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Abstract— In this paper, the problem of designing observers
for one-sided Lipschitz nonlinear systems considering noise
and unknown inputs is addressed. In particular, the paper
deals with two observer structures: Luenberger Observer (LO)
and Unknown Input Observer (UIO). The observer synthesis
procedures are formulated as convex optimization problems.
Sufficient conditions for observer gain synthesis are shown to
be equivalent to solve finite sets of Linear Matrix Inequalities
(LMIs) and Linear Matrix Equalities (LMEs). An illustrative
example is used to illustrate how the proposed observer design
approaches are used to design the LO and UIO schemes. The
obtained simulation results are presented to assess the proposed
methods.

I. INTRODUCTION

The supervision, control and predictive maintenance of a
system generally requires the knowledge of its states. How-
ever, economic or technical constraints require the reduction
of the number of physical sensors. Moreover, the evolution
of the system can be influenced by unmeasured perturbations
(usually modelled as unknown inputs). Thus, in the literature
there are several studies focusing on reconstructing the state
of a system from known input and output in the presence
of unknown inputs. Such a task involves the synthesis of an
Unknown Input Observers (UIO). On the other hand, when
there are no unknown inputs, the Luenberger Observer (LO)
scheme is often used. In the literature, many contributions
are focused in the design of UIO and LO for linear systems
(see [5], [6]). However, less works are devoted to nonlinear
systems (NLS). Inside the family of NLS, there are nonlinear
Lipschitz systems, for which there are several contributions
related to the design of UIO, LO, see as e.g. in [8], [9],
[7] and [3] The UIO and LO synthesis problems for non-
linear Lipschitz systems is formulated in the Linear Matrix
Inequalitiy (LMI) framework, obtaining sufficient conditions
to guarantee the convergence of the error dynamics. Another
family of systems which is less restrictive than the Lipschitz
one is family of One-sided Lipschitz Nonlinear Systems
(OSL). This type of systems has attracted the attention of
the scientific community, due to the fact that the bounding
condition of the derivative must only be satisfied in the
growth rate, but not in the decay rate (in the Lipschitz
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systems both must be satisfied) making it less restrictive.
Examples of UIO design for OSL systems can be found
in [2], [11] and [12] where they assume that the system
under study is OSL and also quadratically inner bounded
(QIB). UIO convergence according to the development of
the authors previously cited is also reduced to a set of
LMIs as the conventional Lipschitz case. The obtained results
also include the cases with model uncertainties, robustness
to noise and delays in the dynamics. With respect to LO
design, authors of [14] assume OSL condition arriving at a
Bilinear Matrix Inequality solution, while [10] design a LO
assuming OSL and QIB condition under uncertainties in the
nonlinearity and time delays.

Results regarding LO and UIO synthesis for OSL system
(that are not QIB) are divided in two main categories. The
first one considers some supplementary assumption on the
Lyapunov used to establish the convergence of the observer.
Typically the Lyapunov function is required to be the identity
(or a multiple of the identity); The second category is to
directly assume that the product of the Lyapunov function
and the nonlinearity is OSL.

This paper belongs to the first category where the require-
ment of the Lyapunov function to be the identity is relaxed.
Here, an UIO and a LO are designed using an LMI approach
for one-sided Lipschitz nonlinear systems. From a method-
ological point of view, the main contribution of this work
consists in the reformulation of the UIO and LO synthesis
problem for one-sided Lipschitz non-linear system (without
considering the QIB condition) as a convex optimization
problem. This allows to solve the LO and UIO synthesis
problem for non Lipsichtz system (since Lipschitz and QIB
are the same family of fuctions [15]), as it formulate the
observer synthesis problem as a convex optimization problem
by combining matrix inequalities and equalities. Using this
approach, it becomes clear that sufficient conditions for UIO
synthesis are identical to the one considered for classical
observer synthesis using LMIs (as considered for instance
in [13]) combined with decoupling conditions between the
observer error and the unknown input.

The structure of the paper is the following: In Section
II, the problem statement is presented. Section III and IV
introduces the LO design procedures without and with
noise. Section III and IV introduces the UIO designs
procedure without and with noise. Section VII show the
obtained results applying the proposed approaches using an
illustrative example. Finally, Section VIII draws the main
conclusions and points several future research paths.



Notations and definitions

• vT denote the transpose of v for either a matrix or a
vector.

• H(A) = A+A′

• For a symmetric matrix the symbol ∗ denotes the ele-

ments induced by symmetry:
[
A B
BT C

]
will be denoted[

A B
∗ C

]
• In is the identity of size n
• For a square matrix P ≻ 0 (resp. P ≺ 0) means that P

is positive definite (resp. negative definite).
• For a square matrix P ⪰ 0 (resp. P ⪯ 0) means that P

is positive semi-definite (resp. negative semi-definite).

Lemma 1 [16]: (The Schur complement)
Given matrices Q = QT , R = RT and S with appropriate
dimensions, the following propositions are equivalent:[

Q S
ST R

]
, Q ≺ 0, Q = QT , R = RT (1)

R ≺ 0, Q− SR−1ST ≺ 0 (2)

Lemma 2 [16]: (The S-procedure)
For P ≻ 0, ∀ψ ̸= 0 and π satisfying πTπ ≤ ψTCCTψ[

ψ
π

]T [
ATP + PA PB

∗ 0

] [
ψ
π

]
(3)

is equivalent to ∃τ ≥ 0 such that[
ATP + PA+ τCTC PB

∗ −τIn

]
(4)

II. SYSTEM DEFINITION AND PROBLEM STATEMENT

A. System under consideration

Let us consider a noisy non-linear time-invariant system
with unknown input

ẋ = Ax+Bu+Dff(Hx) +Dv

y = Cx+Rh (5)

where x ∈ Rn is the state vector, u ∈ Rm is the input,
y ∈ Rp is the output, v ∈ Rp is an unknown input, h ∈ Rj is
the noise in the measurement, while A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, Df ∈ Rn×q , H ∈ Rs×n, R ∈ Rp×j are the
system matrices. The non-linearity f(Hx) is assumed to be
a one-sided Lipschitz function (OSL), fulfilling the following
condition [2]:

< f(Hx̂)− f(Hx), H(x̂− x) >≤ ρ∥H(x̂− x)∥2, (6)

Which writing ∆f = f(Hx̂)− f(Hx) is equivalent to:

∆fTHe ≤ ρeTHTHe. (7)

where ρ is the OSL constant, and < x, y >= xT y is the
inner product between x and y.

B. Observer definition

1) Luenberger Observer (LO): For system (5) , the fol-
lowing Luenberger like observer is proposed

˙̂x = Ax̂+Bu+Dff(Hx̂) +KLC(x̂− x) (8)

where KL is the observer gain.
2) Unknown Input Observer (UIO): For the system (5),

the following UIO is proposed

ż = Nz + TBu+Gy + TDff(Hx̂)

x̂ = z − Ey (9)

where z is the classical auxiliary variable and x̂ is the
estimation of the system state. The matrices N, J, L,E and
T = In + EC are the observer gains.

C. Problem definition

Since both the system under consideration and the obser-
vation schemes have been defined, we are ready to state the
observation problem to be solved.
Definition 1 (Exponential observer): An observer x̂ is an
exponential observer of x with convergence rate β and
overshoot Ω if the following inequality holds for all t ≥ 0 :

∥x(t)− x̂(t)∥ ≤ Ω∥x(0)− x̂(0)∥e−βt (10)

Definition 2 (Continuous time robust observer): A state
observer x̂ of x with L2 gain µ is said to be robust with
respect to perturbation v, if :∫ ∞

0

e(s)T e(s)− µ2v(s)T v(s)ds <∞ (11)

where e(s) corresponds to the error of estimation (x̂(s) −
x(s))

III. LUENBERGER OBSERVER SYNTHESIS FOR ONE
SIDED NONLINEAR LIPSCHITZ SYSTEMS WITHOUT NOISE

In this section, we consider the system (5) without mea-
surement noise and unknown input i.e.

ẋ = Ax+Bu+Dff(Hx)

y = Cx (12)

The synthesis of the Luenberger type observer will be done
considering the Lyapunov stability theorem [1], where the
convergence of the error will be imposed by solving a set of
LMIs. The detailed steps of the above mentioned objective
are condensed in Theorem 1.
Theorem 1: If there exists matrices P ≻ 0 and Q and an
scalar α such that the following relations holds

Ψ+ 2ραHTH + βP ≺ 0 (13)

DT
f P = αH

where
Ψ = (ATP +QTCT + PA+QC)



then observer (8) is an exponential observer for the system

(12) with convergence rate
β

2
and overshoot

√
λmax(P )

λmin(P )
.

The observer gain is given by KL = P−1Q .
Proof: The dynamics of the error can be obtained by

making the difference between the states and their estimates

ė = ˙̂x− ẋ

ė = Ae+Df∆f +KLCe (14)

with ∆f = f(Hx̂) − f(Hx) and the error dynamics are
defined for the Luenberger like observer (8). Using the
quadratic Lyapunov function (LF) V = eTPe and taking
its derivative, it is possible to find the following expression

Ψ = (ATP +KT
LC

TP + PA+ PKLC)

V̇ = eTΨe+∆fTDT
f Pe+ eTPDf∆f (15)

Using the OSL condition (7) and the assumption DT
f P =

αH , is possible to construct the following expression for the
LF derivative:

V̇ ≤ eTΨe+ 2ραeTHTHe (16)

V̇ ≤ eTΨe+ 2ραeTHTHe+ βeTPe (17)

From (13), we can obtain the exponential convergence rate
definition

V̇ ≤ −βV,

therefore
e(t)TPe(t) ≤ e(0)TPe(0)e−βt.

that leads to

||e(t)|| ≤

√
λmax(P )

λmin(P )
e−

β
2 ||e(0)||.

This conclude the proof of Theorem 1.
Remark 1: Note that conditions (13) include both linear

inequality and equality constraints that are the constraints of
a convex optimization problem. In the proposed framework,
one might also choose to minimize trace of P in order to

reduce the overshoot

√
λmax(P )

λmin(P )
.

IV. LUENBERGER OBSERVER SYNTHESIS FOR ONE
SIDED NONLINEAR LIPSCHITZ SYSTEMS CONSIDERING

NOISE

In this section, we follow a similar methodology to the
one of Theorem 1 with respect to the structure of the model.
However, the error dynamics are modified by considering the
measurement noise affecting the system. This noise effect
is intended to be mitigated by minimizing the L2 gain
generated by the noise.

Theorem 2: If there exists matrices P ≻ 0, Q and two scalars
α, τ1 > 0 such that the following relations holds[
H(ATP + CTQT ) + τ1In + 2ραHTH QR

∗ −τ1µ2In

]
≺ 0

DT
f P = αH

(18)

then observer (8) is a robust observer of system and the gain
is given by KL = P−1Q.
Proof:

Considering the noise h in the output is possible to obtain
the following expression for the error dynamics:

ė = Ae+Df∆f +KLCe−KLRh (19)

Considering the quadratic Lyapunov function V = eTPe,
and the OSL condition with the assumption DT

f P = αH , its
time derivative is

V̇ ≤ eTΨe+ 2ραeTHTHe− hTRTKT
LPe− eTPKLRh

(20)
Using the definition (11) is possible to rewrite the expression
(20) as follows

V̇ ≤ eTΨe+ 2ραeTHTHe− hTRTKT
LPe− eTPKLRh

+eT e− µ2hTh− (eT e− µ2hTh)
(21)

By means of (21), we can write our LMI condition

Λ = H(ATP + CTQT ) + τ1In + 2ραHTH[
eT

hT

] [
Λ QR
∗ −τ1µ2In

] [
e
h

]
≺ 0 (22)

Looking at the equation (22), together with the definition
(11) it could be inferred that the variable µ2 is an L2 gain for
the observer. With (22) the proof of Theorem 2 is finalized

Remark 2: According to (22), it is possible to minimize
the impact of the noise on the system by replacing τ1µ
by a new LMI variable ϵ such that ϵ

τ1
is minimized. This

minimizes the L2 gain µ). While ϵ
τ1

is not a convex function
of the optimization variable, an approximate solution can be
found by replacing the cost function by ϵ− τ1 such that the
resulting optimization problem is convex.

V. UNKNOWN INPUT OBSERVER SYNTHESIS FOR
ONE-SIDED NONLINEAR LIPSCHITZ SYSTEMS WITHOUT

NOISE

In this section, analogous to the Luenberger observer, we
will synthesize convergence conditions for an observer with
unknown inputs. Initially, the noise-free case (12) will be
considered. Defining the error of estimation for the UIO,
equation (23) is deduced.

e = x̂− x = z − ECx− x = z − Tx (23)
T = (In + EC)



Taking time derivative of (23), the error dynamics are found:

ė = ż − T ẋ (24)
ė = Ne+ TDf∆f + (NT +GC − TA)x− TDv

Once the dynamics of the error are known, we proceed to
do the synthesis of the UIO based on what was developed
in [3]. In the following the gains of the observer are stated
as expression of other matrix (that weill be used a matrix
variable in LMEs and LMIs expressions):

E = P−1S

K = P−1Q

N = TA−KC (25)
G = K +KCE − TAE

Theorem 3: If there exists matrices P ≻ 0, S , Q and scalars
α ∈ R, β > 0 such that the following relations holds:

H(ATP+ATCTST +CTQT )+2αρHTH+βP ≺ 0 (26)

DT
f P +DT

f C
TST − αH = 0 (27)

PD + SCD = 0 (28)

then observer (9) is an exponential observer of system and
its gains are given by (25).

Proof: By assumption PD + SCD = 0, so since P
is invertible D + P−1SCD = 0, and P−1S = E therefore
(I + EC)D = 0, this leads to TD = 0. Furthermore

NT +GC − TA = N +NEC +GC − TA

= −KC +NEC +GC

= NEC + (KCE − TAE)C

= (N +KC − TA)EC = 0

With the above considerations, we have a simplified error
dynamics

ė = Ne+ TDf∆f (29)

Considering the error dynamics (29), the quadratic Lyapunov
function (LF) V = eTPe is proposed. Taking LF derivative,
the following expression is found:

V̇ = eT [NTP + PN ]e+∆fTDT
f T

TPe+ eTPTDf∆f
(30)

The OSL condition (6) implies the following expression for
the non-linearity ∆f [2]:

ρeTHTHe ≥ ∆fTHe (31)

With the assumption DT
f P +DT

f C
TST = DT

f T
TP = αH ,

it is possible to conclude that the equation (32) corresponds
to an upper bound of the Lyapunov function

V̇ ≤ eT [NTP + PN ]e+ 2αρeTHTHe+ eTβPe (32)

The additional expression βP was considered with the aim
of improving the observer speed of convergence, since if

V̇ ≤ −βV then V ≤ e−βtV (0).
Therefore

V̇ ≤ −βV ↔ NTP + PN + 2αρHTH + βP ⪯ 0.

Using the equality stated in (25),

H(ATP +ATCTST ) + 2αρHTH + βP ≺ 0 (33)

With the exponential convergence rate definition (such as
Theorem 1), the proof of Theorem 3 is finished.

VI. UNKNOWN INPUT OBSERVER SYNTHESIS FOR
ONE-SIDED NONLINEAR NOISY LIPSCHITZ SYSTEMS

Considering the same structure as (5) but adding the noise
in the output y = Cx + Rh, the new error dynamics are
found:

ė = Ne+ (GR−NER)h+ TDf∆f − ERḣ (34)

From this equation, one can already observe that the dy-
namics of the observation error is influenced by both the
noise h and its derivative ḣ. In order to reduce noise, the
constraints SR = QR = 0 are added to Theorem 3 giving
rise to Theorem 4.
Theorem 4: If there exists matrices P ≻ 0, S and Q such
that the following relations holds:

H(ATP +ATCTST + CTQT ) + 2αρHTH ≺ 0 (35)

DT
f P +DT

f C
TST − αH = 0 (36)

PD + SCD = 0 (37)

SR = 0 (38)

QR = 0 (39)

Then observer (9) is an exponential observer of system and
its gains are given by (25) .
Proof: Since GR−NER must be 0, it implies that SR =
QR = 0. For the LMI (35) and the matrix equality’s (36)-
(37) the methodology is the same as the case without noise
(Theorem 3).

While the previous theorem give sufficient conditions to be
insensitive to noise, the proposed conditions might be too
demanding in practice. However, it is possible to mitigate
the noise effect in the derivative while minimizing the impact
of the noise (as measured by minimizing an L2 gain). Such
method will be stated in the next theorem.
Theorem 5: If there exists matrices P ≻ 0, S, Q and an
scalar τ1, such that the following relations hold:[

H(a1) + 2ρHTH + τ1In QR
∗ −µ2τ1In

]
≺ 0 (40)

DT
f P +DT

f C
TST − αH = 0 (41)

PD + SCD = 0 (42)

SR = 0 (43)



a1 = ATP +ATCTST + CTQT (44)

Then, observer (9) is a robust observer with L2 gain µ and
its gains are given by (25) .
Proof: By means of the stability analysis based on the
error dynamics which include noise (34), and considering
the quadratic Lyapunov function V = eTPe is possible to
derive the expression (45) for V̇ , assuming that ηT = [eThT ]
and using the definition of L2 gain, the LF derivative is:

ηTΛη = eT [NTP + PN ]e+ 2ρeTHTHe+ b1 (45)

b1 = hTRTGTPe+ eTPGRh+ τ1(e
T e− µ2hh) (46)

V̇ ≤ ηTΛη − τ1(e
T e− µ2hh) (47)[

eT

hT

] [
H(a1) + 2ρHTH + τ1In QR

∗ −µ2τ1In

] [
e
h

]
≺ 0

a1 = ATP +ATCTST + CTQT (48)

Looking at the equation (47), together with the definition
could be inferred that the variable µ2 is an L2 gain for the
observer. Thus, we can proceed in the same way as Theorem
2 and the proof is finalized.

VII. ILLUSTRATIVE EXAMPLE

In this section, an example will be proposed to test the
performance of the observers against each of the design
criteria presented in the methodological part of the paper. The
technique selected to measure performance is the absolute
integral of the error IAE.

IAE =

∫ t

0

∥e∥dt (49)

where e is the error of estimation. Considering the example
given in [17]

ẋ = Ax+Bu+Dff(Hx) +Dv

y = Cx (50)

A =

−1 1 −1
0 −2 1
0 0 −3

C =
[
0 0 1

]
(51)

D =
[
0 0 −1

]T
H =

[
0 0 1

]
f(x) =

[
0 0 −x1/33

]
(52)

Df = HT (53)

the methodology proposed in [15] allow us to analyze the
characteristics of dynamical system (51)-(53). Initially, the
first step is to obtain the Jacobian of then nonlinear part for
system (51)-(53)

Jf (f(Hx)) =

0 0 0
0 0 0
0 0 −1

3x
2/3
3

 (54)

Then, according to [15], the following optimization problem
must be solved, in order to obtain the upper γu and lower
γl Lipschitz constants for (51)-(53).

γu = max
(x,u)

λmax(
1
2 (Jf + JT

f )) (55)

γl = min
(x,u)

λmin(
1
2 (Jf + JT

f )) (56)

computing the optimization problems (55)-(56) one can see
that γu = 0 and γl = −∞. Since the lower Lipschitz
constant is unbounded one can conclude that the system
is OSL due the fact that it decreases faster than a linear
system. Then, calculating the OSL constant according to [15]
its value is equal to γOSL = ρ = 0.
By implementing the observer (8) in the system (51)-(53),
the result presented in Figure 1 is obtained.

Fig. 1. Implementation of Luenberger observer, IAE = 3.11

Looking at this figure, it can be inferred that the estimation
error is asymptotically stable, and has convergence in finite
time. On the other hand, results in Figure 2 suggests that by
minimizing the gain L2, the observer gains is able to filter
the noise allowing the estimation to reduce the uncertainty
related to the sensor.

To evaluate the UIO formulations, the considered unknown
input is v = 0.5sin(5t). The first simulation case shown in
Fig. 3 does not consider the noise in the output, i.e. R = 0.

For the previous example, the improved speed of conver-
gence constant is β = 10. Analyzing the results obtained in
Figure 3, it can be inferred that the observer performance is
not affected by the unknown input, so the estimator design
specifications are satisfactorily achieved. Additionally, a fast
convergence speed is presented since the signal of the esti-
mated variable manages to efficiently reconstruct the output
y = x3 in finite time.
Analogously, the performance of the observer is tested with
an output contaminated with Gaussian noise as shown in Fig
4.



Fig. 2. Luenberger observer performance considering noise, IAE = 1.8

Fig. 3. Unknown Input Observer considering the measurement free of
noise , R = 0. IAE = 7.02

Fig 4 shows that the observer manages to effectively filter
out the noisy measurement, as the noise does not propagate
into the other state variables. Another characteristic that can
be seen is that a fast convergence is achieved when following
the measured variable, and the stability of the observer is
not affected by the noise. Observing the performance of
each of the observers with respect to the established design
conditions, it could be concluded that minimizing the L2

gain improves the performance of the estimator, since higher
convergence speeds are presented, noise is filtered out and
the IAE is lower.

A. Discussion

From the results previously obtained, it can be concluded
that the observers presents a satisfactory performance with
respect to the design conditions initially established.
The result shown in Fig 3,1, suggests that the LMI conditions

Fig. 4. Unknown Input Observer considering the measurement contami-
nated with noise, R = 1, IAE = 5.93

are satisfactorily fulfilled, achieving the convergence of
the observer. From Figure 4,2, it can be observed that the
L2 gain generated by the noise is minimized, leading to
the observer error dynamics converge efficiently to the origin.

VIII. CONCLUSIONS

In this paper, the problem of designing observers for
one-sided Lipschitz nonlinear systems considering noise and
unknown inputs have been addressed considering two ob-
server structures: Luenberger Observer (LO) and Unknown
Input Observer (UIO). The observer synthesis procedures
has been formulated as convex optimization problems in the
LMI framework. An illustrative example has been used to
illustrate how the proposed observer design approaches are
used to design the LO and UIO schemes. The obtained sim-
ulation results are presented to assess the proposed methods.
The results shown in the present paper could be considered
novel, because the observer design only includes the OSL
condition, while other works with the same objective, make
the assumption that the nonlinearity is QIB or Lipschitz.
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