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Abstract13

This paper presents the design of a Model Predictive Control (MPC) for the Calais canal,14

located in the north of France for satisfactory management of the system. To estimate the unknown15

inputs/outputs arising from the uncontrolled pumps, a Digital Twin (DT) in the framework of a16

Matlab-SIC2 is used to reproduce the dynamics of the canal, and the real database corresponding17

to a period of three days is employed to evaluate the control strategy. The canal is characterized by18

two operating modes due to high and low tides. As a consequence of this, time-varying constraints19

on the use of gates must be considered, which leads to the design of two multi-objective control20

problems, one for the high tide and another for the low tide. Furthermore, a moving horizon21

estimation (MHE) strategy is used to provide the MPC with unmeasured states. The simulation22

results show that the different objectives are met satisfactorily.23
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inputs/outputs.25

INTRODUCTION26

Inland waterways are large and complex networked systems that supply various human needs27

such as water demand and the transportation of passengers and goods. They consist of multiple28

reaches and are usually connected to rivers, seas, lakes, and other waterways. Since the dynamics29

of these systems are naturally slow and characterized by transport delays, their management is30

challenging.31

The key operational goal of inland waterway management is that of maintaining the available32

water at a specific level to meet various objectives, e.g., safe vessel navigation, avoiding natural33

hazards (such as floods), dealing with the impacts of climate change, and meeting irrigation and34

agricultural demands, to name a few (Vermuyten et al., 2018; Duviella et al., 2018). To do so,35

a set point known as the Normal Navigation Level (𝑁𝑁𝐿) is defined for each reach, together36

with a navigation rectangle defining an admissible water level interval. This rectangle has a High37

Navigation Level (𝐻𝑁𝐿) and a Low Navigation Level (𝐿𝑁𝐿): when the water level is outside38

of the navigation rectangle, the navigation must stop (Segovia et al., 2018). Another important39

objective regarding the management of large-scale waterways is minimizing operational costs.40

Inland waterways are equipped with different hydraulic structures, e.g., gates and pumps, for41

water conveyance. Decisions regarding how and when to use the mentioned equipment have a42

direct impact on the operational costs (Puig et al., 2017). To deal with such challenging systems,43

advanced control techniques are essential to meet the objectives. Concerning water systems, model44

predictive control (MPC) has shown significant success in the operational management of water45

systems (Castelletti et al., 2023). MPC solves an online finite-horizon optimization problem at46

each sampling instant and determines optimal control actions ahead of time, of which only the first47

element is applied on the system. The next time, the procedure is repeated with updated system48

information, following a receding horizon policy (Maciejowski, 2002). MPC was employed by Fele49

et al. (2014) to find the optimal trade-off between control performance and communication costs50
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by modifying the network topology. Zafra-Cabeza et al. (2011) investigated a two-level MPC, with51

the top layer applying a risk management strategy and the lower layer solving distributed model52

predictive control problems for optimal performance. A multi-scenario MPC was employed by Tian53

et al. (2017) to control the North Sea Canal (the Netherlands) while analyzing its computational time.54

Velarde et al. (2019) investigated a scenario-based distributed MPC for water systems management55

with uncertainty. Nasir et al. (2019) developed a stochastic model predictive control to determine56

the reference inputs by using a model of the channel dynamics that includes a forecast of off-take57

demand and solving a chance-constraint optimization problem. The problem of handling drastic58

inflow fluctuations was studied by Shahdany et al. (2016) using a centralized model predictive59

controller.60

There is always an extent of errors arising from a lack of data, e.g., hydraulic variables, in61

real case studies. This introduces a significant level of uncertainty in the values of the physical62

parameters used in the simulation, which might lead to inaccurate predictions. One appropriate63

approach to deal with these uncertainties consists in reproducing the dynamics of the network with64

a simulator. In this regard, the Digital Twin (DT) technique may be used to reproduce past events65

with an available calibrated model. In this way, one can determine the unknown inputs/outputs of66

a waterway system. For instance, by having real data on water levels and control signals during a67

period of time and a known initial condition, the water volume balance can be measured. Next,68

one can figure out the missing flows during the considered period of time. Finally, after estimating69

the unknown inputs/outputs, the past scenarios can be replayed, providing hindsight on the applied70

management policies (Duviella and Hadid, 2019). Several examples of applying digital twins over71

water system control can be found in the literature (Conejos Fuertes et al., 2020; Bartos and Kerkez,72

2021; Ramos et al., 2022; Zekri et al., 2022; Liu et al., 2023). One important asset of DT is its73

direct connection to numerical computing environments, e.g., Matlab, to design the appropriate74

control strategy, which can then be tuned via DT. The work of Ranjbar et al. (2020) shows this75

approach by determining the difference of volume in the canal and averaging it on time so that the76

difference in discharges between two periods of time corresponds to the unknown inputs on the77
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canal.78

The main contribution of this paper is the analysis of a real problem and a tailored solution79

for the Calais canal, which is affected by tides. This is different from what was done in Segovia80

et al. (2019), as it presented a general methodology for water level regulation in inland waterways.81

This work also uses a combination of MPC-MHE together with a DT to determine the missing82

inputs/outputs of the real database. Deshays et al. (2021) proposed an accurate DT with GIS data of83

the topography of a canal, leading to an error of less than 1 m. However, only a very simple control84

strategy based on logic rules was tested. This is probably due to the fact that the model featured a85

very large number of cross-sections, which would translate into an extensive number of states in a86

state-space representation. This fact prevents that model from being used as a prediction model in87

more complex control approaches, as it would increase the computation time required to determine88

the solution. For instance, if the DT model was employed as the internal model of a nonlinear89

MPC controller, the optimization function would have to execute the DT multiple times before90

generating a sequence of control actions. This can be highly restrictive, especially considering the91

timing constraints, even if the time required for each internal run of the DT is on the order of tens92

of seconds.93

Segovia et al. (2020) and Karimi Pour et al. (2022) proposed similar control approaches wherein94

the main focus was to regulate the water levels and schedule the actuators. Although these works95

applied a different control strategy than Segovia et al. (2019) by employing a two-layer controller,96

one consisting of an MPC and the other for pump scheduling, these papers did not perform97

simulations on a real database of disturbances included in the canal. This paper proposes a solution98

to a multi-objective operational problem while handling physical and operational constraints, e.g.,99

navigability, operating costs, and smooth control. Moreover, due to the lack of data from the real100

database in some geographical parts, a DT is designed by reproducing the behavior of the real system101

and missing information has been generated for a specific period of time, in an offline mode, and by102

rebuilding past scenarios and events such as periods of rainfalls, the managers are able to control103

the water levels in the canal regardless of the type of controller utilized, thereby eliminating the104
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need to exclusively rely on an MPC controller. In this context, the results of the advanced approach105

applied in this study are compared with manager-based control, which is based on the algorithm106

applied in Duviella and Hadid (2019) that uses regulation based on expert rules. The basis of these107

rules is described in section 5. Through this comparison, the benefits of utilizing real-world data108

will be illustrated for accuracy and the versatility of applying various control strategies.109

The rest of the paper is organized as follows: Section 2 formalizes the problems for the110

water system. Section 3, illustrates the proposed framework. In Section 4, the case study is111

explained schematically, and Section 5 illustrates the benchmark against which the proposed control112

architecture will be compared in a later stage. Finally, Section 6 displays the potential of the113

proposed approach in a simulation of the case study, and the conclusions are presented in Section114

7.115

PROBLEM STATEMENT116

Inland waterways are characterized by different elements, e.g., reaches, locks, gates, and nodes,117

the nature of which must be taken into account to satisfy the regulation objective. Inland waterway118

dynamics are typically modeled using the Shallow Water Equations (Saint-Venant equations),119

which are nonlinear partial differential equations that accurately describe the dynamics of open-120

flow systems (Bresch, 2009). However, due to their sensitivity to geometry and their non-linearity,121

they are not suited for real-time control. A solution to deal with such models is using one linear122

model, which is obtained by linearizing the original Saint-Venant equations around an operating123

point and assuming that the one operating point is adequate to characterize the system dynamics.124

Some examples of these models are the Integrator Delay (ID) model (Schuurmans et al., 1999), the125

Integrator Resonance (IR) model (van Overloop et al., 2014) and the Integrator Delay Zero (IDZ)126

model (Litrico and Fromion, 2009). Since the average flow in the case study of this work does not127

differ highly from the operating point, it is possible to consider a linear model and consequently128

choose one of the simplified models above-mentioned to link with the controller. Thus, here, the129

IDZ model is selected as it has proven adequate performance in the past (Clemmens et al., 2017;130

Segovia et al., 2019). The IDZ input-output model links the discharges and the water levels at each131
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reach boundary and is given by132


𝑦1(𝑠)

𝑦2(𝑠)

 =

𝑝11(𝑠) 𝑝12(𝑠)

𝑝21(𝑠) 𝑝22(𝑠)



𝑞1(𝑠)

𝑞2(𝑠)

 , (1)133

where subscripts 1 and 2 refer to the upstream and downstream end of each reach, respectively,134

𝑦1(𝑠) and 𝑦2(𝑠) denote the water levels and 𝑞1(𝑠) and 𝑞2(𝑠) are the reach inflow and outflow, in135

the corresponding order. Furthermore, 𝑝𝑖 𝑗 (𝑠) are the IDZ terms136

𝑝𝑖 𝑗 (𝑠) =
𝑧𝑖 𝑗 𝑠 + 1
𝐴𝑖 𝑗 𝑠

𝑒−𝜏𝑖 𝑗 𝑠 . (2)137

It can be seen that the IDZ model includes an integrator with a gain equal to 1/𝐴𝑖 𝑗 , a time138

delay 𝜏𝑖 𝑗 and a zero equal to −1/𝑧𝑖 𝑗 , for 𝑖, 𝑗 = {1, 2}. Then, the discrete-time linear state-space139

representation of the IDZ model can be formulated according to (Segovia et al., 2019) as follows:140

xk+1 =


1 0

0 1

 xk +

𝑇𝑠 0

0 −𝑇𝑠

 qk +

0 −𝑇𝑠

𝑇𝑠 0

 qk−n, (3)141

yk =


1
𝐴𝑢

0

0 1
𝐴𝑑

 xk +

𝑧11
𝐴𝑢

0

0 −𝑧22
𝐴𝑑

 qk +


0 −𝑧12
𝐴𝑢

𝑧21
𝐴𝑑

0

 qk−n. (4)142

In the state-space model formulation, 𝑥𝑘 ∈ R𝑛𝑥 denotes the water volumes, 𝑞𝑘 ∈ R𝑛𝑢 represents143

the water discharges by the actuators, 𝑞𝑘−𝑛 are the same delayed discharges (by 𝑛 samples), and144

𝑦𝑘 ∈ R𝑛𝑦 are the water levels. Moreover, 𝐴𝑢, 𝐴𝑑 , 𝑧11, 𝑧12, 𝑧21 and 𝑧22 are the parameters of IDZ145

model, which are given in Litrico and Fromion (2009). Furthermore, 𝑇𝑠 is the sampling time.146

Keeping the water level close to the 𝑁𝑁𝐿 is always a big concern for inland waterway managers147

due to the effects on transport and water supply. Weather changes such as periods of heavy rainfall148

usually impact water resources management. In this paper, canals are operated to convey the excess149

water to the sea. To this end, pumping stations and gates must be used. Moreover, sea tides should150

be considered due to their effect on scheduling the available actuators, as the downstream outlet151
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sea gates cannot be utilized during high tide periods for safety reasons. Thus, low/high operating152

modes shall be defined for the control operation. Obviously, each operation entails a cost, and one153

of the most important objectives in water systems management is minimizing the operational costs.154

For instance, pumps should be used as a last resort as their operation is very costly, and only when155

the situation requires it, e.g., avoiding spills and overflows. Therefore, the use of gravity gates is156

preferable, even if this results in larger water level oscillations.157

With all this in mind, the proposed solution consists of designing a multi-objective control158

strategy for a multi-input multi-output system with complex dynamics subjected to physical con-159

straints, affected by known and unknown disturbances. To this end, Model Predictive Control160

(MPC) is chosen as the control approach due to its capability to optimize the future behavior of161

the variables (Camacho and Bordons, 2007). Since the system states must be known, and due to162

the fact that there are some immeasurable states, the use of an observer is required. Here, Moving163

Horizon Estimation (MHE) is selected as the observer approach due to its ease of integration with164

MPC, since it can also be formulated as an online optimization problem that deals with constraints.165

Given a set of past input-output data, the solution of the MHE is a reconstructed sequence of state166

estimates, and the last value of the sequence can be provided to the MPC to compute a new solution167

at the next time instant using a receding horizon approach (Copp and Hespanha, 2017).168

PROPOSED APPROACH169

To ensure that a hydraulic model represents the real system precisely and accurately, model170

results must be compared with the physical measurements over certain criteria. Upon the condition171

that model prediction matches the data, the model is reliable to be used for the criteria that it172

was calibrated for (Walski, 2017). Thus, most of the time, hydraulic models require calibrations173

before being employed in control applications. In this case, different parameters of the system, e.g.,174

topography, dimensions, slope, and roughness coefficients, are taken into account, and they should175

be accurate to avoid major errors. Therefore, the values of these parameters have been refined until176

the simulation architecture produces a solution that aligns with the data. Bearing the calibration177

in mind, this approach has been proposed and validated using a combined simulation architecture178
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between Matlab and SIC2 (Simulation and Integration of Control for Canals) software. Matlab will179

be used to compute the optimal control actions using a simplified prediction model. These actions180

will then be applied in the simulation model in SIC2 to assess their impact on the system. The link181

between Matlab and SIC2 will be discussed next.182

Overall control architecture183

Data from the canal, including water flows and levels, is collected, and control actions performed184

by managers are recorded. A subset of this data is selected and filtered to focus on specific time185

periods and relevant information. The filtered data is used as input for a designed digital twin (DT)186

working with Matlab-SIC2 to estimate unknown flows. Once the DT provides this information187

by reproducing the real dynamics of the system, it can be regularly used at every time step of the188

simulation. This process is done offline. On the other hand, the water levels coming both from the189

filtered data and SIC2 become a joint input for Matlab so that the control actions are determined190

and sent once again to SIC2.191

These steps are repeated every time instant. SIC2 sends the water levels to Matlab used by192

the MPC-MHE strategy to compute optimal control actions, which are sent back to and applied in193

SIC2.To do so, in an online algorithm, MHE estimates immeasurable states and disturbances (water194

flows) every 2 minutes, while data from SIC2 is received every 2 minutes to detect extreme events.195

Control actions determined by the MPC are applied every 2 hours to avoid excessive actuator usage.196

The resulting MPC solution is sent to the real system for managers’ use, and the process is repeated197

at each time step.198

In summary, the system collects data, filters it for analysis, uses a hydraulic model with a DT to199

estimate unknown flows, and employs MPC-MHE to determine optimal control actions, repeating200

the process at regular intervals. The advantages of this control architecture are twofold: first,201

Digital Twin-based estimation operates with real-world data, which allows for a more accurate202

and precise representation of the actual system’s state, e.g., water levels. It is an extension of the203

first contribution proposed in (Duviella and Hadid, 2019). Second, the architecture provides the204

flexibility to apply different control strategies, e.g., MPC and LQR, allowing for a comprehensive205
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exploration of control methods tailored to the specific needs and conditions of the system.206

DT operation207

Once the filtered data (water levels and discharges) is available, the DT can be used to reproduce208

the real system dynamics. The levels and controls are sent to the hydraulic devices considered in209

the DT during a period of time. By defining an initial condition, the water volume can be computed210

as211

Δ𝑉 (𝑘𝑠) = Δ𝑧 (𝑘𝑠) · 𝑆𝑐𝑎𝑛𝑎𝑙 , (5)212

where 𝑆𝑐𝑎𝑛𝑎𝑙 is the area of the canal that can be simply computed as 𝑙𝑐𝑎𝑛𝑎𝑙 × 𝑤𝑐𝑎𝑛𝑎𝑙 , where 𝑙𝑐𝑎𝑛𝑎𝑙213

and 𝑤𝑐𝑎𝑛𝑎𝑙 are its length and width, respectively. Also, Δ𝑧 (𝑘𝑠) = 𝑧𝑐𝑎𝑛𝑎𝑙 (𝑘𝑠) − 𝑧𝑐𝑎𝑛𝑎𝑙 (𝑘𝑠), where214

𝑧𝑐𝑎𝑛𝑎𝑙 (𝑘𝑠) is the measured level in canal and 𝑧𝑐𝑎𝑛𝑎𝑙 (𝑘𝑠) is the estimated level comes from the215

hydraulic software. The difference of volume Δ𝑉 (𝑘𝑠) is averaged on a time window Δ𝑇 and brings216

up 𝜇Δ𝑇
Δ𝑉

. Finally, the discharge difference between two consecutive time periods is given by217

Δ𝑄 =
𝜇Δ𝑇+1
Δ𝑉

− 𝜇Δ𝑇
Δ𝑉

Δ𝑇
, (6)218

where the values correspond to the unknown canal inputs. Thus, for a specific period, the unknown219

flows can be easily defined. These values are constant during Δ𝑇 . Once the unknown inputs are220

estimated, the past scenarios can be replayed as in Duviella and Hadid (2019).221

MPC-MHE interaction222

An MPC-MHE is designed for (1) to compute the set of optimal control set points. As two tidal223

situations occur in practice, updated tidal information is provided by an external source at regular224

time instants. Then, an MPC is designed for each tidal mode, and the appropriate control action is225

applied at every time step of the simulation. It is interesting to note that the same MHE can be used226

for both tidal periods since it only determines state estimates according to the given input-output227

data. The whole design is carried out in Segovia et al. (2019) and extended in Guekam et al. (2021)228

by taking into account that 𝑁𝑟 reaches introduce different delays {𝑛1, 𝑛2, · · · , 𝑛𝑁𝑟
}, where 𝑛𝑟 is the229
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delay (in samples) for the 𝑟 𝑡ℎ reach and 𝑛 = 𝑚𝑎𝑥(𝑛𝑟), 𝑟 ∈ {1, 2, · · · , 𝑁𝑟}.230

A set of operational objectives can be achieved by optimizing the value of a multi-objective231

cost function, where each term represents a different objective and is assigned a certain weight.232

Consider the following multi-objective function:233

𝐽 =

𝑁𝑝∑︁
𝑘=1

𝑁𝑟∑︁
𝑟=0

ℓ
𝑦

𝑘
+ ℓ𝛼𝑘 + ℓ

𝑔,𝑝

𝑘
+ ℓΔ𝑢𝑘 , (7)234

where 𝑁𝑟 refers to the total number of reaches and 𝑁𝑝 is the prediction horizon. Each of the235

objectives in (7) is described below:236

• Keep water levels close to the set points:237

ℓ𝑦 (𝑘) = (𝑦(𝑘) − 𝑦𝑁𝑁𝐿)𝑇𝑊𝑦 (𝑦(𝑘) − 𝑦𝑁𝑁𝐿), (8)238

where 𝑦𝑁𝑁𝐿 is the 𝑁𝑁𝐿 vector and 𝑊𝑦 represents the weighting matrix.239

• Minimize relaxation of navigability condition so that water levels stay outside the navigation240

bounds for a minimal amount of time:241

ℓ𝛼 (𝑘) = 𝛼(𝑘)𝑇𝑊𝛼𝛼(𝑘), (9)242

where 𝛼(𝑘) is the relaxation term (optimization variable) and 𝑊𝛼 is the weighting matrix.243

• Minimize the operational cost of gates and pumping stations:244

ℓ𝑔,𝑝 (𝑘) = 𝑢(𝑘)𝑇𝑊𝑔,𝑝𝑢(𝑘), (10)245

where 𝑊𝑔,𝑝 is a weighting matrix whose entries are adjusted according to the type of the246

actuator, i.e., 𝑊𝑔 and 𝑊𝑝 for gates and pumps, respectively. However, the priority is set on247

minimizing costs by reducing pumping, so the weight assigned to 𝑊𝑝 is much larger than248

𝑊𝑔.249
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• Minimize variations of control action set points:250

ℓΔ𝑢 (𝑘) = Δ𝑢(𝑘)𝑇𝑊Δ𝑢Δ𝑢(𝑘), (11)251

where Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1), and 𝑊Δ𝑢 is the weighting matrix. This weight is assigned252

a larger value than 𝑊𝑔, since the priority to have a smoother control (𝑊Δ𝑢) is higher than253

that of the operational cost of opening/closing the gates.254

In this paper, as a simple way to convert the multi-objective problem into a single objective255

problem, a scalarization approach has been applied to minimize the weighted sum of all the256

objectives.257

MPC formulation258

The multi-objective cost function (7) is minimized by solving the optimization-based control259

problem along the prediction horizon. A receding-horizon strategy is followed, whereby the first260

value of the sequence of optimal control inputs, i.e., the MPC solution, is applied to the system,261

and the rest are discarded. The MPC is then solved at the next time instant by utilizing updated262

information (Camacho and Alba, 2013). Considering that the gates are only used in low tide mode,263

the low tide optimal vector of control actions is given by the solution of the following finite-time264

horizon optimization problem:265

min
{u𝑖 |𝑘}

𝑘+𝑁𝑝−1
𝑖=𝑘

𝑘+𝑁𝑝−1∑︁
𝑖=𝑘

(
ℓ
𝑦

𝑖 |𝑘 + ℓ𝛼
𝑖 |𝑘 + ℓ

𝑔,𝑝

𝑖 |𝑘 + ℓΔ𝑢
𝑖 |𝑘

)
(12a)266

subject to:

x𝑖+1|𝑘 = Ax𝑖 |𝑘 + B𝑔
𝑢u

𝑔

𝑖 |𝑘 + B𝑝
𝑢u𝑝

𝑖 |𝑘 + B𝑔
𝑢𝑛u

𝑔

𝑖−𝑛|𝑘 + B𝑝
𝑢𝑛u

𝑝

𝑖−𝑛|𝑘 + B𝑑d𝑖 |𝑘 + B𝑑𝑛d𝑖−𝑛|𝑘 , (12b)267

𝑖 ∈ {𝑘, · · · , 𝑘 + 𝑁𝑝 − 1}268

y𝑖 |𝑘 = Cx𝑖 |𝑘 + D𝑔
𝑢u

𝑔

𝑖 |𝑘 + D𝑝
𝑢u𝑝

𝑖 |𝑘 + D𝑔
𝑢𝑛u

𝑔

𝑖−𝑛|𝑘 + D𝑝
𝑢𝑛u

𝑝

𝑖−𝑛|𝑘 + D𝑑d𝑖 |𝑘 + D𝑑𝑛d𝑖−𝑛|𝑘 , (12c)269
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𝑖 ∈ {𝑘, · · · , 𝑘 + 𝑁𝑝 − 1}270

u𝑔 ≤ u𝑔

𝑖 |𝑘 ≤ u𝑔
, 𝑖 ∈ {𝑘, · · · , 𝑘 + 𝑁𝑝 − 1}, (12d)271

u𝑝 ≤ u𝑝

𝑖 |𝑘 ≤ u𝑝
, 𝑖 ∈ {𝑘, · · · , 𝑘 + 𝑁𝑝 − 1}, (12e)272

y −α𝑖 |𝑘 ≤ y𝑖 |𝑘 ≤ y +α𝑖 |𝑘 , 𝑖 ∈ {𝑘, · · · , 𝑘 + 𝑁𝑝 − 1}, (12f)273

α𝑖 |𝑘 ≥ 0, 𝑖 ∈ {𝑘, · · · , 𝑘 + 𝑁𝑝 − 1}, (12g)274

d 𝑗 |𝑘 = d̂𝑀𝐻𝐸
𝑗 , 𝑗 ∈ {𝑘 − 𝑛, · · · , 𝑘}, (12h)275

u𝑔

𝑙 |𝑘 = u𝑀𝑃𝐶 (𝑔)
𝑙

, 𝑙 ∈ {𝑘 − 𝑛, · · · , 𝑘 − 1}, (12i)276

u𝑝

𝑙 |𝑘 = u𝑀𝑃𝐶 (𝑝)
𝑙

, 𝑙 ∈ {𝑘 − 𝑛, · · · , 𝑘 − 1}, (12j)277

where x𝑘 ∈ R𝑛𝑥 are the states, y𝑘 ∈ R𝑛𝑦 are the water levels, u𝑔

𝑘
∈ R𝑛𝑢𝑔 and u𝑝

𝑘
∈ R𝑛𝑢𝑝 are the total278

gate and pumping control actions, respectively, d𝑘 ∈ R𝑛𝑑 are the disturbances, and α𝑘 ∈ R𝑛𝑦 is279

the relaxation variable. Moreover, 𝑁𝑝 denotes the prediction horizon, 𝑢𝑔, 𝑢𝑔, 𝑢𝑝, 𝑢𝑝, 𝑦, 𝑦, represent280

the upper and lower bounds on the gate actions, pumping actions and navigation interval bounds,281

respectively. Matrices 𝐴, 𝐵𝑢, 𝐵𝑢𝑛 , 𝐵𝑑 , 𝐵𝑑𝑛 are time-invariant matrices of appropriate dimensions,282

and can be built using the matrices of each individual reach, given by (3) and (4).283

Solution of (12a) is given by 𝑢𝑔∗(𝑘) = {𝑢𝑔
𝑖 |𝑘 }𝑖∈Z[𝑘,𝑘+𝑁𝑝−1] and 𝑢𝑝∗(𝑘) = {𝑢𝑝

𝑖 |𝑘 }𝑖∈Z[𝑘,𝑘+𝑁𝑝−1] .284

However, only u𝑔

𝑘 |𝑘 ∈ R≥0 and u𝑝

𝑘 |𝑘 ∈ R≥0 is applied; u𝑀𝑃𝐶 (𝑔)
𝑘

≜ u𝑔

𝑘 |𝑘 and u𝑀𝑃𝐶 (𝑝)
𝑘

≜ u𝑝

𝑘 |𝑘 . On the285

other hand, the states x̂𝑀𝐻𝐸
𝑗

and the disturbances d̂𝑀𝐻𝐸
𝑗

are estimated as the solution of the MHE.286

Since gates are not allowed to be used in high tide mode, the same MPC can be solved for high tide287

conditions, but by removing the terms associated with gates.288

MHE formulation289

The most popular stage cost is quadratic since it can be linked to a Gaussian distribution of290

disturbances. In MHE, the stage cost chooses the disturbances that have a higher possibility over291

others. Thus, only a finite number of recent measurements are included, to keep the problem292

bounded in size, and is shifted in time to estimate the states in a gradual manner to exploit the most293

recent information (Allan and Rawlings, 2019).294
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The solution of the MHE, which takes the following form, yields the state estimates x̂𝑀𝐻𝐸
𝑗

295

(which are provided to the MPC):296

min
{x̂𝑖 |𝑘}𝑘+1

𝑖=𝑘−𝑁𝑒+1
{d̂𝑖 |𝑘}𝑘𝑖=𝑘−𝑁𝑒+1

w⊺
𝑘−𝑁𝑒+1|𝑘P

−1w𝑘−𝑁𝑒+1|𝑘 +
𝑘∑︁

𝑖=𝑘−𝑁𝑒+1

(
w⊺
𝑖 |𝑘Q

−1w𝑖 |𝑘 + v⊺
𝑖 |𝑘R

−1v𝑖 |𝑘
)

(13a)297

subject to:298

w𝑘−𝑁𝑒+1|𝑘 = x̂𝑘−𝑁𝑒+1|𝑘 − x𝑘−𝑁𝑒+1, (13b)299

w𝑖 |𝑘 = x̂𝑖+1|𝑘 −
(
Ax̂𝑖 |𝑘 + B𝑔

𝑢u
𝑔

𝑖 |𝑘 + B𝑝
𝑢u𝑝

𝑖 |𝑘+ B𝑔
𝑢𝑛u

𝑔

𝑖−𝑛|𝑘 + B𝑝
𝑢𝑛u

𝑝

𝑖−𝑛|𝑘 + B𝑑d̂𝑖 |𝑘 + B𝑑𝑛d̂𝑖−𝑛|𝑘
)
, (13c)300

𝑖 ∈ {𝑘 − 𝑁 + 1, ..., 𝑘}, (13d)301

v𝑖 |𝑘 = y𝑖 |𝑘 −
(
Cx̂𝑖 |𝑘 + D𝑔

𝑢u
𝑔

𝑖 |𝑘 + D𝑝
𝑢u𝑝

𝑖 |𝑘+ D𝑔
𝑢𝑛u

𝑔

𝑖−𝑛|𝑘 + D𝑝
𝑢𝑛u

𝑝

𝑖−𝑛|𝑘 + D𝑑d̂𝑖 |𝑘 + D𝑑𝑛d̂𝑖−𝑛|𝑘
)
, (13e)302

𝑖 ∈ {𝑘 − 𝑁 + 1, ..., 𝑘}, (13f)303

y𝑖 |𝑘 = y𝑖, 𝑖 ∈ {𝑘 − 𝑁 + 1, ..., 𝑘}, (13g)304

d̂𝑖 |𝑘 ≥ 0, 𝑖 ∈ {𝑘 − 𝑁 + 1, ..., 𝑘}, (13h)305

x ≤ x̂ 𝑗 |𝑘 ≤ x, 𝑗 ∈ {𝑘 − 𝑁 + 1, ..., 𝑘 + 1}, (13i)306

x̂𝑙 |𝑘 = x̂𝑀𝐻𝐸
𝑙 , 𝑙 ∈ {𝑘 − 𝑁 − 𝑛 + 1, ..., 𝑘 − 𝑁}, (13j)307

d̂𝑙 |𝑘 = d̂𝑀𝐻𝐸
𝑙 , 𝑙 ∈ {𝑘 − 𝑁 − 𝑛 + 1, ..., 𝑘 − 𝑁}, (13k)308

u𝑔

𝑚 |𝑘 = u𝑀𝑃𝐶 (𝑔)
𝑚 , 𝑚 ∈ {𝑘 − 𝑁 − 𝑛 + 1, ..., 𝑘}, (13l)309

u𝑝

𝑚 |𝑘 = u𝑀𝑃𝐶 (𝑝)
𝑚 , 𝑚 ∈ {𝑘 − 𝑁 − 𝑛 + 1, ..., 𝑘}, (13m)310

where 𝑁𝑒 is the length of the window, P−1, Q−1 and R−1 are the weighting matrices, x𝑘−𝑁+1 is the311

most likely initial state and y𝑖 are the measured water levels. By solving problem (13a) the optimal312

sequences {x̂𝑖 |𝑘 }𝑘+1
𝑖=𝑘−𝑁𝑒+1 and {d̂𝑖 |𝑘 }𝑘𝑖=𝑘−𝑁+1 are determined, and due to the MHE principle, only one313

value in the sequence is kept, and the rest are discarded. In MHE, this value corresponds to the last314

component of the sequences, thus, x̂𝑀𝐻𝐸
𝑘

≜ x̂𝑘+1|𝑘 and d̂𝑀𝐻𝐸
𝑘

≜ d̂𝑘 |𝑘 .315
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Tuning weighting matrices in multi-objective optimization problems316

Selecting appropriate weights in the MPC and MHE is invariably a challenging task, as the317

weights need to be carefully chosen to prevent infeasibility (Garrett and Best, 2013) while also318

fulfilling the desired objectives. While exist different approaches to tune the weighting parame-319

ters (Garriga and Soroush, 2010), the approach selected in this work consists of running a number320

of trial-and-error simulations with different combinations of values (Branch, 2011). One of the321

main issues linked to this method is that there is no way to evaluate the weights, as this evaluation322

requires another weighting vector, and this is why the tuning will be applied through trial-and-error323

(Mohammadi et al., 2018). This approach has been widely employed in the literature (Clemmens324

and Wahlin, 2004; Suicmez and Kutay, 2014; Bekkar and Ferkous, 2022).325

THE CALAIS CANAL326

The Calais canal is located in the north of France, in a territory called the Wateringues. This327

region is located below the sea level, and spreads over a triangle area of 100000 hectares, with a328

network length of approximately 1500 km (see Figure 1). The network is equipped with different329

actuators such as gates for the sea and water pumps (Ranjbar et al., 2022). The main reach is the330

Calais canal which can be divided into three sectors, each of them supplied by secondary canals331

named Audruicq canal, Ardres canal and Guines canal (see Figure 2) that the discharges of those are332

currently not controlled. At the upstream end of the canal, the Hennuin lock is used for navigation333

purposes; at the downstream end, there are sea outlet gates with two pumps located in Calais, each334

of them has a capacity of 4𝑚3/𝑠, and two others in Batellerie (close to Calais), each with a capacity335

of 2𝑚3/𝑠. In this study, the pumping station in Batellerie is ON (pump type Jeumont-Schneider336

90PHO200). Two level sensors make it possible to measure the water levels at Calais and Attaques337

(𝑍𝑎𝑡𝑡𝑎𝑞 and 𝑍𝑐𝑎𝑙𝑎𝑖𝑠) and thus provide measurements for control purposes.338

The total length of the canal is 𝐿 = 26.72𝑘𝑚 with an average width of 𝑊 = 20𝑚 and depth of339

𝐷 = 2.2𝑚. The canal is also equipped with a total of 18 pumping stations situated along the reach,340

which are used by farmers according to their needs and experience. Moreover, when a pumping341

station is OFF, there is no discharge; conversely, when it is on, the average discharge is a known342
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quantity, as displayed in Figure 2 in brackets. For instance, 𝑃𝑆𝑀𝑜𝑤𝑒𝑟 supplies 0.35𝑚3/𝑠 when such343

pump is ON. When all pumping stations are ON, the combined flow is equal to 8.46𝑚3/𝑠. It should344

be mentioned that the estimation of maximum flows of the three secondary canals are respectively345

𝑄𝐴𝑢𝑑𝑟𝑢𝑖𝑐𝑞 = 3𝑚3/𝑠, 𝑄𝐴𝑟𝑑𝑟𝑒𝑠 = 1𝑚3/𝑠 and 𝑄𝐺𝑢𝑖𝑛𝑒𝑠 = 0.2𝑚3/𝑠 denoting that there is a maximum346

input flow equal to 13.06𝑚3/𝑠 through all the pumping stations and the residual amount of 0.4𝑚3/𝑠347

is the runoff generated from surface water. These pumping stations cannot be used for the objective348

of water level regulation. While the sea pumps located in Calais and Batellerie act as the system’s349

inputs, the pumping from the 18 pumping stations by the farmers are the disturbances applied to350

the system.351

A semidiurnal tidal pattern of two low and two high tides per day (in other words, each tide352

with an approximate duration of six hours) is considered based on the canal location. The excess353

water is periodically discharged to the sea, thanks to the gates located in Calais where the total flow354

supplied by these gates is bounded between 0𝑚3/𝑠 and 12.50𝑚3/𝑠 or 15𝑚3/𝑠 depending on the355

type of tides, e.g. neap and spring tides (see Figure 3). Spring tides cause regular high tides and356

low tides to be much higher than usual, and neap tides cause the regular high tides and low tides to357

become much lower than usual. This figure focuses on the manager’s objectives regarding the gate358

opening and discharge through the real samples shown with the stars.359

The water level in the canal must be regulated around the 𝑁𝑁𝐿. An interval around the 𝑁𝑁𝐿360

is considered for water level control, which provides more flexibility. This interval corresponds to361

𝐻𝑁𝐿 = 𝑁𝑁𝐿 + 13𝑐𝑚 and 𝐿𝑁𝐿 = 𝑁𝑁𝐿 − 50𝑐𝑚, with High Navigation Level (𝐻𝑁𝐿) and Low362

Navigation Level (𝐿𝑁𝐿). In other words, during high tide, the water level may rise close to the363

𝐻𝑁𝐿, and then recede to the 𝐿𝑁𝐿 with the next low tide, when the outlet gates can be operated364

again. Hence, the water level could oscillate around 𝑁𝑁𝐿, limiting the use of pumps. Another365

extreme high limit is introduced as Flooding Limit, 𝐹𝐿 = 𝑁𝑁𝐿 + 33𝑐𝑚. It is imperative to keep366

the level of the canal below this value.367

EXPERT RULES-BASED MANAGEMENT368

The management of the Calais canal is extremely complex and involves a large number of369
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stakeholders, such as technical professionals. It aims to fulfill the management objectives by370

determining the conditions to operate the hydraulic structures, i.e., the gates and the pumps in Calais371

and Battelerie as in Figure 2. The Calais canal managers have acquired several decades of experience372

in terms of its management, and have defined protocols to coordinate the actions of all stakeholders373

in the general interest. Moreover, a Supervisory Control And Data Acquisition (SCADA) has been374

implemented to monitor, gather, and process real-time data from the Calais canal. This allows375

for direct communication with sensors and actuators through a human-machine interface (HMI)376

software, and also to record data and regulate the canal according to the management protocols.377

These are synthesized as the expert rules that are visually represented in Figure 4 (Duviella and378

Hadid, 2019). In this diagram, the initial condition determines whether the Calais gates can be379

opened according to the tidal conditions. High tide can be assumed when 𝑍𝑐𝑎𝑙𝑎𝑖𝑠 is less than 𝑍𝑠𝑒𝑎,380

where 𝑍𝑐𝑎𝑙𝑎𝑖𝑠 is the level in Calais and 𝑍𝑠𝑒𝑎 represents the sea level. During high tide, no pumping381

action occurs if 𝑍𝑎𝑡𝑡𝑎𝑞 is below the 𝑁𝑁𝐿 and the rate of hydrograph increase (i.e., how quickly the382

discharge rises in response to factors like rainfall), denoted as 𝑍−1
𝑎𝑡𝑡𝑎𝑞, is less than 3𝑐𝑚/ℎ. Activation383

of the pumps in Calais is contingent on 𝑍𝑎𝑡𝑡𝑎𝑞 exceeding the 𝑁𝑁𝐿 or if 𝑍−1
𝑎𝑡𝑡𝑎𝑞 exceeds 3𝑐𝑚/ℎ.384

Furthermore, the Batellerie pumps are activated when 𝑍−1
𝑎𝑡𝑡𝑎𝑞 exceeds 7𝑐𝑚/ℎ, which represents a385

substantial inflow of water into the Calais canal.386

During low tide, the accumulated rainfall over 12 hours and 24 hours are considered, which387

are denoted as 𝑝12ℎ and 𝑝24ℎ, respectively. If 𝑝24ℎ is less than 10𝑚𝑚, this indicates a non-rainy388

scenario, and the Calais gates operate under normal conditions. In rainy situations, the Calais389

gates are opened excessively if 𝑝12ℎ is less than 10𝑚𝑚 or if the pumps were inactive during the390

previous tide. However, in cases of heavy rainfall when 𝑝12ℎ exceeds 10𝑚𝑚 and the pumps were391

in operation during the previous tide, the Calais gates are fully opened. In the event of overflow,392

the Calais gates are immediately opened to their maximum capacity, and the Batellerie pumps are393

activated. Real data that is processed originates from the SCADA system. The hydraulic devices394

operate automatically, guided by expert rules, which in turn influence the observed water levels395

(refer to Figure 5, the last subplot). By utilizing this dataset, it becomes possible to either bypass or396

16 Ranjbar, February 28, 2024



replace the control system based on expert rules with a custom-designed and implemented one. As397

a result, the performance of these new control algorithms will be evaluated by directly comparing398

them to the control systems established using expert rules. The proposed architecture based on399

the DT allows the determination of unknown inputs from secondary canals, rain, and uncontrolled400

pumping stations. It is therefore possible to replay the scenario using a new control approach as401

the MPC-MHE in Section 3. Finally, the operations on the hydraulic devices, determined by the402

expert rules, are improved by those of the MPC.403

SIMULATION AND RESULTS404

The proposed approach is applied to the case study, the Calais canal. To model this canal, the405

hydraulic software SIC2 is used to generate an accurate model of the canal based on the numerical406

solution of the 1D Saint-Venant equations, which describes the dynamic behavior of open-channel407

systems with great accuracy (Malaterre et al., 2015). In SIC2, the effect of certain real disturbances408

including the farmers’ pumping, the water transfers caused by the movement of boats through the409

canal, and the secondary canals’ discharges are studied on the Calais canal model. Data acquired410

in November 2019 is used in this study, a period during which heavy rainfall is the primary factor411

affecting farmers’ activities. Due to this rainfall, the possibility of flooding leads farmers to pump412

excess water from their fields. In severe situations, their actions may become less predictable.413

Thus, in this scenario, the farmers’ activity is affected by rainy conditions. However, during spring414

and summer, their activities can be adjusted based on seasonal components, e.g., growing period415

of crops (Arandia et al., 2016).416

The linear discrete-time equations with delays (3),(4) are considered in both MPC and MHE. For417

model discretization, two sampling times have been selected as described in section 3. Moreover,418

both prediction horizon 𝑁𝑝 and estimation window size 𝑁𝑒 are considered to be 12 hours to include419

complete high and low tide periods, each of them with an average duration equal to 6 hours. Based420

on the runoff data for the given period and considering the pump dynamics, a duration of 6 hours421

is deemed suitable for capturing the average incoming flows in this study. Simulation of the real422

conditions on the system built in SIC2 allows obtaining results for a 3-day period using the CPLEX423
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12.10.0 optimization package, Matlab R2019b (64 bits), and YALMIP (Lofberg, 2004).424

The cost function weights in Equation (7) are defined in a similar manner for both low tide and425

high tide modes, as detailed below. Depending on the priority of each objective, these weights in426

MPC can be customized to assign greater importance to specific objectives (Karimi Pour et al.,427

2022). They are carefully adjusted through an iterative tuning process, as described in Section 3.428

The following weights are selected to minimize the most critical objective first, ensure appropriate429

water levels within the navigation rectangle, minimize economic costs, maintain smooth control430

actions, and penalize relaxation parameters simultaneously: 𝑊𝑦 = 1,𝑊𝛼 = 10,𝑊𝑔 = 1,𝑊𝑝 = 1000,431

𝑊Δ𝑢 = 10.432

Figure 5 shows the managers’ control of the discharges and levels in the Calais canal and433

the estimation of unknown inputs/outputs achieved from DT. The colored periods correspond to434

high-tide periods, while the non-colored areas are the low-tide periods. The first subplot shows435

the estimated water flow in all three sections of the canal (see Figure 2), where the upper dotted436

lines are the discharge in section 1 (upstream of the canal, 𝑄1) with a maximum flow of around437

2.5 𝑚3/𝑠. The solid line is the one of section 2 (in the middle of the canal, 𝑄2) which goes up438

to 1 𝑚3/𝑠 after two days. The lower dotted line is used for section 3 (𝑄3), which has the lowest439

discharge during the three days. Note that 𝑄4 shows the outlet discharges in Figure 2. All in all,440

this subplot demonstrates the importance of the application of the DT to control the Calais canal,441

since the above-mentioned discharges could not be considered precisely without it. The second442

subplot represents the separated measured discharges of the gates (𝑄𝑔) in the upper dotted line and443

the pumps (𝑄𝑝) in the solid line. It can be seen that managers’ rules lead to opening the gates444

frequently to release water with outflows ranging from 3 𝑚3/𝑠 to 15 𝑚3/𝑠. Moreover, the pumps445

are employed occasionally, with a discharge of around 4 𝑚3/𝑠 (the average discharge of one pump446

in Calais). This substantial discharge and the requirement for pumping result from the application447

of the expert-rules based management in the real scenario. The third subplot depicts the sea level448

(sin wave) and the level in Calais (solid line). Subplot four displays the estimated discharge of all449

three secondary canals, where the upper dotted line stands for Audruicq, the solid line corresponds450
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to Ardres, and the lower dotted line is for Guines. The increase of the discharge from secondary451

canals from November, 1𝑠𝑡 at 16:00 to November 3𝑟𝑑 at 12:00 is due to the rain. The fifth subplot452

shows the water level in Calais (solid sine wave) along with its estimation done by the DT, i.e. SIC2
453

(dashed sine wave), with two upper bounds, the upper solid line is the 𝐻𝑁𝐿 in the canal which is454

set to 𝑁𝑁𝐿 + 15𝑐𝑚, i.e. 𝐻𝑁𝐿 = 2.35𝑚 and the upper dashed-dot line is the maximum allowable455

level in Calais, i.e. 𝑁𝑁𝐿 + 33𝑐𝑚, 𝐹𝐿 = 2.53𝑚. This subplot acknowledges that the difference456

between the real level, obtained through the expert rules-based management, and the level provided457

by SIC2 is not large, once again emphasizing the practical significance of the DT.458

Figure 6 shows that after estimating the unknown discharges, the error between the estimated459

water level by the DT and the real water level is not large, with the following statistical measures460

highlighting the reliability and accuracy of the estimation: the maximum error is 12.38𝑐𝑚, the461

mean is 2.07𝑐𝑚, the standard deviation is 3.58𝑐𝑚, and the median is 1.19𝑐𝑚.462

Figure 7 shows the control actions of the gates and pumps using two different approaches: one463

based on expert rules and the proposed control architecture: the first subplot depicts the discharge464

that managers decide for the gates (with a maximum of 18𝑚3/𝑠), and the MPC solution for the so,465

with a lower discharge. Managers open the gate as soon as the canal level becomes higher than466

the sea level. However, MPC switches from high tide to low tide only based on fixed high/low467

tide period assumptions, here 6 hours. After the control implementation, there is less discharge468

supplied by the gates, with a maximum of 12.72𝑚3/𝑠 and a minimum of 0.9𝑚3/𝑠 during this469

period, demonstrating the effectiveness of the control architecture compared to the expert rules-470

based managing in order to minimize the operational cost of gates according to the Equation471

(10). Also, the gates are used smoothly (i.e., fluctuations are small) as the weight assigned to this472

objective is large (𝑊𝑔 = 10) during low-tide periods (white background). This plot reveals that the473

increase in how many times the gates are controlled (opened/closed) from 3 times by managers to474

6 times after applying the control approach is a tangible manifestation of MPC’s reactive control475

action in dynamic and unpredictable environments for maintaining the desired process performance.476

Another weight tuning could adjust this issue, providing less number of controls for the gate, and477
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inducing more fluctuation of the level. However, this depends on the management objectives and478

their relative importance.479

The second subplot emphasizes that the pumps are not activated in the MPC solution, which480

aligns well with the real application, in which it is desirable to minimize/avoid using the pumps481

and to switch their activation states due to associated maintenance problems and economic reasons.482

As long as the level is kept within the navigation rectangle, it is decided not to operate the pumps.483

This control action prohibits the 14.63 hours of pumping in reality, operated by expert rules-based484

management. Since an hour of pumping requires 250 kWh energy, a total amount of 3658.25485

kWh has been economized, with an equivalent cost around =C763 . This represents a substantial486

advantage compared to the expert rules-based management, in which the Batellerie pumps were487

activated with a discharge rate of 2𝑚3/𝑠 to increase the discharge capacity of the sea outlet pumps488

while raining. This is the main and most important objective of the control architecture in this real489

scenario (the weight assigned to this objective in the cost function is the largest, i.e., 𝑊𝑝 = 1000).490

The third and fourth subplots display the water levels in Calais and Attaque oscillating around491

the 𝑁𝑁𝐿 and inside the navigation boundaries. It can be seen that the real water level in Attaque492

oscillates a lot during the period of simulation. Applying the proposed control architecture, the493

oscillation is not large and is bounded within 𝐻𝑁𝐿 and 𝐿𝑁𝐿.The water level rises up to the 𝐻𝑁𝐿494

level only once during the simulation time, which is acceptable from the operational viewpoint.495

Moreover, since the level is very close to the 𝑁𝑁𝐿 during the first day, due to the initialization of496

MPC, the water level could go up close to the 𝐻𝑁𝐿.497

CONCLUSION498

This paper focused on implementing an MPC-MHE considering a multi-objective control499

problem using a real database of a water canal, and the performance of this approach is evaluated.500

A Digital Twin (DT) designed as a Matlab-SIC2 architecture was used to reproduce the dynamics of501

canals and to estimate the unknown inputs/outputs. Based on this consolidated database, the control502

algorithms can be tested. Data for the Calais canal corresponding to a period of three days was503

assigned to illustrate all the proposed steps. An MPC–MHE approach was designed considering504
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two different modes, one for high tide and another for low tide. The control strategy aims to fulfill505

the management objectives by avoiding the use of pumps. The simulation results acknowledge that506

the whole multi-objective control problem satisfies the managers’ objectives while maintaining the507

water levels inside the navigation interval, thus keeping the effects of severe weather periods under508

control. This methodology demonstrates superior results in both economic and functional aspects509

compared to the application of expert rules-based management.510

The next step, in the context of real application, is to make all the tools developed available511

to managers so that they can study larger periods of data. A transcription work in Python has512

already been started (Pour et al., 2022) that can be integrated with the digital twin and other513

software engineering solutions. In the framework of scientific research, the challenge would be to514

predict unknown water inflows or outflows using unknown input observers (Guan and Saif, 1991)515

or machine learning approaches (Hadid et al., 2020), and couple this information with the control516

algorithms.517
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Figure 1: Map of the watersheds in the north of France and of the Wateringues Territory.
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Figure 2: Schematic view of the Calais canal.
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Figure 3: Gate discharge in Calais for both the spring tide (upper line) and the neap tide (lower
line).
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Figure 4: Expert Rules regulation diagram of Duviella and Hadid (2019).
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Figure 5: DT implementation to estimate unknown inputs in Audruicq (upper dotted line), Ardres
(solid line), and Guines (lower dotted line), discharges of gates (upper dotted line) and pumps (solid
line), showing real level in Calais (solid line) along with the sea level (sine wave), discharges in
all three secondary canals, and the real level in Calais (solid sine wave) with that of provided from
SIC2 (dashed semi-sine wave) with the 𝐻𝑁𝐿 (solid upper line) and flooding threshold (dashed-dot
line).
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Figure 6: Water levels’ error of estimation.
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Figure 7: Comparison of expert rules-based management and the proposed control architecture for
discharge rates through gates and pumps and the water levels in Calais and Attaque.
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