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ABSTRACT
In this paper, the problem of designing an observer for quadratically inner bounded
(QIB) and one-sided Lipschitz (OSL) nonlinear systems considering perturbations in
the output and unknown inputs is addressed. The observer synthesis procedures are
formulated as convex optimization problems. Sufficient conditions for observer gain
synthesis are shown to be equivalent to solve finite sets of Linear Matrix Inequalities
(LMIs) and Linear Matrix Equalities (LMEs). Three illustrative examples based on
an isothermal CSTR reactor, a water tank-open channel system and FitzHugh-
Nagumo system are used to illustrate how the proposed approaches are used to
design the QIB-UIO scheme. The obtained simulation results are presented to assess
the performance of the proposed method.
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1. Introduction

The supervision, control and predictive maintenance of a system generally requires
the knowledge of its states. However, economic and technical constraints require the
reduction of the number of physical sensors [1]. Moreover, the evolution of the system
can be influenced by unmeasured perturbations, usually modelled as unknown inputs
[2]. Thus, in the literature there are several studies focusing on reconstructing the
state of a system from known inputs and outputs in the presence of unknown inputs.
Such a task involves the synthesis of an Unknown Input Observer (UIO). Several con-
tributions towards the design of UIO for linear systems can be found in the literature
(see [3], [4]). However, the design of UIO for nonlinear systems (NLS) might become
more challenging, as the validity of linear systems can only approximate the dynamic
behavior of nonlinear systems in an interval around the operating point.

Nonlinear Lipschitz systems are a particular class of NLS, for which there are several
results related to the design of UIO, see as e.g. in [5], [6]. The UIO synthesis problem
for nonlinear Lipschitz systems is formulated in the Linear Matrix Inequalitiy (LMI)
framework, obtaining sufficient conditions to guarantee the convergence of the error



dynamics. Another family of systems, which is less restrictive than the Lipschitz one,
is the family of Quadratically Inner Bounded (QIB) One-sided Lipschitz Nonlinear
Systems (OSL). This type of systems has attracted the attention of the scientific com-
munity due to the fact that the bounding condition of the derivative must only be
satisfied in the growth rate, but not in the decay rate, making it less restrictive than
Lipschitz systems, which must satisfy both. Additionally, since the QIB condition is
equivalent to Lipschitz [7], it adapts to the OSL condition by selecting sufficiently
large QIB constants while also admitting negative constants, which is not possible
when one wishes to describe a nonlinear system considering only the Lipschitz con-
stant [8]. When designing control and estimation algorithms, the OSL-QIB property is
preferred, since there is a greater number of parameters to describe the dynamics of a
system, facilitating the convergence of these (compared with the Lipschitz one)[9]. In
the present article, it is shown that the OSL-QIB description allows to find feasibility
conditions for the formulated LMI, which is not possible to achieve considering the
design of an observer with the classical Lipschitz constant [10], as is shown later in
the paper by means of the FitzHugh-Nagumo (FHN) system example.

Some examples of UIO design for OSL-QIB systems can be found in the literature.
For instance, the authors of [11] design a UIO robust against time delays. References
[8], [12] and [13] present the design of UIO for OSL-QIB systems, OSL-QIB fractional
NLS and OSL-QIB Markovian jump NLS, respectively. The previously cited authors
succeed in proving that the UIO design conditions are reduced to satisfying certain
LMI (convex optimization) constraints, as is the case for observer design including
conventional Lipschitz conditions. Although previous works have considered the design
of UIOs for OSL systems with different characteristics (e.g., time-delay and Markovian
jump systems), the case in which perturbations are present in the measurement has
not been considered yet. It is worth noting that this kind of perturbations are usually
considered as noise in the literature [14–18]. Including this design condition is key
because perturbations in the sensors (sensor uncertainty or noise) are always present
when UIOs are implemented in real systems. Therefore, it is important to minimize
the effect of perturbations in order to reduce the bias these can generate.

In this paper, a UIO is designed using an LMI approach for OSL-QIB systems. From
a methodological point of view, the main contribution consists in the reformulation of
the UIO synthesis problem for OSL-QIB systems as a convex optimization problem,
while making the observer robust against sensor perturbations. This fact allows to
solve the UIO synthesis problem for OSL-QIB systems and formulate the observer
synthesis problem as a convex optimization problem by combining matrix inequalities
and equalities. Using this approach, it becomes clear that sufficient conditions for UIO
synthesis are identical to the ones considered for classical observer synthesis using LMIs
(as considered for instance in [19]) combined with decoupling conditions between the
observer error and the unknown input.

Summarizing the above, the main contributions of the paper are:

• To the best knowledge of the authors, the case with simultaneous noise and
unknown inputs is considered for the first time.

• The design of observers that are robust against noise exists in several publica-
tions. However, the approximation considered therein is when the noise affects
the state and then is propagated to the sensor (which does not always hap-
pen). In contrast, in this paper we consider the case the uncertainty is directly
associated to the sensor, which in our opinion appears to be closer to reality.

• In the proposed approaches, the dynamical systems are written in terms of the
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linearization error, which allows to write any dynamic system into a linear part,
which depends on the observer gains, and the nonlinear part, which is bounded
by the OSL-QIB constants.

• Application examples are provided to illustrate the interest and performance of
the proposed approaches using the OSL-QIB system formulation.

The structure of the paper is the following: in Section 2, the problem statement
is presented. Section 3 describes the UIO design procedures without and with noise.
Section 4 shows the obtained results applying the proposed approaches using illustra-
tive examples. Finally, Section 5 draws the main conclusions and points several future
research paths.
Notations: Rn denotes the Euclidean space of dimension n, Rn×m is the set of all
n×m matrices. Matrices P ≺ 0 and P ≻ 0 are squared and symmetric, and negative
and positive definite, respectively. The operation ⟨x, y⟩ = xT y corresponds to the in-
ner product between x and y, and xT corresponds to the transpose of vector x. The
operator H(A) = A+AT is the Hermitian of A. Finally, ∥x∥ is the norm of vector x.

2. Problem set-up

Consider the following nonlinear dynamical system:

ẋ = Ax(t) +Bu(t) +Dff(Hx) +Dv(t), (1)

y = Cx(t) +Rh(t),

where x ∈ Rn is the state vector, u ∈ Rm is the input, y ∈ Rq is the output, v ∈ Rp is an
unknown input, h ∈ Rj is the measurement perturbation, and A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rq×n, Df ∈ Rn×n, H ∈ Rn×n, D ∈ Rn×q and R ∈ Rq×j are the system matrices.
The nonlinearity f(Hx) is assumed to fulfill the following conditions [8].

Condition 1: The nonlinearity f(Hx) satisfies the OSL condition if the following
inequality is valid:

⟨f(Hx̂)− f(Hx), H(x̂− x)⟩ ≤ ρ∥H(x̂− x)∥2. (2)

Defining ∆f = f(Hx̂)− f(Hx) and e = x̂− x, Equation (2) can be rewritten as:

∆fTHe ≤ ρeTHTHe, (3)

where ρ ∈ R is the OSL constant.
Condition 2: The nonlinearity f(Hx) satisfies the QIB condition if the following

inequality is valid:

∥f(Hx̂)− f(Hx)∥2 ≤ β∥H(x̂− x)∥2 + γ⟨f(Hx̂)− f(Hx), H(x̂− x)⟩. (4)

Defining ∆f = f(Hx̂)− f(Hx) and e = x̂− x, Equation (4) can be rewritten as:

∆fT∆f ≤ βeTHTHe+ γ∆fTHe, (5)

and the scalars γ, β in (5) are the QIB constants.
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It should be noted that every vector function that is locally Lipschitz satisfies the
one-sided Lipschitz property, but the inverse is not true [8]. For instance, the scalar
function f(x) = −x3 is locally Lipschitz but not globally Lipschitz [20]. However, by
applying (3) it is possible to conclude that the condition is fulfilled with ρ = 0, and
thus the system is OSL.

From the above, it can be inferred that the OSL condition encompasses a much
larger family of dynamical systems than the classical Lipschitz condition. Hence, the
design of an observer with this property could estimate the unknown state of a wide
variety of systems (larger than including the classical Lipschitz property). To guar-
antee an implementable design of the observer, it is of vital importance to guarantee
robustness against perturbations in the measurement (usually modeled as noise) since
it can negatively alter the performance of the observer. Thus, the goal of this work is
to propose a formulation of a state estimator that is robust with respect to noise and
which also includes the OSL-QIB property. With these characteristics, the implemen-
tation of the observer becomes interesting for real-time state estimation and filtering
applications.

In order to present the results obtained in this paper, the following preliminary
definitions are necessary:

Definition 2.1. (Exponential Observer) [21]: An observer x̂ is an exponential observer
of x with convergence rate α and overshoot Ω if the following inequality holds for all
t ≥ 0 :

∥x(t)− x̂(t)∥ ≤ Ω∥x(0)− x̂(0)∥e−αt. (6)

Definition 2.2. (Continuous time robust observer)[21]: An observer x̂ of x with L2

gain µ is said to be robust with respect to perturbation v, if :∫ ∞

0
(e(s)T e(s)− µ2v(s)T v(s))ds < 0, (7)

where e(s) corresponds to the estimation error (x̂(s)− x(s)).

3. Unknown Input Observer design for QIB-OSL nonlinear systems

3.1. UIO design, including sensor perturbations (R ̸= 0)

This section will address the design of a UIO when the measurement is perturbed,
that is, R ̸= 0. Initially, let us consider the following UIO structure [8]:

ż = Nz + TBu+Gy + TDff(Hx̂),

x̂ = z − Ey, (8)

where z is the auxiliary variable, x̂ is the estimation of the system state, and matrices
N, J, L,E and T = In + EC are the observer gains. The subtraction between the
estimated state and the real state of the system allows to define the estimation error
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as

e = x̂− x = z − ECx− x = z − Tx, (9)

T = (In + EC).

Taking the time derivative of (9), the error dynamics can be deduced. Considering
that R ̸= 0, it is possible to obtain the following error dynamics:

ė = Ne+ (GR+NER)h+ TDf∆f − ERḣ− TDv(t). (10)

From (10) it is easy to observe that the dynamics of the estimation error are in-
fluenced by the sensor perturbation and its derivative. Once the error dynamics are
obtained, it is possible to proceed with the UIO synthesis [10]. In the following equa-
tions, the observer gains are stated as functions of other matrices (that will be used
as matrix variables in LME and LMI expressions):

E = P−1S,

K = P−1Q,

N = TA−KC, (11)

G = K +KCE − TAE.

In Theorem 1, some conditions are stated in order to reduce the impact of the
perturbation which affects the sensor.

Theorem 3.1. If there exist matrices P ≻ 0, S, Q and positive scalars τ1, τ2, τ3 and
µ such that the following LMIs and LMEs have solution:H(PA+ SCA−QC) + a1 ΛT QR

Λ −2τ2In 0n
RTQT 0n −τ3µ

2In

 ≺ 0,

PD + SCD = 0, (12)

SR = 0, (13)

P ≻ 0, (14)

a1 = 2(τ1ρ+ τ2β)H
TH + τ3In, (15)

then observer (8) is a robust observer of system (1) and its gains are given by (11) ,
with L2 gain equal to µ.

Proof : By assuming PD + SCD = 0, and since P is invertible, it follows
D + P−1SCD = 0, and since P−1S = E, (I + EC)D = 0, this leads to TD = 0.
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Furthermore:

NT +GC − TA = N +NEC +GC − TA

= −KC +NEC +GC

= NEC + (KCE − TAE)C

= (N +KC − TA)EC

= 0.

Using the error dynamics (10) and the LME constraint PD + SCD = 0, the
quadratic Lyapunov function (LF) V = eTPe is proposed. Taking the LF deriva-
tive with respect to time, and adding the LME constraint SR = 0 (with the aim to
reduce the impact of the sensor perturbation, since GR = QR and ER = P−1SR = 0),
Equation (16) is obtained:

V̇ = eT (NTP + PN)e+H(hTQRe) +H(∆fDT
f T

TPe). (16)

Pre-multiplying conditions (3) and (5) with the constants 2τ1 and 2τ2 ∈ R, respec-
tively, it is possible to find an upper bound for the LF derivative:

Ψ = ρeTHTHe−∆fHe > 0, (17)

Γ = ∆fT∆f + γeTHT∆f + βeTHTHe > 0, (18)

V̇ ≤ V̇ + τ1H(Ψ) + τ2H(Γ). (19)

Considering Equations (17), (18) and (7), inequality (20) is defined for the LF
derivative as follows:

V̇ ≤ V̇ + τ1H(Ψ) + τ2H(Γ) + τ3e
T e− τ3µ

2hTh. (20)

By introducing the variable ζ = [e ∆f h], Equation (20) can be rewritten as an
LMI as

ζT

H(PA+ SCA−QC) + a1 ΛT QR
Λ −2τ2In 0n

RTQT 0n −τ3µ
2In

 ζ ≺ 0, (21)

a1 = 2(τ1ρ+ τ2β)H
TH + τ3In. (22)

Once (21) has been obtained, the proof of Theorem 1 is concluded.

Remark : Notice that it is possible to minimize the impact of the sensor perturba-
tion on the system by replacing τ3µ

2 by a new LMI variable ϵ such that ϵ
τ3

is minimized.
This minimizes the L2 gain µ. While ϵ

τ3
is not a convex function of the optimization

variable, an approximate solution can be found by replacing the cost function by ϵ−τ3
such that the resulting optimization problem is convex.
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3.2. UIO design including perturbations in the measurement (alternative
approach)

Upon inspection of Theorem 1, it can be observed that the condition SR = 0 might
be too restrictive and renders the optimization problem difficult to solve. In order to
overcome this problem, Theorem 2 is proposed.

Theorem 3.2. If there exist matrices P ≻ 0, S, Q and positive scalars τ1, τ2, τ3, τ4
and µ such that a solution exists for the following LMIs and LMEs:

H(PA+ SCA−QC) + a1 Λ QR −SR
ΛT −2τ2In 0n 0n

RTQT 0n −τ3µ
2In 0n

RTST 0n 0n −τ4µ
2In

 ≺ 0, (23)

a1 = 2(τ1ρ+ τ2β)H
TH + τ3In, (24)

PD + SCD = 0, (25)

P ≻ 0, (26)

then observer (8) is a robust observer of (1) and its gains are given by (11), with L2

gain equal to µ.

Proof : Considering the error dynamics (10), the quadratic LF V = eTPe is pro-
posed. Taking the LF derivative and adding the LME constraint PD+SCD = 0, the
following expression is obtained:

V̇ = H(eTPNe) +H(eTQRh)−H(eTSRḣ) +H(eTPTDf∆f). (27)

Taking Equations (17) and (18) together with Equation (7) in Definition 2 (propos-
ing L2 gains for the measurement perturbation and its derivative), inequality (28) is
defined for LF derivative as

V̇ ≤ V̇ + τ1H(Ψ) + τ2H(Γ) + (τ3 + τ4)e
T e− τ3µ

2hTh− τ4µ
2ḣT ḣ. (28)

Introducing the variable Ξ =
[
e ∆f h ḣ

]
, inequality (28) can be rewritten as

Ξ


H(PA+ SCA−QC) + a1 Λ QR −SR

ΛT −2τ2In 0n 0n
RTQT 0n −τ3µ

2In 0n
−RTST 0n 0n −τ4µ

2In

Ξ ≺ 0 (29)

a1 = 2(τ1ρ+ τ2β)H
TH + τ3In (30)

The effect of the measurement perturbation is minimized in the same way as in
Theorem 1. Initially, we propose the change of variables ϵ1 = τ3µ

2, ϵ2 = τ4µ
2, and
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then solve the semidefinite programming (SDP) ϵ1 − τ3 + ϵ2 − τ4. This concludes the
proof of Theorem 2.

3.3. UIO design, free of sensor perturbations (R=0)

This section will address the design of a UIO when the measurement is perturbation-
free, that is, R = 0. Initially, considering the UIO structure (8), the expression of the
estimation error can be obtained by making the subtraction between the estimated
state and the real state:

e = x̂− x = z − ECx− x = z − Tx, (31)

T = In + EC.

Taking the time derivative of (31), the error dynamics can be deduced:

ė = ż − T ẋ, (32)

ė = Ne+ TDf∆f + (NT +GC − TA)x− TDv.

Theorem 3.3. If there exist matrices P ≻ 0, S, Q and positive scalars τ1, τ2 such
that the following LMIs and LMEs have solution:

Λ = DT
f P +DT

f C
TST − τ1H + τ2γH, (33)[

H(PA+ SCA−QC) + 2τ2βH
TH + 2τ1ρH

TH Λ
ΛT −2τ2In

]
≺ 0, (34)

PD + SCD = 0, (35)

P ≻ 0, (36)

then observer (8) is an exponential observer of (1), and its gains are given by (11),
with L2 gain equal to µ.

Proof: With the above considerations and the LME constraint PD + SCD = 0
analysis, the simplified error dynamics are obtained:

ė = Ne+ TDf∆f. (37)

Considering the error dynamics (37), the quadratic LF V = eTPe is proposed.
Taking the LF derivative, the following expression is found:

V̇ = eT
(
NTP + PN

)
e+H

(
∆f

(
DT

f P +DT
f C

TST
)
e
)
. (38)

Using (17) and (18), it is possible to find an upper bound for the LF derivative:

V̇ ≤ V̇ + τ1H(Ψ) + τ2H(Γ). (39)

Rewriting inequality (39) leads to the following LMI:
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Λ = DT
f P +DT

f C
TST − τ1H + τ2γH,

η = [e ∆f ],

ηT
[
H(PA+ SCA−QC) + 2τ2βH

TH + 2τ1ρH
TH ΛT

Λ −2τ2In

]
η ≺ 0. (40)

With the determination of LMI (40), the proof of Theorem 3 is finished.
Note that, in the linear case, necessary and sufficient condition were given in [22]. Un-
der those assumptions, and provided the OSL-QIB constant are small enough, then the
LMIs in Equation (34) are feasible. This is formally stated in the following proposition:

Proposition 3.4. Neccessary and sufficient conditions for (8) to be a UIO for the
system defined by (1) are:

• rank(C) = rank(CD),
• the pair (A1, C) is detectable, with A1 = A−D[(CD)TCD]−1(CD)TCA, and
• there exist nonzero OSL-QIB constants such that (34) is negative definite.

Proof. The matrix from the LMI (40) for the case when OSL-QIB constants are
0, can be written defining the variables ω = H(PA + SCA − QC), B = −2τ2In,
η = x =

[
x1 x2

]
and Λ = DT

f P + DT
f C

TST − τ1H. Then, Equation (34) can be
rewritten as:

xT
[
ω ΛT

Λ B

]
x = xT1 ωx1 + 2xT1 Λx2 + xT2 Bx2. (41)

From Equation (41), and assuming the detectability condition, it is possible to conclude
that:

xT1 ωx1 + 2xT1 Λx2 + xT2 Bx2 ≤ −λmax(ω)∥x1∥2 + 2∥x1∥∥x2∥∥Λ∥ − τ2∥x2∥2. (42)

Applying Cauchy-Schwarz inequality to the Equation (41), the following relationship
is obtained:

2∥Λ∥∥x1∥∥x2∥ ≤ ∥x1∥2∥Λ∥
ε

+ ∥x2∥2∥Λ∥ε. (43)

Using Equations (42) and (43), it is possible to bound the non-definite sign matrix Λ
term as follows:

xT1 ωx1 + 2xT1 Λx2 + xT2 Bx2 ≤ −(λmax(ω)−
∥Λ∥
ε

)∥x1∥2 − (τ2 − ∥Λ∥ε)∥x2∥2, (44)

where one can choose ε such that λmax(ω)− ∥Λ∥
ε > 0.

Then, one can choose τ2 such that τ2 − ∥Λ∥ε > 0 ensuring[
ω ΛT

Λ B

]
≺ 0.
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By continuity of negative definiteness, there exist some small enough OSL-QIB
constants such that the (40) is feasible and relationship (42) is fulfilled.

3.4. Calculation of the OSL-QIB constants

As a preliminary step to implement the UIO, it is important to determine the OSL and
QIB constants. The calculation of these constants can be a complex step for systems
with numerous state variables. However, a simple methodology is proposed in [7] to
obtain the values of these constants.

To find the OSL constant ρ, matrix Ψ = 1
2

(
Jf + JT

f

)
must be computed, where

Jf is the Jacobian of the system. Finding the mathematical expression for Ψ, the
optimization problem (45) is solved to find ρ ∈ R as

ρ = max
i∈n

max
x,u∈Ω

Ψi,i +
∑
j∈n|i

|Ψi,j |

 , (45)

where Ω is the set of feasible inputs and states.
According to [9], the QIB constants are parameterized in terms of the non-negative

variables ϵ1, ϵ2 (which add a degree of freedom to the calculation of the QIB constants,
which can be very useful when designing observers and controllers). From Equation
(5) and [9], the first QIB constant is equal to β = ϵ2 − ϵ1, while γ is equal to the
solution of the following optimization problem:

γ = ϵ1γ − ϵ2γ̄ + max
x,u∈Ω

∑
i∈n

∥∇ξi∥2 ≥ 0, (46)

with

γ = max
x,u∈Ω

λmax(Ψ) (47)

and

γ̄ = min
x,u∈Ω

λmin(Ψ), (48)

where λ are the eigenvalues of Ψ and ∥∇ξi∥2 is the norm of each row of Jf . Giving
an interpretation of the meaning of the constants, it is possible to say that the QIB
constants can be interpreted as a way to ”split” the Lipschitz constant, and relax the
Lipschitz representation, since QIB constants can be negative [9]. The OSL constant
helps in terms of convergence, as it makes the proof of convergence easy to solve,
indicating an upper bound of the derivative [9].

4. Application examples

In this section, three application examples are considered for illustrating the proposed
approaches: a continuous stirred-tank reactor (CSTR), a water tank-open channel
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Figure 1. Isothermal CSTR reactor with single reaction [23]

system and the FHN system. The three physical systems are interesting, since in
addition to correspond to real processes, the CSTR and the FHN are locally Lipschitz,
while the water tank-open channel is OSL in the region of study, which demonstrates
the adaptability of the UIO to the different types of nonlinearities that can occur when
designing the proposed state estimation scheme. To measure the performance of the
UIO in each situation, the Integral Squared Error (ISE), defined as

ISE =

∫ t

0
∥ e(t) ∥2 dt, (49)

is used.

4.1. Isothermal CSTR

CSTR are usually key equipment within the stages of a process, since they are in
charge of generating higher value-added products [23]. When operating CSTR, differ-
ent amounts of reagents are usually added in order to maximize the conversion and the
generation of added value products. Thus, it is important to monitor the concentra-
tions of the reagents and products involved at the reaction stage. In order to perform
the above task efficiently, the UIO will be used. A schematic representation of the case
study to be considered is shown in Figure 1.

Assuming constant level and first order isothermal reaction, the following molar
balances are proposed for the chemical species involved in the process [23]:

ṄA =
F1

V
(NA,in −NA)− rAV, (50)

ṄB = −F1

V
NB + rAV, (51)

rA = k0e
− Ea

RT
NA

V
, (52)
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Parameter Units Value
Reactor volume (V ) m3 6.6
Preexponential constant (k0) h−1 9703.3600

Activation energy (Ea)
kcal
kmol 11843

Gas constant (R) kcal
kmolK 1.987

Reactor temperature (T ) ◦C 60

Density (ρ) kg
m3 1000

Feed concentration of A (NA,in

V ) kmol
m3 0.5

Input flow (F1)
m3

h 5
Table 1. CSTR reactor parameters and inputs

x =
[
NA NB

]
, y = NB, u = F1, (53)

whereNA andNB are the moles of reagent and product, respectively, F1 is the volumet-
ric input flow, and rA is the velocity of consumption for the reagent. The parameters
in Equations (50)–(52) are summarized in Table 1 [23].

From the knowledge of the process dynamics and parameters, the system can be
rewritten in the form of (1) with the following matrices:

A =

[
−k0e

− Ea

RT 0

k0e
− Ea

RT 0

]
, B =

[
0
0

]
, (54)

H = Df = I2, (55)

R = C =
[
1 0

]
, D = RT (56)

f =

[
F1

V (NA,in −NA)

−F1

V NB

]
. (57)

The OSL-QIB constants ρ = 0, β = −1 and γ = −0.2237 can be computed using
Equations (45) and (46). From the value of the constants, we can interpret that this
system can provide an easy convergence for the Lipschitz case, since ρ = 0, and
L =

√
|β|+ γ2, see [9]. Solving the conditions of Theorem 2 using YALMIP [24], the

values that are found for the scalars and matrices are given in Equation (58) and Table
4.1.

P =

[
3.33 0
0 3.33

]
Q =

[
1.62× 106

1.02× 108

]
S =

[
0

−3.33

]
(58)

Initially, the observer is tested with the measurement free of noise and the initial
conditions x(0) =

[
0 0

]
, z(0) =

[
0.6 0.6

]
. Additionally, after 20 hours of operation,

an additional flow of product is added to the system with the objective of accelerating
the production, i.e., Dv =

[
0 2NB/V

]
. This flow can be considered as an unknown

input. Figure 2 presents the observer performance in the absence of noise.
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Parameter Value
τ1 2.13×108

τ2 6.62×108

τ3 3.46×108

τ4 3.46×108

µ 1.14
Table 2. Scalars of the solution for Theorem 2, CSTR case

Figure 2. UIO considering Theorem 3, CSTR free of noise case (ISE = 0.01)

From the results presented in Figure 2, it can be inferred that the observer converges
to the true state in finite time while adapting correctly to the unknown input applied
to the reactor. From this figure, it can be seen that the unknown input only affects the
product concentration (in order to fulfill the condition rank(C) = rank(CD)), hence
the reagent concentration remains insensitive to this change. The difference between
the observer convergence speeds for each of the states is due to the fact that the
non-measurable variable takes longer to replicate than the measurable one.

For the second simulation scenario, the previously established conditions will be
retained. However, the measured variable will be contaminated with Gaussian noise
(zero mean with a standard deviation equal to 1) to evaluate the properties of the
observer in this new situation. Figure 3 shows the results in this case.

Regarding the results obtained for the scenario with measurement perturbation con-
sidered as noise, it can be inferred that the observer presents a satisfactory performance
since noise filtering is observed, all the while retaining the properties established with
Theorem 3, i.e., robustness to unknown input and convergence in finite time.

4.2. Water tank-open channel system

Water is a very important element in most production systems [25], and an efficient
way to transport and store it is through an open tank-channel system [26]. The tank
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Figure 3. UIO considering Theorem 2, CSTR measurement perturbation case (ISE = 1.41)

Figure 4. Water tank-open channel system scheme

is in charge of collecting a water flow f0, which is then supplied through a valve fout
to the open channel with a downstream gate fout2 for its subsequent transport and
supply. Figure 4 shows the details of the considered case study.

The mathematical model representing the system dynamics is given by the following
equations:

ḣ = f0 − Cv

√
h, (59)

ẏdn0
= Cv

√
h− au0

√
ydn0

− yup1
, (60)

y = ydn0
, u = f0, x =

[
h ydn0

]
. (61)

Equations (59) and (60) represent the mass balances applied over the system in
Figure 4. The term Cv = 0.1 is the valve coefficient, a = 3.98 is a factor which takes
into account the gate properties (geometry and discharge coefficient) and the gravity,
u0 = 0.4 is the degree of gate opening, h = x1 is the height of the tank, x2 = ydn0

is
the height before the gate discharge and yup1

= 0.1 is the height upstream.
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Figure 5. UIO water tank- open channel free of perturbation, Theorem 3 (ISE = 3.51)

Rewriting the system in the form of (1), the following matrices are obtained:

A =

[
−0.0333 0
0.0333 −12.6

]
, (62)

H = Df = I2, (63)

R = C =
[
0 1

]
, D = RT , (64)

f =

[
f0 − Cv

√
h

Cv

√
h− au0

√
ydn0

− yup1

]
−Ax. (65)

In order to implement the observer, the OSL-QIB constants were calculated, ob-
taining the following values: ρ = 0, β = −0.1, γ = −1 (since γ is unbounded the
selected value easily adapts to the OSL condition). The performance of the observer
is first evaluated when the measurement is perturbation-free and with initial condi-
tions x(0) =

[
0.1 0.1

]
, z(0) =

[
0.6 0.6

]
. After 160 hours of operation, an unknown

input, which can be interpreted as a leak, is applied to the system in order to test the
performance of the observer. The results for the simulation of the UIO together with
the system under consideration can be found in Figure 5.

The trajectories of the variables in Figure 5 show that the observer is robust to
unknown inputs and converges in finite time to the real values of the state variables.
Note that the unknown input does not affect the unmeasured variable, since the first
dynamic is decoupled of the tank height.

A second simulation case is considered, but this time the measurement is contami-
nated with Gaussian noise as perturbation (zero mean with standard deviation equal
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Parameter Value
τ1 1.34
τ2 11.53
τ3 1.2
τ4 1.2
µ 12

Table 3. Scalars of the solution for Theorem 2, Open channel-water tank case

Figure 6. UIO water tank-open channel with noise, Theorem 2 ISE = 6.03

to 1), while the rest of conditions are maintained as in the previous case (perturbation-
free tank-open channel). The solution of the LMIs stated in Theorem 2 (noisy case)
are summarized in the equation (66), and Table 4.2.

P =

[
7.88 0
0 1.06

]
Q =

[
0

52.27

]
S =

[
0

−1.06

]
(66)

Analyzing the results, it can be concluded that the observer retains the robustness
against the unknown input in addition to filtering the noise.

4.3. FitzHugh-Nagumo (FHN) system

FHN systems are widely used to model neural behavior, chemical reaction kinetics,
artificial neural networks and electronic oscillators, and also to study external stim-
ulation (such as deep brain stimulation) therapies for effective treatment of brain
disorders [27]. The following state-space model represents two coupled synchronous
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FHN neurons [27]:

A =


−g1 − 1 −v1 g1 0 0

b1 0 0 0 0
g2 0 −g2 − 1 −v2 0
0 0 b2 0 0
1 0 −1 0 −1

 , C =


1
0
0
0
0


T

, (67)

R = C, D = CT , (68)

H = Df = diag(
[
1 0 1 0 0

]
), (69)

f =


−rx31 + (1 + r)x21 +

a
ω cosωt

0
−rx33 + (1 + r)x31 +

a
ω cosωt

0
0

 , (70)

x =


x1
x2
x3
x4
x5

 , y = x1. (71)

The parameters are chosen following [27] as r = 10, a = 1, ω = 0.26π, g1 = 0.7, g2 =
1, b1 = 0.8, b2 = 1.2, v1 = b−1

1 and v2 = b−1
2 . Moreover, the OSL-QIB constants take

the following values: ρ = γ = 0.1, β = 0.2. In the perturbation-free case, considering
the unknown input v = 0.15sin(10t) leads to the results depicted in Figure 7.

Unlike the previous cases, in this situation there is a small bias in the estimation of
the states. However, in terms of magnitude it is small (less than 16.16% in average),
and it can be concluded that the observer presents a good performance. It should be
noted that this system has stronger nonlinearities (square and cubic terms with cosine
functions) than the previous case studies, which were bilinear systems, a fact that could
make the obtaining of the OSL-QIB constants too accurate. A second simulation case
is proposed, considering noise in the measurement as perturbation.

Figure 8 shows that the error dynamics for each of the state variables converges to 0.
This is due to the fact that, although the noise and its derivative are minimized during
process operation, eliminating its negative effect is very demanding since the condition
SR = 0 cannot always be fulfilled. However, this proves the fact that the observer could
be implemented in complex situations and that its performance is satisfactory when
testing various application cases. The solution for the LMIs of Theorem 2 for this
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Figure 7. FHN system simulation perturbation-free, Theorem 1 (ISE = 40.8)

Figure 8. FHN system simulation with noise, Theorem 2 ISE = 52.6

example are given in Equation (72) and Table 4.3:

P =


77132764.06 −2.08 −3922972.69 −24080547.76 −12918864.12

−2.08 17.65 −2.78 −11.22 −6.47
−3922972.69 −2.78 104351805.11 46884683.21 −25375909.61
−24080547.76 −11.22 46884683.21 133160910.26 −8695268.95
−12918864.12 −6.47 −25375909.61 −8695268.95 100432023.61

 (72)
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Parameter Value
τ1 1.43×108

τ2 9.81×107

τ3 0.0064
τ4 0.0064
µ 1.8×105

Table 4. Scalars of the solution for Theorem 2, FHN case

Q =


87749013.71

1.66
46293412.61
22249385.82
59929672.94

 S =


−77132764.06

2.08
3922972.69
24080547.76
12918864.12

 (73)

Remark: The observer for Lipschitz systems proposed by [10] was implemented in
the FHN example for comparison purposes. However, the feasibility conditions could
not be satisfied just considering the Lipschitz constant. This case exemplifies the ad-
vantage of describing a nonlinear system using the OSL-QIB constants, given that the
Lipschitz constant does not provide sufficient information in certain cases to obtain
satisfactory design conditions for nonlinear observers.

5. Conclusions

This paper presented unknown input observer design strategies for nonlinear OSL-
QIB noisy systems that lead to the solution of a set of LMIs/LMEs. Nonlinearities in
the state and noise in the measurement were incorporated into the analysis. Based on
Lyapunov stability theory, conditions of convergence for the observer were developed
and tested in different examples (CTSR, water-tank open channel and FHS system)
obtaining good performance in the scenarios considered. From the proposed methodol-
ogy it was possible to develop an estimation algorithm that was capable of filtering the
noise and obtaining finite-time convergence for the error dynamics. The results suggest
that the observer could be useful in real applications where unknown or unmodeled
inputs and instrumentation uncertainty (noise) are present.

As future research directions, it can be interesting to apply the observer strategy to
real case studies, such as water systems and chemical processes, taking into account
the sensor resolution [28] and improving observer performance in other situations that
can arise in practice such as parameter uncertainty , delays or multiagent systems [29].
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