined sewer 
system (26000 
ha) 

1 n/a n/a 

Martine
z et al. 
(2007) 

n/a n/a n/a 24 hours 1 
1 
hour 

27 
Valves 
and 
pumps 

Centralized 2 

Water 
distribution 
network (725 
nodes) 

1 n/a n/a 

Salomo
ns et al. 
(2007) 

Water 
demand 

D n/a 24 hours 1 
1 
hour 

23 
Valves 
and 
pumps 

Centralized 9 

Water 
distribution 
network 
(Simplified: 126 
pipes, 112 
nodes, 9 storage 
tanks, 1 
operating valve 
and 17 pumps in 
5 discrete 
pumping 
stations) 

n/a n/a n/a 

Muslim 
et al. 
(2008) 

n/a 1 n/a 3 n/a n/a 
Drinking water 
networks 

n/a 
Chlorine 
concentration 

n/a 

Supplementary Material Table S3 Click here to access/download;Figure;Table_S3_UWN_AC.pdf
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Shamir 
and 
Salomo
ns 
(2008) 

Water 
demand 

D 

Synthetic 
(based on 
historical 
data and 
another 
system) 

1 day 1 
hourl
y 

25 
Valves 
and 
pumps 

Centralized 9 

Water 
distribution 
system 
(Simplified - Full 
model: 867 
nodes, 987 
pipes, 9 tanks, 
17 pumps in 5 
pumping 
stations, and 8 
pressure 
reducing valves; 
Reduced model: 
77 nodes, 92 
pipes. 9 tanks, 
17 pumps in 5 
pumping 
stations, and 8 
pressure 
reducing valves) 

1 
Pump energy 
cost 

Rule-
based 
control 

Puig et 
al. 
(2009) 

n/a D n/a n/a 1 n/a n/a Gates Centralized n/a 
Sewer networks 
(Real-world) 

1 

Minimize 
overflow, CSO 
discharges, 
maximize 
WWTP usage 

Local 
controls 

Cembra
no et al. 
(2011) 

Water 
demand 

D n/a 24 hours 1 
1 
hour 

127 
Valves 
and 
pumps 

Centralized n/a 

Distribution 
networks (Real-
world: 281 
pressure mains, 
99 tanks, 88 
valves, 39 
pumping 
stations) 

1 

Economic 
cost, tank 
storage safety, 
control 
smoothness, 
pressure 
control 

n/a 

Pascual 
et al. 
(2013) 

Water 
demand 

D 
ARX-
based  

24 hours 1 
1 
hour 

129 
Valves 
and 
pumps 

Centralized n/a 

Transport 
networks (Real-
world: 63 tanks, 
3 surface 
sources, 7 
undergraound 
sources, 79 
pumps, 50 
valves, 18 
nodes, 88 
demands) 

1 

Economic 
cost, tank 
storage safety, 
control 
smoothness 

Rule-
based 
control 

Bakker 
et al. 
(2013) 

n/a n/a n/a n/a 1 n/a n/a   n/a n/a 
Water supply 
systems 

n/a n/a 
Rule-
based 
control 

Fiorelli 
et al. 
(2013) 

n/a D n/a 24 hours 1 
15 
minu
tes 

5 Flow Centralized 4 

Water 
distribution 
network 
(simplified) 

1 n/a n/a 

Joseph-
Duran 

n/a D n/a   1 n/a n/a Gates Centralized 12 
Combined sewer 
system 
(simplified) 

1 n/a n/a 
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et al. 
(2013) 

Joseph-
Duran 
et al. 
(2014) 

Rainfall D n/a 30 minutes 1 
5 
minu
tes 

10 Gates Centralized n/a 

Sewer networks 
(Simplified: 145 
sewers, 68 rain 
inflows) 

1 

Minimize 
overflow, CSO 
discharges, 
maximize 
WWTP usage 

n/a 

Grosso 
et al. 
(2014) 

Water 
demand 

S 

BATS, 
time-
series 
model 

24 hours   
1 
hour 

114 
Valves 
and 
pumps 

n/a n/a 

Drinking water 
networks (63 
tanks, 114 
actuators) 

1 

Economic 
cost, tank 
storage safety, 
control 
smoothness 

n/a 

Limon 
et al. 
(2014) 

Water 
demand 

D n/a 24 hours 1 
1 
hour 

6 Flow Centralized 3 

Drinking water 
transport 
network 
(Simplified: 3 
tanks, 6 
actuators) 

1 n/a n/a 

Joseph-
Duran 
et al. 
(2015) 

Rainfall D n/a 200 minutes 1 
5 
minu
tes 

10 Gates Centralized n/a 

Sewer networks 
(simplified: 145 
sewers, 68 rain 
inflows) 

1 

Minimize 
overflow, CSO 
discharges, 
maximize 
WWTP usage 

n/a 

Sankar 
et al.  
(2015) 

Water 
demand 

D n/a 24 hours 1 
1 
hour 

2 
Valves 
and 
pumps 

Centralized n/a 

Distribution 
networks (Very 
small: 11 nodes, 
2 valves, 1 
reservoir, 2 
demand nodes) 

1 

Track setpoint 
of outlofw rate 
from demand 
nodes 

n/a 

Grosso 
et al. 
(2016) 

Water 
demand 

S n/a 24 hours n/a 
1 
hour 

118 Flow Centralized 63 

Drinking water 
transport 
network 
(simplified) 

1 n/a n/a 

Pereira 
et al. 
(2016) 

Water 
demand 

D n/a 24 hours 1 
1 
hour 

61 Flow Centralized 17 

Drinking water 
transport 
network 
(simplified: 17 
tanks, 12 node, 
25 demands) 

1 n/a n/a 

Sun et 
al. 
(2016) 

n/a D n/a n/a 1 n/a 3 Pumps Centralized 4 

Water 
distribution 
network 
(simplified: 1 
reservoir, 4 
tanks, 7 pumps) 

1 n/a n/a 

Grosso 
et al. 
(2017) 

Water 
demand 

S ARIMA 24 hours n/a 
1 
hour 

61 
Valves 
and 
pumps 

Centralized n/a 

Drinking water 
network 
(simplified: 17 
tanks, 61 flows 
controlled by 
valves and 
pumps, 25 
demand nodes, 
9 water sources, 

1 Economic cost n/a 
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11 intersection 
nodes) 

Wang et 
al. 
(2017) 

Water 
demand 

D n/a 
24 hours, 1 
hour (2 layer 
approach) 

1 

1 
hour 
/ 1 
minu
te (2 
layer 
appr
oach
) 

16 
Valves 
and 
pumps 

Hierarchical n/a 

Distribution 
network 
(artificial: 399 
junctions, 7 
tanks, 11 
pumps, 5 
valves) 

1 

Economic 
cost, tank 
storage safety, 
control 
smoothness 

n/a 

Wang et 
al. 
(2018) 

Water 
demand 

D n/a 24 hours 1 n/a 7 Pumps n/a n/a 

Distribution 
networks 
(simplified: 6 
tanks, 7 pumps, 
11 water 
demand sectors, 
41 non-storage 
nodes) 

1 

Economic 
cost, tank 
storage safety, 
control 
smoothness 

n/a 

Tedesc
o et al. 
(2018) 

Water 
demand 

D 
Perfect 
predictions 

24 hours 1 
1 
hour 

121 
Valves 
and 
pumps 

Centralized 67 

Water transport 
network (Real-
world: 67 tanks 
and 121 
actuators (46 
pumps and 75 
valves), 88 
water demand 
sectors and 16 
nodes) 

1 n/a 

Centrali
zed vs 
distribut
ed 
comma
nd 
govern
or 
appeoa
ches 

Pour et 
al. 
(2019) 

Water 
demand 

D n/a 24 hours 1 
1 
hour 

61 Flow Centralized 17 

Drinking water 
transport 
network 
(simplified: 17 
tanks, 12 node, 
25 demands) 

1 n/a n/a 

Housh 
and 
Salomo
ns 
(2019) 

  n/a n/a   n/a n/a n/a Pumps n/a 1 
Water 
distribution 
network (1 node) 

n/a n/a n/a 

Wang et 
al. 
(2020) 

Water 
demand 

D n/a 6 hours 1 
1 
hour 

10 
Valves 
and 
pumps 

Centralized n/a 

Drinking water 
network (Real-
world simplified: 
126 nodes) 

1 n/a 
Rule-
based 
control 

Salomo
ns and 
Housh 
(2020) 

Water 
demand 

D n/a 48 hours 1 
1 
hour 

8 
Valves 
and 
pumps 

Centralized n/a 

Distribution 
networks (Real-
world: 5 wells, 3 
variable speed 
pumps, 5 
constant speed 
pumps, 8 tanks, 
8 junctions) 

1 Minimize cost n/a 
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Liu et al.  
(2020) 

Water 
demand 

D n/a 25 minutes 1 
5 
minu
tes 

9 Flows n/a n/a 

Distribution 
networks 
(simplified: 2 
water plants, 6 
pump stations, 4 
tanks, 4 water 
distribution 
areas) 

2 
(switc
hing 
accord
ing to 
a 
conditi
on, 1 
objecti
ve in 
each 
zone) 

n/a n/a 

Sun et 
al. 
(2020) 

Rainfall D n/a 30 minutes 1 
5 
minu
tes 

3 
Gates 
and 
pumps 

Centralized n/a 

Sewer networks 
integrated with 
WWTPs in a 
sanitation 
system (Real-
world: 1 tank, 2 
gates, 1 pump) 

1 

CSO 
minimization, 
WWTP usage 
maximization , 
smoothness, 
pollution 
minimization 

Rule-
based 
control 

Pour et 
al. 
(2020) 

Water 
demand 

S n/a 24 hours   
1 
hour 

61 Flow Centralized 17 

Drinking water 
transport 
network 
(simplified: 17 
tanks, 12 node, 
25 demands)  

1 n/a n/a 

Salomo
ns & 
Housh 
(2020) 

  D n/a n/a 1 n/a n/a Flow     
Water 
distribution 
network 

n/a n/a n/a 

Salvado
r et al. 
(2020) 

Water 
demand 

S 
Statistical 
(periodic 
signal) 

n/a n/a 
hourl
y 

7 Pumps Centralized 6 

Water 
distribution 
network (Real-
world: 6 tanks, 7 
pumps, 41 
nodes (11 
demand nodes),  
44 pipes) 

1 
Keep tank 
level around a 
set-point 

n/a 

Dong 
and 
Yang 
(2020) 

Water 
level; water 
quality 
indices 

D 
ML-based 
(LSTM) 

1 day 1 daily 4 Pumps Centralized n/a 
Drainage system 
(Real-world) 

1 

Weighted 
objective: 
electricity cost 
for pumping 
and pump 
start-up cost 

n/a 

Wang et 
al. 
(2021) 

n/a D n/a 24 hours 1 
1 
hour 

3 Flow Centralized 1 

Water 
distribution 
network 
(Simplified: 1 
tank, 3 pumps) 

1   
Rule-
based 
control 

Wang et 
al. 
(2021) 

n/a D n/a n/a 1 n/a n/a 
Sluices 
regulatio
n 

n/a n/a 

Drainage area 
(Real-world: big 
area with 5 
lakes) 

n/a n/a 
Rule-
based 
control 
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van der 
Werf et 
al. 
(2021) 

n/a D n/a n/a 1 n/a 2 
Control 
stations 

Centralized 14 

Urban drainage 
system 
(simplified: 14 
reservoirs, 2 
control stations) 

1 n/a 
Rule-
based 
control 

Svense
n et al. 
(2021) 

n/a n/a 100 minutes 
5 
minu
tes 

6 
Urban drainage 
system 
(simplified) 

n/a n/a 

Shisheg
ar et al. 
(2021) 

Rainfall D 
Physically-
based 

48 hours 1 
2 
hour
s 

4 
Basin 
outflow 

Centralized 4 

Drainage 
network (Real-
world, simplified: 
526 nodes, 544 
links) 

1 

Minimum total 
peak flow 
discharge from 
stormwater 
system, 
smoooth 
operations 

Static 
control 

Trapiell
o et al.
(2021)

Water 
demand 

D 

Maximum 
expected 
demand 
from past 
data 

1 
1 
hour 

26 

Actuator 
activatio
n 
(pumps) 

Centralized 17 

Water transport 
network 
(simplified: 9 
water sources (5 
underground 
and 4 
superficial), 17 
water tanks, 61 
actuators (37 
valves and 24 
pumps), 12 
nodes and 25 
demands) 

2 

Minimize the 
number of 
back-up 
actuators 
used, 
minimize the 
performance 
loss during a 
given time 
horizon 

n.a.

El 
Ghazoul
i et al. 
(2022) 

Wastewate
r and 
ranwater 
flows 

D ANNs n/a 1 n/a n/a n/a n/a Sewer networks n/a n/a n/a 

Martin 
et al. 
(2022) 

Water 
demand 

D n/a 5 seconds 1 

0.1 
seco
nds 
(may
be 
typo 
in 
pape
r?) 

n/a Valves Decentralized n/a 
Drinking water 
networks (Real-
world, simplified) 

1 
Smoothness, 
tracking valve 
reference 

n/a 

Pedrosa 
et al. 
(2022) 

n/a D&S n/a 24 hours n/a 
1 
hour 

61 Flow Centralized 17 

Drinking water 
transport 
network 
(simplified: 17 
tanks, 12 node, 
25 demands) 

1 n/a n/a 

Guo et 
al. 
(2022) 

Water 
demand 

D n/a 24 hours 1 
1 
hour 

6 Flow Centralized 3 

Water 
distribution 
network 
(simplified: 25 
nodes, 3 tanks) 

1 n/a n/a 



7 

Kändler 
et al. 
(2022) 

Head n/a n/a 5 min n/a 
Uncl
ear 

1 Valves Centralized n/a 

Urban drainage 
system (Real-
world: tot pipe 
length 7.1 km) 

n/a n/a 
Rule-
based 
control 
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