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Abstract: This paper presents a switched linear system representation of water canal dynamics to
incorporate different operating modes, which arise due to the occurrence of extreme weather phenomena
such as flooding and drought episodes. To guarantee the stability during mode switching, a proper
analysis on permanence regions–given by a collection of equilibrium states–for the switched linear
system is presented. The permanence region is computed within a compact set, which depends on an
adequate level region for the canals. A suitable algorithm is used to formulate an asymptotic stable
Model Predictive Control (MPC) that steers and maintains the states of the system inside the target
region indefinitely in a feasible manner. This strategy is successfully tested in a simulation using a
realistic model of a canal.
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1. INTRODUCTION

Free-surface open-channel systems are large-scale networks
consisting of rivers, canals and waterways. As these are mainly
used for freight transportation, the main management objec-
tive consists of guaranteeing the navigability, which requires
keeping water levels within predefined limits. However, the fact
that these systems are strongly affected by extreme weather
phenomena complicates the achievement of this objective. In
the context of climate change, severe and long-lasting drought
and record rainfall are increasingly expected worldwide.

Model predictive control (MPC) is one of the most popular
approaches for real-time control of free-surface systems due to
its simplicity and versatility, a fact that can be testified by the
extense body of literature on the topic (Ocampo-Martinez et al.,
2013; van Overloop et al., 2014; Fele et al., 2014; Segovia et al.,
2020; Nasir et al., 2021; Karimi Pour et al., 2022). Moreover,
simple linear prediction models obtained around a single op-
erating point are often considered due to their amenability for
real-time implementations. However, extreme weather episodes
may render this simplification no longer valid, as these lead to
time-varying average flows along the water courses, and there-
fore time-varying operating points. Linear parameter-varying
(LPV) models, which describe a nonlinear system that can be
modeled as parameterized linear systems (each designed at a
different operating point), emerge as an approach to take large
operating ranges into account. LPV models have been success-
fully employed in open-channel modeling and control (Bolea
et al., 2014; Bolea and Puig, 2016).

When multiple operating modes must be considered for canal
management purposes as a result of multiple operating points,
the use of LPV or nonlinear models is not strictly required.

A good alternative is to rely on switching systems (Duviella
et al., 2007; Dos Santos Martins et al., 2012), in which a
linear model is identified for each operating point within the
operational range of the canal. Switching between modes can
then be considered when the operating conditions of the canal
change. Advantages of this modeling strategy are the use of a
bank of simpler linear models and the fact that it is supported
by the theory on switching systems.

Switched systems adequately describe many control engineer-
ing problems by providing a reliable framework for control.
However, in order to formulate a stabilizing control strategy,
the characterization of Permanence Sets (PS) for the type of
switched system becomes a necessity. From set control theory
it is known that PS play an important role in the controllability
and stability analysis (Blanchini and Miani, 2015). PS include
the study of unique or multiple isolated equilibrium points,
equilibrium sets, positive invariant sets, limit cycles, etc., and
such regions are the only ones that can be formally stabilized
by an MPC strategy (Rawlings et al., 2017). For a switched
linear system where the signal must switch mode in finite time
(i.e., mode switching is mandatory), the only formal PS is the
origin, and this point usually lacks applicability. More general
regions can be found in the literature: for instance, Julius and
Van der Schaft (2002); Li and Liu (2016); Dehghan and Ong
(2012) assess this problem with different characterizations and
computations of a particular PS, i.e., Control Invariant Sets
(CIS), for switched systems, but still with conservative results.
Later on, the concept of PS was extended formally in (Anderson
et al., 2021; Perez et al., 2022), and more general results for
switched linear systems were obtained.

In this work, a PS is proposed inside a target region T outside
of the origin. The PS is a subset of the output space of the



model for the water canal dynamics. The dynamics of the
mode are modeled by a delay switched linear system (with
switches affecting only the output variable). The result is used
to formulate an stable MPC which is tested in several scenario
simulations.

The structure of this paper is as follows. Section 2 presents
the control model of the canals as a switched linear system, a
brief discussion on permanence sets (equilibrium and invariant
sets) for switched systems and the main results on PS charac-
terizations. In Section 3, a discussion on the control objectives
and a formulation of the MPC to follow a reference inside the
computed PS is given. Section 4 describes the system and the
experimental designs that is used to test the control approach.
Section 5 contains the conclusions of the work and some ideas
for future research.

1.1 Notation

The positive natural numbers are represented by the set N :=
{1, 2, . . . }. Given the sets A and B on Rn, the Minkowski sum
between A and B is define by A⊕B = {a+b : a ∈ A, b ∈ B}.

2. DYNAMICAL MODEL AND SET-CONTROL
ANALYSIS

2.1 Control Model of Canals

The dynamics of a canal, i.e., part of a water course between
two control structures, are accurately described by the Saint-
Venant equations (Chow, 1959), a set of partial nonlinear dif-
ferential equations that are not well suited for real-time con-
trol. Under simplifying assumptions and considering a unique
operating point, the Saint-Venant equations can be simplified
and linearized, and the Integrator Delay Zero (IDZ) model can
be obtained (Litrico and Fromion, 2004). Moreover, a discrete-
time version of the IDZ model can be obtained in state-space
form (Segovia et al., 2019). By considering several operating
points and switching dynamics, the state-space representation
is given by

x(k + 1) = Ax(k) +Bu(k) +B⋆u(k − n), (1)
y(k) = Cσ(k)x(k) +Dσ(k)u(k) +D⋆

σ(k)u(k − n),

with x(0) = x0, where x(k) ∈ X ⊂ R2 is the state of the
system [m3], u(k) ∈ U ⊂ R2 is the control input (gate control
actions at both ends of the canal) [m3/s], y(k) ∈ Y ⊂ R2

is the output (water levels at both ends of the canal) [m], n is
the delay (in samples) and σ(k) ∈ Σ := {1, 2, . . . , q} is the
switching signal 1 that selects the mode σ(k) at time k ∈ N,
among q > 1 possible values. Note that only matrices Cσ(k)

and Dσ(k) depend on the operating mode, which means that the
switched signal σ(k) only affects the output y(k). Matrices B⋆

and D⋆
σ(k) appear as a consequence of the delayed effect of a

control action at the opposite end. Furthermore, the transport
delay of the canal n can be defined as the minimum time
required for an action (e.g., controlled discharge, disturbance,
etc.) to propagate from one end of the canal to the other end.

The so-called switching path, σ(T ) := {σ(k)}Tk=0, with T ∈
N, is a sequence that indicates how weather phenomena such
as flooding or drought periods affect the consideration of the
appropriate operating point.
1 In this study the switching signal σ is not a control variable, and represents
different environmental conditions (like drought or rains).

2.2 Set-Control

Set-theory on dynamical systems plays a fundamental role on
the analysis of stabilizing regions on the state space. Equilib-
rium states, invariant sets and controllable sets for switched
linear systems are introduced next.

Delayed terms in Eq. (1) represent how the control affects the
dynamics of the water levels. However, it can be easily shown
that the delayed system (1) is equivalent to the ’undelayed’ 2
linear system

x(k + 1) = Ax(k) +Bu(k), (2)
y(k) = Cσ(k)x(k) +Dσ(k)u(k),

with x(k) ∈ X ⊂ Rn, u(k) ∈ U ⊂ Rm, y(k) ∈ Y ⊂ Rn and
σ(k) ∈ Σ = {1, · · · , q}.

The equivalence of Eqs. (1) and (2) is possible by an extension
of the dimension of the system (see details in Section 6.1).

From now on, in order to facilitate the comprehension of the
analysis, the undelayed linear system (2) will be considered in
the results of this section. The next definition presents several
concepts of PS for system (2).
Definition 1 (Control Equilibrium Set). The control equilib-
rium set, Xs ⊆ X of system (2) is given by all the admissible
states xs ∈ X for which there is us ∈ Σ × U that fulfills
xs = Axs +Bus.

Equilibrium set Xs is given by solving the following equation

[I −A −B]

[
xs

us

]
= 0

The solution set can be represented by the equilibrium pair
(xs, us) ∈ Xs × Us.

According to the system, the switching signal only affects the
outputs, so the analysis of set-control will be focused on the
output space Y . The equilibrium sets Xs and Us define the
equilibrium set for the outputs for every σ ∈ Σ by

Yσ
s = CσXs ⊕DσUs, (3)

where ⊕ represents the Minkowski sum. The control equilib-
rium outputs for all modes is given by

Ys =
⋃
σ∈Σ

Yσ
s .

Next, the concept of invariant sets and controllable sets will be
presented. Prior to that, note the dynamics of the outputs based
on the previous step:

y(k + 1) = Cσx(k + 1) +Dσu(k + 1)

= Cσ(Ax(k) +Bu(k)) +Dσu(k + 1)

= Cσ[A B]︸ ︷︷ ︸
Fσ

[
x(k)
u(k)

]
+Dσu(k + 1)

= Fσ[x(k) u(k)]′ +Dσu(k + 1).

Then, the concepts of control invariant sets and controllable sets
can be defined as follows.
Definition 2 (Control Invariant Set for Outputs). A nonempty
set Ω ⊂ Y is said to be a control invariant set for the switched
system (2) if for every state x ∈ X and input u ∈ U such that

2 The term undelayed is used to stress the fact that the delay is hidden by the
extension of the system dimension.



y = Cσx + Dσy ∈ Ω, for some σ ∈ Σ, there is a a pair
(σ̄, ū) ∈ Σ× U such that Fσ̄[x u]′ +Dσ̄ū ∈ Ω.
Remark 3. Note that the control equilibrium set Ys is a
particular case of a control invariant set for the output.
Definition 4 (Controllable Set of Mode σ for the Output).
Consider a nonempty set Ω ⊂ Y , the one step controllable set
to Ω for mode σ is given by

S(σ,Ω) = {y = Ax+Bu : ∃ ū ∈ U s.t. Fσ

[
x
u

]
+Dσū ∈ Ω}.

The k-step controllable set to Ω for mode σ for the output can
be defined iteratively by Sk(σ,Ω) := S(σ,Sk−1(σ,Ω)) for
k ≥ 1, with S0(σ,Ω) := Ω.

Section 6.2 shows a method to compute the controllable set
S(σ,Ω) for a convex set Ω.

2.3 Main Results: Characterization of Feasible PS

Invariant and equilibrium sets outside of the origin for switched
systems—which switches mode after a finite amount of time—
are hard to characterize. However, the problem was simplified
in Perez et al. (2022) by proposing the concept of Permanence
Sets (PS). This is a more general concept that allows to find
a stabilizing region for the control switched system. Generally,
equilibrium, invariant and cyclic set are particular cases of a PS.
In short, a PS Ω, can be defined as follows.

Consider a set T such that Ω ⊂ T , where every point y(0) ∈ Ω
satisfies the following condition:

∀y(0) ∈ Ω ∃ u(k) ∈ U such as y(k) ∈ T ,∀k > 0.

Note that the trajectory of the output y(k) can remain inside
the target set T if it starts inside a particular region (the PS Ω)
inside T . The concept of PS is properly defined next.
Definition 5 (Control Permanence Set—CPS). Consider a
target set T ⊂ Y . A nonempty set Ω ⊂ T is said to be a
control permanence set of T for the switched system (2), if
for every y(0) ∈ Ω there exists an infinite sequence of inputs
u := {u(k)}∞k=0 and a switching path σ = {σ(k)}∞k=0 such
that y(k) ∈ T for every k ≥ 0.

Note that if Ω ≡ T on the above definition, the Control
Permanence Set is a Control Invariant Set.

Next, an algorithm is proposed to characterize a Control Perma-
nence set for the outputs. Consider a value Mσ for every σ ∈ Σ,
which represents the maximum amount of time the switched
system (2) must remain in mode σ before switching to another
mode (this parameter is defined by the application). Then, the
following algorithm computes a Control Permanence Set of the
target set T .

Algorithm 1 Output Control Permanence Set construction

Require: System , kσ ≤ Mσ, T ,
1: Compute Ȳj

s := Yj
s ∩ T , ∀j ∈ Σ

2: Compute Skj (j, Ȳj), ∀j ∈ Σ ▷ in every of the k2 steps ∩T
3: Ȳj = Ȳj

s ∩
⋃

i∈Σ,i̸=j

Ski(i, Ȳi
s) ∩ T , j ∈ Σ

4: Compute Skj (j, Ȳj
s ), ∀j ∈ Σ ▷ in every of the k2 steps ∩T

5: Is Ȳj
s ⊂

⋃
i∈Σ,i̸=j

Ski(i, Ȳi
s) for all j ∈ Σ?

6: If step 5 is false → return to step 3.
7: If step 5 is true → stop. Ω =

⋃
i∈N Ȳi

s for N ⊂ Σ for all
i ∈ N

Proposition 6. If Algorithm 1 converges to a nonempty set
Ω ⊂ Y , then Ω is a Control Permanence Set of T for switched
system (2).

Proof. Assume Algorithm 1 converges to a nonempty set Ω.
Consider y(0) ∈ Ω, then y(0) ∈ Ȳj

s ∩ Ski(i, Ȳ i
s ) for some

j, i ∈ N ⊂ Σ with j ̸= i. Then, y(0) ∈ Ski(i, Ȳ i
s ), which

means that y(0) ∈ Ȳj
s can be feasibly driven in ki steps to Ȳi

s
without leaving set T . Furthermore, every point of Ȳi

s belongs
to a set Skℓ(ℓ, Ȳ ℓ

s ) for some ℓ ∈ N . Then, the same reasoning
can be applied to this point, can be proved iteratively so that
y(k) ∈ T for all k ≥ 0.

There is no guarantee that Algorithm 1 converges to a nonempty
set for every possible condition (as it will be shown in the fol-
lowing simulation scenarios). Nevertheless, parameter kσ can
be tuned to avoid situations in which Algorithm 1 converges to
an empty set. This is based on the statement that the size of set
Skσ (σ, ·) increases with the value kσ (although at the expense
of increasing the computational cost). Another alternative to
increase the set Skσ (σ,Ω) is by increasing the size of Ω, so the
control equilibrium sets Yj

s can be replaced by control invariant
sets for each mode.

The following simulation results are based on an identified
switched linear model with three modes σ = 1, 2, 3 that account
for normal, rainy and dry conditions. The target set for the
output (see Fig. 3) is given by

T = {(y1, y2) : 2.3 ≤ y1 ≤ 3, 2 ≤ y2 ≤ 3}.
For the simulation results depicted in Fig. 1, the following three
different equilibrium sets Yi

s are selected:
Y1 ={y ∈ Y : A1x ≤ b1},
Y2 ={y ∈ Y : A2x ≤ b2},
Y3 ={y ∈ Y : A3x ≤ b3},

with

A1 =

−1 0
0 −1
1 0
0 −1

 , b1 = [−2.22,−2.42, 2.57, 2.57]
′
,

A3 =

−1 0
0 −1
1 0
0 −1

 , b3 = [−2.22,−2.67, 2.75, 2.7]
′
.

Note that Y1
s = Y2

s (violet set in Fig. 1). Fig. 1 also shows Y3
s

for the next step, which is the intersection of the current Y3
s with

Sk1(σ,Y1
s ) ∪ Sk2(σ,Y2

s ). Values k1 = k2 = 70 and k3 = 130
amount of steps are chosen for each case as the minimum values
such that Algorithm 1 converges to a nonempty set. Fig. 2
shows the results after 3 steps of the algorithm. As it can be
easily seen in the figure Step 5 of the Algorithm 1 is fulfilled.
Therefore, the result Ω = Ȳ1

s ∪ Ȳ3
s (note that Ȳ1

s = Ȳ2
s ) is the

PS for this problem. This region will be used afterwards in the
canal control simulation.

Fig. 3 shows initial equilibrium sets Yi
s, i = 1, 2, 3, for which

the Algorithm converges to an empty set. In this case, it is not
possible to drive the system from one equilibrium Yi

s to another
Yj
s with i ̸= j with only one mode. The proposed MPC will

not be able to stabilize these equilibrium sets without leaving
the target set T . A possible control strategy in this scenario



Fig. 1. Equilibrium sets Yi
s for i = 1, 2, 3, and their correspond-

ing controllable sets Ski(i,Yi
s) inside a target set T . The

first step of Algorithm 1 reduces the size of the set Y3
s

(darker green).

Fig. 2. Final equilibrium sets Ȳi
s for i = 1, 2, 3. Note that every

point of every Ȳj
s belongs at least to one controllable set

Ski(i, Ȳi
s), with j ̸= i.

Fig. 3. Scenario where Algorithm 1 converges to an empty set.

is to switch mode in the region given by the intersection
S70(2,Y2

s ) ∩ S130(3,Y3
s ) (intersection of the blue and green

region in Fig. 3), or in the region given by the intersection
S70(2,Y2

s ) ∩ S70(1,Y1
s ) (intersection of the blue and red sets

in Fig. 3). However, investigation of this kind of strategy is left
for future research.

3. CONTROL DESIGN

This section presents an MPC (based on the results of Segovia
et al. (2019)) that feasibly drives and maintains the output levels
of the switched system of the canal inside a given target region
T ⊂ Y . The results presented in Fig. 2 are considered to design
a target reference for the output according to two different
modes (normal and rainy conditions).

In this work, the MPC minimizes the distance between the
predicted output yk at time k with a given reference yrefk (σ) ∈
Ȳσ
s . This is, when mode σ(k) is active at time k, the reference

is defined by yrefk := yrefk (σ), so the reference follows the
switching path σ = {σ(k)} with k ≥ 0.
Remark 7. The following MPC formulation is based on a
punctual reference that switches according to the switching
path σ = {σ(k)} with k ≥ 0. However, a relaxation term in
the cost function is incorporated so as to provide robustness to
the controller. Future works will extend the MPC design to set-
based MPC in order to set a penalty on the distance between
the predicted outputs yk and the set Ȳj , instead of the classical
point-to-point distance.

The cost function of the MPC is defined next.



3.1 Operational objectives

• Keep water levels as close to the reference levels as
possible with sub-cost J (1)

k :

J
(1)
k =

(
yk − yrefk

)⊺ (
yk − yrefk

)
, (4)

with yrefk ∈ Ȳσ
s for some Ȳσ

s ⊂ Ω, where Ω is a PS for T .
The reference levels at time instant k, i.e., yrefk , depend
on the current mode σ(k), i.e., yrefk = yrefk (σ(k)) for the
active mode σ(k) at time k.

• In order to robustify the controller, keep the levels within
the navigation rectangle and avoid temporal unfeasibil-
ity due to operating mode switches and disturbances, a
soft constraint on navigation bounds is included. This is
achieved by means of the decision variable αk, which
must be penalized to ensure that the water levels are out-
side the bounds as little as possible:

J
(2)
k = α⊺

kαk. (5)
• Minimize control effort:

J
(3)
k = u⊺

kuk. (6)
• Ensure smoothness of control actions to extend the useful

life of actuators:
J
(4)
k = ∆u⊺

k∆uk, (7)
with ∆uk = uk − uk−1.

The multi-objective function J(y0;y
ref ,u,σ) is then given by

J(y0;y
ref ,u,σ) :=

Hp∑
k=1

4∑
j=1

βj Jj
k , (8)

where y0 is the initial output, yref = {yrefk } is the reference
sequence, u = {uk} are the predicted inputs, and σ = {σk} are
the known signals, with k = 1, · · · , Hp, with Hp the prediction
horizon. The value βj is the weight of the j-th objective.

3.2 MPC design

The prediction model (1) and the multi objective function (8),
together with operational and physical constraints, are used
to design an MPC. An optimization problem is solved over a
prediction horizon, determining the control input vector that
minimizes the cost function and satisfies constraints (Camacho
and Alba, 2013). Only the first component of the vector is
applied to the system, and its effect on the system is measured.
Time is shifted forward and the approach is repeated again in a
receding horizon fashion.

The problem to be solved at time instant k and i ∈ {k, ..., k +
Hp − 1} is given by

min
{ui|k}

k+Hp−1

i=k

J(yk|k;y
ref ,u,σ) (9a)

subject to:

xi+1|k = Axi|k +Bui|k +B⋆ui−n|k, (9b)
yi|k = Cσ(k)xi|k +Dσ(k)ui|k +D⋆

σ(k)ui−n|k, (9c)

ui|k ∈ U , j = k − n, ..., k +Hp − 1 (9d)
xi|k ∈ X , j = k − n, ..., k +Hp − 1 (9e)

y
i|k −αi|k ≤ yi|k ≤ yi|k +αi|k, (9f)

αi|k ≥ 0, (9g)
xk|k = x̂k, (9h)

dj|k = d̂j , j ∈ {k − n, ..., k +Hp − 1} (9i)

ul|k = uMPC
l , l ∈ {k − n, ..., k − 1}, (9j)

where i is the time instant along the prediction horizon, j and
l span time intervals that differ from the one described by i,
and the pairs {y

i|k, yi|k} and {ui|k, ui|k} denote lower and
upper output and input bounds, respectively. Note the temporal
dependency of the bounds: this is connected to the existence of
several modes, which may be characterized by different bounds.
Moreover, x̂k and d̂j represent the initial state and the dis-
turbance estimates 3 , as their values are not directly available
for measurement. On the one hand, x̂k is determined as the
solution of the moving horizon estimator (MHE) proposed in
Segovia et al. (2019, Eq. (27)) (its formulation is not included
in this paper due to space limitations). On the other hand, no
disturbance estimation approach is considered in this paper,
and a worst-case scenario is considered instead. Finally, uMPC

l
denotes past control inputs injected into the system, and which
still have an effect on the water levels at time k.
Remark 8. A terminal constraint set and a terminal cost can
be added to (9) to stabilize the system (Mayne et al., 2000). On
the one hand, the terminal constraint set XHp

can be defined as
an invariant ellipsoidal set given by (Conte et al., 2013)

XHp =
{
xk+Hp|k ∈ Rnx

∣∣∣x⊺
k+Hp|kQxk+Hp|k ≤ 1

}
. (10)

On the other hand, the terminal cost is expressed as∥∥xk+Hp|k
∥∥2
Q

, and Q is defined as the corresponding LQR gain
(Limon et al., 2008).

4. CASE STUDY

A canal with physical parameters as in Table 1 is used to test
the control strategy. Two different operating modes—normal
and rainy conditions—are considered. A 24-hour simulation is
designed as follows: the system starts in normal mode; after
eight hours, a rainy episode that lasts four hours is considered,
after which normal mode is considered until the end of the
simulation. Moreover, a sampling time equal to thirty minutes
is considered.

Uncontrolled offtakes for irrigation purposes at the upstream
and downstream ends of the canal are regarded as system
disturbances, and have an additive effect on both states and
outputs. These flows, which are assumed to be unmeasurable
but bounded (maximum value of 2 m3/s), complicate the re-
alization of operational objectives. The approach followed in
this paper is to consider worst-case upstream and downstream
disturbances, i.e., equal to 2 m3/s, during the prediction step, al-
though random offtake values within the bounds are simulated.
This mismatch is compensated by the closed-loop nature of the
control strategy, although it is worth noting that the resulting
optimal control inputs may be over-conservative.

3 Disturbances of additive nature are not explicitly considered in the model,
but they are in the simulation scenario (more details in Section 4).



Table 1. Physical data of the test canal

LNL [m] NNL [m] HNL [m] Length [m] Width [m] Side slope [m/m] Bottom slope [m/m] Manning coeff. [s/m1/3] Average flow [m3/s]
{2.25, 2.40}
{2.35, 2.53}

{2.40, 2.55}
{2.50, 2.68}

{2.55, 2.70}
{2.65, 2.83} 26720 20 0 0 0.035 6

10

Fig. 4. Simulation results for a canal with two operating modes:
level bounds (dashed red line), reference values (black
dash-dotted line) and water levels (blue solid line)

The control problem is designed in Matlab R2020b (64 bits),
using the Gurobi 9.2 optimization package 4 as solver and
YALMIP (Löfberg, 2004) as parser. The closed-loop solution
for a certain reference yrefk = yrefk (σ(k)) and the mode switch
given by σ = 1 and σ = 2 is depicted in Figure 4. It can
be realized that the control strategy is able to steer the water
levels to the time-varying references with minimal error despite
imperfect disturbance knowledge. Moreover, the water levels
are kept within the navigation rectangle at all times, and the
control inputs (not provided due to space limitations) are kept
within admissible bounds.

In order to quantify the performance of the controller, the
tracking indices given in Segovia et al. (2018, Eq. (17)) are
considered. These indices are equal to 95.87% and 98.33% for
the upstream and downstream water levels, respectively, which
allows to conclude that the tracking performance is guaranteed.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a switching MPC for canals with stability and con-
trollability properties during the all switching instant was pro-
posed. The canal was modelled on the basis of a linear model
and considering three operating points. The MPC was designed
to control the canal levels at the boundaries for large operat-
ing ranges while guaranteeing controllability under changes of
modes. Several simulations for realistic cases of study demon-
strate the satisfactory performance of the control strategy.

In this work, perfect knowledge about the switching signal
instants was assumed to be available, whereby an appropriate
stable region (given by a Permanence Set) was proposed for
this problem. Future research will consider the switching signal
as a decision variable, and the MPC will be extended using
these regions in the objective function. On the other hand,
bounded additive environmental disturbances were considered,
for which the worst-case scenario was selected in simulation.
As this approach may result in over-conservative control inputs,
future research will investigate the design of an Unknown Input
Observer (UIO) to estimate the magnitude of the disturbances.

4 https://www.gurobi.com/

6. APPENDIX

6.1 Equivalent ’Undelayed’ System

In what follows, the equivalence between Eq. (1) and Eq. (2)
will be demonstrated. W.l.o.g. it can be assumed that n = 1 (the
same reasoning can be applied for n > 1). Eq. (1) is equivalent
to [

x(k)
x(k + 1)

]
=

[
0 1
0 A

] [
x(k − 1)
x(k)

]
+[

0 0
B⋆ B

] [
u(k − 1)
u(k)

]
,[

x(k)
y(k)

]
=

[
0 1

0 Cσ(k)

] [
x(k − 1)
x(k)

]
+[

0 0
D⋆

σ(k) Dσ(k)

] [
u(k − 1)
u(k)

]
.

Defining x̄(k) =

[
x(k − 1)
x(k)

]
, ū(k) =

[
u(k − 1)
u(k)

]
, ȳ(k) =[

x(k)
y(k)

]
and matrices

Ā =

[
0 1
0 A

]
, B̄ =

[
0 0

B⋆ B

]
,

C̄σ(k) =

[
0 1

0 Cσ(k)

]
, D̄σ(k) =

[
0 0

D⋆
σ(k) Dσ(k)

]
,

Eq. (1) is equivalent to
x̄(k + 1) = Āx̄(k) + B̄ū(k), (11)

ȳ(k) = C̄σ(k)x̄(k) + D̄σ(k)ū(k),

with x̄(k) ∈ X̄ = X × X , ū(k) ∈ Ū = U × U . It can be noted
that Equations (11) and. (2) are equivalent.

6.2 Controllable Set Characterization for the Output

Direct manipulation of Eq. (1) leads to

y(k + 1) = Cσ(k)x(k + 1) +Dσ(k)u(k + 1) (12)
+D⋆

σ(k)u(k + 1− n)

= Cσ(k)

(
Ax(k) +Bu(k) +B⋆u(k − n)

)
+Dσ(k)u(k + 1) +D⋆

σ(k)u(k + 1− n),

and, by assuming Cσ non-singular for all σ ∈ Σ, then

x(k) = C−1
σ(k)

(
y(k)−Dσ(k)u(k)−D⋆

σ(k)u(k − n)
)
.

Thus, y(k + 1) can be expressed as a function that depends on
the previous outputs and inputs as follows:

y(k + 1) = E−1
σ(k)y(k) +

(
Cσ(k)B − Eσ(k)Dσ(k)

)
u(k)

(13)
+Dσ(k)u(k + 1)



+ (Cσ(k)B
⋆ − Eσ(k)D

⋆
σ(k))u(k − n)

+D⋆
σ(k)u(k + 1− n),

with Eσ(k) = Cσ(k)AC
−1
σ(k). Since u(k), u(k − n), u(k + 1 −

n) ∈ U , and by assuming matrix Eσ(k) is non-singular for all
σ ∈ Σ, (14) can be transformed into

Y+ = E−1
σ(k)Y ⊕ Fσ(k)U , (14)

and
Y = Eσ(k)(Y+ ⊖ Fσ(k)U), (15)

with Fσ(k) = Cσ(k)(B−B⋆)+Eσ(k)(Dσ(k)−D⋆
σ(k))+Dσ(k)+

D⋆
σ(k).

If the set Ω := Y+ and S(σ,Ω) := Y , and F̄σ(k) = −Fσ(k) in
Eq. (15), then

S(σ,Ω) = Eσ(k)(Ω⊕ F̄σ(k)U).

The k-step controllable set to Ω, Sk(σ,Ω) for k > 1, can
be computed iteratively by Sk(σ,Ω) := S(σ,Sk−1(σ,Ω)) for
k ≥ 1, with S0(σ,Ω) := Ω.
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