Zero-Shot Transfer of a Tactile-based Continuous Force Control Policy
from Simulation to Robot

Luca Lach!2, Robert Haschke?, Davide Tateo®, Jan Peters®?, Helge Ritter?, Jiilia Borras', Carme Torras'

Abstract—The advent of tactile sensors in robotics has
sparked many ideas on how robots can leverage direct contact
measurements of their environment interactions to improve
manipulation tasks. An important line of research in this regard
is grasp force control, which aims to manipulate objects safely
by limiting the amount of force exerted on the object. While
prior works have either hand-modeled their force controllers,
employed model-based approaches, or not shown sim-to-real
transfer, we propose a model-free deep reinforcement learning
approach trained in simulation and then transferred to the
robot without further fine-tuning. We, therefore, present a
simulation environment that produces realistic normal forces,
which we use to train continuous force control policies. A
detailed evaluation shows that the learned policy performs
similarly or better than a hand-crafted baseline. Ablation
studies prove that the proposed inductive bias and domain
randomization facilitate sim-to-real transfer. Code, models,
and supplementary videos are available on https://sites.
google.com/view/rl-force-ctrl

I. INTRODUCTION

For humans and robots, tactile information is crucial in
manipulation tasks involving environment contacts, visual
occlusions, or both. As a consequence, efforts of the robotics
community to include this essential sensor modality have
heavily increased over the past years [1]-[3]. Prominent
examples of tasks where tactile-based methods have shown
successful include force control [4], [5], object pushing [6]-
[8], and opening doors [9], [10].

The application domain of tactile sensors is as diverse
as the sensing principles within the field. Complex sensors
are commonly used in more challenging, high-level tasks
such as surface following or edge prediction, which often
involve deep learning methods [7], [11]-[14] or dexterous
manipulation tasks [15], [16]. Low-level tasks like force
control are commonly modeled by hand [4], [5], [17], [18].
Those approaches that employ machine learning either rely
on classical methods, do not investigate sim-to-real transfer,
or both [9], [19]-[22]. In contrast, this paper presents a deep
reinforcement learning (DRL) approach for the low-level task
of grasp force control for parallel-jaw grippers with two
degrees of freedom (DoFs). Similar to [5], our controller has
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(a) Exemplary real-life grasp

(b) Simulated scenario

Fig. 1: Safely holding an easily deformable object in real-life (a)
vs. the simulation environment the policies are trained on (b).

two distinct control objectives to ensure safe object grasping
and holding: I) reaching and maintaining a given goal force,
and II) minimizing object movements while closing and
holding the object. Using normal forces measured at the
fingertips, we train a continuous control policy in simulation
and transfer it to the real robot. We employ an inductive bias
[23], [24] and domain randomization [25], [26] to facilitate
zero-shot sim-to-real transfer. In an extensive real-world
evaluation, we compare our approach with the hand-modeled
baseline from [5] and conduct an ablation study over the two
proposed methods. Both the inductive bias and the domain
randomization are vital for policies to generalize across real-
world objects of various shapes, sizes, and softness and to
achieve zero-shot sim-to-real transfer.

In the following, we propose a simulation environment
based on MuJoCo [27], where we tuned contact model
parameters to match a few real-world samples. Then, we
detail our learning process based on deep reinforcement
learning, where we apply domain randomization and intro-
duce a learning curriculum and an inductive bias to learn
policies for subsequent zero-shot sim-to-real transfer. Lastly,
we compare our policy to a hand-modeled force controller [5]
and perform an ablation study on some model choices. Our
main contributions are: i) a training procedure based on
reinforcement learning that generalizes zero-shot to the real
robot, ii) a novel simulation environment for 2-DoF grippers
with realistic fingertip forces, and iii) open-sourcing the code
for the environment, all methods, and their evaluation as well
as CAD models of the sensorized gripper. To the best of our
knowledge, this is the first paper proposing a tactile-based
continuous grasp force controller learned with DRL, which
was transferred to the real robot without further refinement.

II. RELATED WORK

Grasp Force Control In their review of human grasping,
Johansson and Flanagan [28] highlight the importance of
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tactile sensations and divide the human grasping sequence
into distinct phases, where tactile events often mark phase
transitions. Other experimental works have supported their
findings [29], and many contributions from robotics have
adopted this human-inspired approach [4], [5], [30], [31].
Romano et al. [4] closely follow the phase distinctions from
[28] when modeling their force controller for the PR2 robot
but assume the fingers to be equidistant to the object while
grasping. Hsiao et al. [30] also proposed a force controller
for the PR2 that was integrated into its grasping pipeline
[32] but without the assumption of equidistant finger-object
placement. These approaches hand-model controllers for
grippers with a single degree of freedom, while our work
relies on a learning approach that works for 2-DoF grippers.

Other works have proposed classical force controllers for
end-effectors with two or more degrees of freedom. The
authors in [31] designed a custom sensor that measures forces
and proximity to ensure safe object grasps for their 2-DoF
gripper. The studies [33] and [34] use two fingers of a multi-
fingered hand to perform force control, where the former
detects slippage and regulates the grasp force accordingly.
The latter optimizes the fingertip positions based on force-
closure constraints. Another body of works has presented
force controllers for more complex, multi-fingered hands
[17], [18], [35], [36]. Unlike our work, these studies focus
on more complex end-effectors while not employing DRL
methods.

Learning grasp force control has also become popular in
recent years. In [20], the authors learn a grasping policy that
controls forces on rigid objects in simulation, while others
focus on increasing grasp success using tactile feedback
[37]. Others have learned to control grasping forces for
more complex tasks like door opening [10], high-precision
assembly tasks [22], or surface tracking [11]. The work of
[9] uses classical RL to learn force control policies, [19]
combines deep learning with Gaussian Mixture Models, and
[21] uses RL and admittance control to control forces in
unknown environments. Although these works learn force
control behaviors, none investigates the potential of learning
in simulation only and transferring to the real robot after-
ward.

Sim-to-real transfer Sim-to-real transfer is widely used in
robotics to avoid the time-consuming and labor-intensive task
of real-world data collection [25], [26]. For policies without
tactile information, a commonly used approach is domain
randomization [25], [26] of the visual input [38], [39]. In the
domain of optical tactile sensors, [6], [8] presented Tactile
Gym, a simulation environment containing the TacTip [40],
DIGIT [41], and DigiTac [42] sensors, and propose a domain
adaptation approach using a generative adversarial network
trained to mimic real-world tactile feedback in simulation.
Later studies [43], [44] have reported successful sim-to-
real transfer using Tactile Gym on various tasks, while
others proposed simulators for the GelSlim [45], [46] and
GelSight [47]-[49] sensors. In contrast to these studies, we
focus on low-level force control tasks that solely require
force measurements as inputs. Peng et al. [7] chose to
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Fig. 2: Schematic overview of the grasping scenario with the world
frame W and the object frame O. w, is the object width, d,, its
maximum deformation, and o, its position on the world’s y-axis.

learn and transfer an object-pushing policy for the Fetch
robot. Their work relies heavily on domain randomization,
and the authors argue that the robustness of the transferred
policies was greatly increased. Ding et al. [12] have proposed
a Unity-based simulation of the TacTip sensor for edge
prediction and have achieved sim-to-real transfer through
domain randomization. In a later work, Ding et al. [13] use
MuJoCo to simulate a self-made tactile sensor array to open
a cabin door. They also employ domain randomization for
transferring the policy, but they binarized the sensor readings
due to the low sensitivity of the built-in MuJoCo touch
sensor. Although the authors in [39] also mention a potential
lack of realism in simulated continuous force measurements,
we find that continuous force control policies can indeed be
learned in MuJoCo and then be successfully transferred to
the real world without fine-tuning.

Approaches based on Finite Element Methods (FEM) are
capable of generating accurate simulation data of complex
tactile sensors. In [50], [51], the authors use FEM to estimate
deformations of a BioTac [52] sensor and synthesize simu-
lated data by learning a latent space representation. Other
papers have applied FEM to their custom-built soft tactile
sensors [53]-[55]. Due to their high computational cost, FEM
is typically not well-suited for data-driven approaches like
DRL, which we use, unless some simplifying assumptions
can be made [56].

III. FORCE CONTROL SIMULATION

To train force control policies, we first modeled TIAGo’s
2-DoF parallel jaw gripper in MuJoCo with one tactile sensor
per finger and an object of variable softness to grasp. The
simulated tactile sensors were designed to mimic load cell
sensors, as they can easily be integrated on TIAGo, as done
in [5]. Similarly, the control frequency was set to 25 Hz to
match that of a real TIAGo.

A. Grasping Scenario

A schematic overview of the grasping scenario is shown in
Fig. 2, which details all parameters needed to define it. The
gripper is depicted in its fully open state (¢; = ¢;"** = 0.045),



Grasping Trials

Policy Training

Real-World Transfer

Domain Rand.
by ~ U
Parameter Identification
— Kk ~U"
Actuator by
Wo
Force Scale  f, wo ~ U
Softness p Oy ~ Z/[Oy

&

MulJoCo Environment

Inductive Bias
I

i = Qia;
N

Curriculum Learn.

a2_>a2

max

J

Fig. 3: Method overview. Step I: From a few real-world grasping trials with a position controller, MuJoCo parameter values were identified
that mimic the real-world actuator behavior and force readings. Step II: For policy training, sampling ranges for the domain randomization
were set based on the results from the prior step, an inductive bias that scales policy actions, and a learning curriculum were introduced.
Step III: Zero-shot transfer of the policies to real-world grasps on objects of various shapes, sizes, and softness.

with an object located between the fingers somewhere on
the grasping axis. W and O refer to the world and object
frames, where W is considered fixed w.r.t. the gripper base
and centered between the fingertips. If the object offset oy is
non-zero, the object center is displaced w.r.t. W, causing one
fingertip to touch it earlier. The object width is defined by
w,, and d,, denotes the maximum penetration depth (or object
deformation). Softer objects can be deformed more heavily
and thus have larger values of d,,. The object’s softness (see
Sec. III-C) is chosen randomly in each episode, resulting in a
variation of d,. As the controller should learn to maintain any
initial object position during grasping, we sample o, during
episode initialization, thus exposing the learner to different
object-gripper offsets. w, is also varied, such that the policy
does not implicitly assume all objects to be of equal width.
The following three constraints are imposed on the sampling
of these parameters:

loy| + 70 < ¢™ (D
ro — dp > |oy] )
dp <o 3)

where r, = %wo is the object radius. Equation 1 ensures
that the object doesn’t initially collide with a finger and
equation 2 that the fingers can fully close up to the maxi-
mum penetration without dislocating the object core. Finally,
equation 3 states that the object deformation is limited by the
object radius.

In order to facilitate sim-to-real transfer, we identified
suitable ranges for various simulation parameters to match
the behavior observed in a few simple grasping experiments
performed in simulation and real-world. The detailed proce-
dure will be discussed in the following subsections.

B. Actuator Behavior

First, we identify the actuator parameters within MuJoCo
to match the actual robot behavior. TIAGo uses position
controllers, and to keep control signals identical, we opt
to use them in the simulation as well. Our policies output
desired position deltas, which are subsequently integrated

into absolute positions and forwarded to the controller. The
joints are thus controlled by

des

q; = qi +u;

at each simulation step ¢, where u; = Aqfles is the control

signal generated by a policy. Using position deltas instead
of absolute positions has several advantages for the learning
process. First, the action space is symmetric and centered
around zero with known bounds, making it easy to nor-
malize while satisfying assumptions some RL algorithms
make about the action space. Second, by constraining the
control signals via |u;| < Ag¢™*, we can easily limit the
maximum joint velocity, thus preventing the policy from
executing erratic and potentially dangerous movements. We
set Ag™* = 0.003 in all experiments, representing the
maximal velocity observed in real-world experiments.

Next, we tuned the MuJoCo actuators to match the be-
havior of the real TIAGo. First, gainprm and ctrlrange
were set to (100, 0,0) and [0.0, 0.045] to mimic the real joint
actuation range [0,0.045] measured in meters (see Fig. 2).
The damping parameter of biasprm, by, was tuned to match
the finger’s closing velocity and acceleration. To find a range
of realistic values for by, we executed power grasps with
the real robot and in simulation and then manually tuned b,
until the joint trajectories matched. We found by = —9 to
mirror the actual behavior best and sample by € [—13, —6]
for domain randomization and robust actuator behavior.

C. Force & Softness Modeling

To yield similar contact force readings and object defor-
mations in simulation and real-world, we compared the final
forces f(T') and penetration depths d,(7") achieved when
closing the gripper with a constant action Ag%® on a soft
and a rigid object (Sponge and Wood from Fig. 5). The
corresponding real-world results, shown in Fig. 4, exhibit
a linear relationship. Then, the simulation parameters were
identified that determine the force magnitude and penetration
depth. For the former, a factor f, is introduced that scales
the contact forces generated by MuJoCo and for the latter,
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Fig. 4: Final gripper force and penetration depth when closing the
real gripper with constant actions Ag™® on a soft and a rigid object.

the stiffness parameter k& from MuJoCo’s solref parameter
tuple was identified. Both parameters were tuned using real-
world experimental results. As both parameters are strongly
correlated, we link them via an extra softness parameter x,
which is sampled once per episode between [0, 1] and then
used to determine f, and k. In this fashion, we prevent
unrealistic configurations, e.g., a soft object (x = 0) with
a high f, or small k.

fa was determined to be in the range [0.5, 5], correspond-
ing to the required scaling factor to match the slopes of the
regression lines observed in real-world and simulation for
the soft and rigid object respectively. x was then used as an
interpolation factor on this interval. Due to the non-linear
dependence of d, on k£ with d, ~ %, linear interpolation
on some interval is not viable for calculating k given k.
Instead, ~ is transformed non-linearly using the derivative of
their dependence (k%), arriving at:

1
max(1.1x2,0.001)

k(k) =

where the scaling factor before x determines the change of
the slope of the regression lines in Fig. 4. During training,
r is sampled with k ~ U(0,1) to randomize the object’s
stiffness.

IV. LEARNING METHODS

As force control is a sequential decision-making problem,
we can model it as a Markov Decision Process (MDP),
allowing us to solve it using RL algorithms. We follow the
classical formulation of an MDP, which is defined as a tuple
M = (S, A, P,r,v,.), with the state space S, the action
space A, the transition kernel P : S x A x S — RT,
the reward function r : S x A — R, the discount factor
v, and the initial state distribution ¢ S — RT. The
objective of Reinforcement learning algorithms is to find
the optimal policy 7* maximizing the expected discounted
reward J (1) = Erup ., [ZtT:o vir(ss,as)|, where 7 is a
trajectory composed of a sequence of states s; and actions
a; generated by executing the policy 7 in the MDP. Our
simulation environment defines the transition kernel P.

A. Observation Space

The agent receives the following observation at each time
step ¢:

o(t) = (qi(t), fi(t), Afi(t),a;(t — 1), hy(t))

where subscript 7 indicates that the observation is given for
joint i, Af; = f& — f; refers to the difference of the
current force to the goal force, a;(t — 1) to the previous
action taken by the agent (with a;(0) = [0,0]) and h; to the
had_contact flag, which is defined as:

)L af fit) > fo
cilt) = {0 otherwise @

where ¢;(t) indicates whether a finger is considered to be in
contact with the object at time ¢ by comparing the current
force to a noise threshold fy, and h;(0) = 0. h; stays 1 once
c; gets 1, even if the finger loses contact again later. This
flag provides important contextual information w/o the need
for a recurrent policy (which may be more difficult to train)
or a long history of observations. We add Gaussian noise to
the joint position and fingertip force with o, = 0.000027
and oy = 0.013 and stack the observation £ = 3 times for
the policy to have access to a short history of position and
force deltas so that it can estimate the object stiffness.

B. Action Space

The action space is simply a two-vector with one de-
sired position delta per finger (aief, aright)’, where a; =
Aq?es refers to an individual action for joint . Each a; is
first clipped to lie within [—1,1] and then multiplied with
Agm™*, effectively denormalizing a;. Additionally, we define

a contact-state dependent inductive bias:

max(0.9,1 — 24y if by = h; =1
1 else

that is multiplied with the individual actions at each time
step, yielding a} = ¢; a;, which is then passed to the MuJoCo
actuators. It is inspired by the human grasping phases [28]
commonly used in other controllers [4], [5], and serves two
purposes: The first line dampens the policy commands for in-
contact states far from the force goal as a safety measure. The
second line ensures that the in-contact finger is slowed down
when the other finger is not yet in contact, thus ensuring that
the object is not pushed away.

C. Reward Function

Our reward function mainly reflects the two controller
objectives and adds a third term for smooth control. We
propose the following individual reward terms:

7% = 1 — tanh ( Z |Afz> (6)

; -1 if oy, > o™
obj __ Y Y
= 7
" {O otherwise @
= — § lai(t — 1) — a;(t)] ®)
i

The term 7 reflects the first control objective, namely,
to reach and maintain the target force. tanh limits the
summed force deltas to 1, and subtracting it from 1 yields



Fig. 5: Evaluation objects: Plush Toy, Rubber Mat, Sponge, Duck,
Spray, TIAGo, Pringles, Banana, Wood, and Mug. Ordered by
increasing stiffness from left to right.
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Fig. 6: Policy evaluation and ablation studies with 200 simulation
trials per policy. Force reward and object displacement are shown
separately to identify the impact of specific controller components
on both metrics.

the highest reward if the goal forces are reached. The second
objective, maintaining the object pose, is achieved via 7Y
by penalizing large object motion with a negative reward of
-1. In equation 7, ¢, refers to the current object velocity and
oy =5 10~° to the accepted velocity threshold, which
is slightly larger than the observed noise level of ¢, during
finger contact. The third term, r*', penalizes high changes
in policy actions at consecutive time steps to encourage a
smooth control behavior. Other, more involved procedures
have been proposed before [57], but this simple penalty has
shown to be sufficient for our purposes. Finally, the total
reward per time step is defined as

force

r=ar + agr()bj + asr™® ()]

D. Curriculum Learning

Our reward function, as given in equation 9, poses a
challenging problem for learning: During early exploration,
it is very likely that a random agent will push the object
with one finger before it learns to control the grasping
force precisely. As a result, the policy will converge to
a local minimum avoiding contact with the object since
it will receive a large negative reward from r° before
being rewarded by ¢, We, therefore, employ a learning
curriculum, a common approach to gradually increase the

TABLE I: Annealed parameters with their initial and final values.

Parameter Initial Final
as 0 1.0
op 2x107* 5x 107°
Wo [0.020, 0.025] [0.015, 0.035]
0y [0.0,0.0] [—0.040, 0.040]

task complexity throughout training by annealing specific
environment parameters [58], [59].

The parameters controlling the likelihood of these high
negative rewards are cw, the weight of r°%, the range of
possible object displacements o,, the range of object radii
w,, and the object velocity threshold 0'5‘”‘. Initial and final
values are defined for the scalars «s and ()r;a". Since oy
and w, are sampled from parameter ranges, the limits of
their respective sampling ranges are annealed. The annealing
phase ends at timestep ¢ = Seng, Which is a hyperparameter.

E. Domain Randomization

In Sec. III, we described the intervals for different simula-
tion parameters, such as the actuator bias or object softness,
and several parameters defining specific task instances, such
as the object width and offset o,. At the beginning of each
training episode, these parameters are sampled uniformly
within their respective interval, e.g., by ~ L{bZ(—l?), —6).
As described in the previous subsection, the interval borders
for some parameters are annealed during training, as they
impact episode difficulty. Fig. 3 provides an overview of our
proposed method and its components that were described in
the last two sections.

V. EXPERIMENTAL EVALUATION

For the experiments, we use Proximal Policy Optimization
(PPO) [60] to train the grasping policies. We first evaluate
our proposed method in simulation and then apply the
policies to the real robot and compare them regarding force
maintenance and object movements.

A. Simulation experiments

We train for a total of 4M steps with an episode length of
150 steps and anneal the parameters mentioned above until
Send = 1.DM. At the beginning of each episode, all random-
ization parameters are sampled anew. The policy network
consists of two fully connected layers with 50 neurons each
and ReLu activations. The output layer has two neurons, one
for each finger’s action output. We found a learning rate of
6 - 10~ to perform best, and the remaining parameters are
set to their default values from stable-baselines3 [61]. We
store network weights each time it surpasses the prior best
reward averaged over 30 episodes.

We compare our policy with inductive bias 7™® to a Python
implementation of the hand-crafted baseline controller pre-
sented in [5]. Additionally, we introduce four ablations on
specific controller components to assess their impact on the
task objectives, namely force and object pose maintenance.
mNOIB wags trained without the inductive bias, 7NOPEN with-

= (), TNO-RAND ith neither

NO-CURR

out object velocity penalty (ae
inductive bias nor domain randomization, and 7



TABLE II: Real-world experimental results for ten household testing objects. Our method 7™ performs the strongest of all policies in
terms of reward and minimizes object movements as efficiently as the baseline controller. The other policies consistently perform worse.

Policy Metric ‘ Plush Toy Rubber Mat Sponge Duck Spray TIAGo Pringles Banana Wood Mug ‘ Average
Baseline e ‘ 744 12 92 + 15 96 + 14 90 + 21 1145 84 + 14 118 +7 83+ 9 08£7 115410 | 97412
ObjMov. | 1.0£0.7 1.6+0.8 31+21 20+09 1.9+06 16+08 09+04 1.6+07 1.0+0.9 16+ 09
B lorce 89+13  96+£15  103+7  101+£12 109+17 102+12 115+16 97+13  105+15 10+ 10 | 104+ 13
™ Obj.Mov. ‘ 09407  15+08 32414 19407 18+08 18409 1.2+06 13+07 07407 : ‘ 1.6+ 0.9
NOIB lorce 86 + 12 774 10 74 + 26 94+ 15 88 + 33 91 + 20 98 + 34 82+9 101+ 16 106+ 17 | 88420
4 Obj.Mov. ‘ 20+1.1 28+1.4 4.0+ 0.9 3.1+1.0 2.44+0.7 2.95+ 1.0 1.94+0.6 2.34+0.8 1.7+ 04 - ‘ 2.6+0.9
corap e 75413 82+12  97+15  63+22  57+37  48+12 53439  56+18 49433 40441 | 64425
™ Obj.Mov. ‘ 1.9+1.2 26+1.6 3.6+1.3 2.5+0.7 2.6 +0.9 3.3+1.5 1.7+£0.7 2.84+0.8 1.8+ 0.9 - ‘ 25+1.0
without curriculum learning (all values in table I were set Mue
to their final values already at the start of the training). For osl Baseline
each policy, 2,000 simulation trials were executed where all = | ;W, £
environment parameters and f2° were randomly sampled g 04T :
for each trial, summing up to 12,000 trials in total. Fig. 6 & (ol rn
shows box plots for the force reward 7 and the object j
displacement for all policies. 00%: : : . : : : : :
The results show that our proposed approach '8 achieves PLusH Toy
slightly better performance than the baseline regarding force
reward and is nearly as good at preventing object movements = oo
during grasping. Without the inductive bias, the force control E 0.4f
performance is unchanged, but object movements increase 2,
by approximately half a millimeter, as evident by the results /
of 7N91B When comparing the object movements of both oL T I T
policies without the inductive bias (wNOTB apd 7NO-RAND) Steps

with that of 7NOPEN it is apparent that the object movement
penalty alone minimizes object movements substantially,
although not as effectively as the bias. 7NOPEN achieved
the highest force reward among all six policies, as it does
not halt finger movements upon object contact and thus
collects force rewards already while pushing the object. The
poor force control performance of 7NO-RAND quooests that
the policy overfitted the single environment configuration
and is not able to generalize to differently parameterized
environment instances. Finally, NO-CURR 3 chieved no force
rewards at all and did not cause any object movements.
An analysis of the behavior of 7NO-CURR during the trials
revealed that it simply learned not to move the fingers at all,
always returning a; = 0. Overall, the results indicate that
our proposed method yields policies that slightly outperform
a hand-crafted force controller and underline the efficacy of
the individual components.

B. Real-World Evaluation

To assess whether our method is transferable to the real
world without fine-tuning, we evaluate several policies on
TIAGo using ten test objects of varying stiffness. We chose
not to include 7NO-CURR 45 it did not learn any rewarding
behavior and neither 7NOPEN gince it was clearly unable to
minimize object movements. On the other hand, mNO-RAND
is included in the real-world evaluation to test whether it
performs well on a specific object type that is similar to the
environment configuration it was trained on. We perform 20
grasping trials per object and method, yielding 20 x 10 x4 =
800 real-world trials in total. f£° is sampled randomly,
where the real-world experiment results from Sec. III-C

Fig. 7: Comparison of force trajectories between baseline and 7™ on
two objects of different stiffness for f&* € {0.2,0.5,0.7}. While
both policies perform similarly well on Mug, 7™ controls the target
force much more reliably on the Plush Toy than the baseline.

were used to determine the upper and lower bounds of the
sampling interval. In each trial, the object is offset to one
finger; in half of the trials, it is placed closer to the left
finger, and in the other half, closer to the right. Then, the
policy is commanded to perform a grasp, and after 6 seconds
(150 steps at 25 Hz), the gripper is automatically opened
again. The process repeats after the reward is computed
and the traveled distance is measured. Note that the force
reward is not comparable between objects since it depends
on the object’s softness and width because they determine the
amount of time a force reward can be achieved. Wider objects
come in contact with the fingers earlier, and force rewards are
generated in more time steps than for narrower objects. The
softer an object is, the slower the force builds up, leading
to a reduced reward. Instead of measuring and integrating
the object velocity to calculate the total object displacement
for each trial, we measured it by placing the objects on
millimeter paper, annotating the start and end positions, and
calculating the difference. No displacements for the Mug
are reported as it is almost as wide as the gripper opening
and would, therefore, not move during a grasp regardless of
the policy. As a consequence of using millimeter paper, the
reported real-world object displacement measurements are
less precise than the ones in the simulation, meaning they
can not be compared directly.

Table II shows the results of the real-world evaluation.



7B shows the strongest overall performance with an average
reward of 104, while the baseline achieved an average reward
of 97. To further analyze the performance difference between
the two policies, we performed additional grasping trials with
both policies on two objects with three different target forces
f2°% and compared the force trajectories (see Fig. 7). Mug
and Plush Toy were chosen for the comparison, as they are
on opposite sides of the softness spectrum. The Plush Toy
had the largest performance difference between the policies.
On the rather stiff Mug, the performance of both policies is
similar. While 78 tends to slightly overshoot f2°¥ before
converging, the baseline takes longer to reach the target
force. For the Plush Toy, 7B reliably reaches and maintains
the target force, while the baseline fails in doing so for the
two lower goal forces. The trajectory comparison indicates
that our method generalizes better across objects of different
softness than the hand-crafted baseline. Since the PID-based
baseline controller overcomes steady-state errors by means
of an integral term, it can be slow in adapting to them, thus
having difficulties in accurately reaching f£°¥. This behavior
is especially apparent for small target forces on very soft
objects like the Plush Toy. On the other hand, 7'® learned to
react to discrepancies between current and desired grasping
force immediately and more accurately. The performance
of the two policies is comparable for several objects, with
the baseline performing better on three objects by a small
margin.

Furthermore, our experiments indicate that the inductive
bias facilitates sim-to-real performance, as evidenced by the
lower average force reward and higher object movements
of 7NOB_ When comparing 7NOB to 7B, the difference in
performance was larger on the real robot than in simulation.
This suggests that the inductive bias helps to adapt to
real-world effects that could not be modeled in simulation,
such as sensor hysteresis. The (mostly) poor performance
of mNO-RAND shows that domain randomization is vital for
both generalization over different objects and sim-to-real
transfer. 7NORAND yaq able to perform well on relatively
soft objects, however, likely because they behave similarly
to the simulation object configuration it was trained on with
x = 0.5, and our default choice for b, closely mirroring the
robot behavior. Note that all policies exhibit slightly worse
performance in terms of object movements for the Sponge
than for other objects. This is because the Sponge is so
light that the sensors sometimes fail to detect first contact, a
phenomenon also reported in [5].

We also conducted a qualitative assessment of the grasp
stability of 7'®, which is shown in the accompanying video.
To that end, we executed ten grasps per object, lifted it,
and executed a pre-defined perturbation trajectory with the
arm. In the second part of the experiment, the arm was
put into gravity compensation mode and randomly shaken
by a human operator. These trials were conducted to assess
whether our method is able to maintain a stable grasp even
under external disturbances induced by the movement along
the trajectories. None of the objects were dropped during any
of the trials, indicating that our method is able to maintain

a secure grip even if the shear forces of the object change.

The evaluation shows that domain randomization is crucial
for successful zero-shot policy transfer and that domain
knowledge in the form of an inductive bias further facilitates
the transfer. Without domain randomization, policies will
overfit to their narrow training distribution and fail to gener-
alize. Our proposed simulation environment has been shown
to generate realistic forces, making the transfer possible for
continuous control policies. Videos of all policies can be
found in the supplementary material.

VI. CONCLUSION

In this work, we presented a DRL method to train grasp
force controllers for 2-DoF grippers in simulation and trans-
fer them to the real robot without fine-tuning. We proposed
a novel simulation environment that generates realistic grasp
forces, which we used to train our policies. To strengthen
the transfer performance, we proposed to use an inductive
bias and domain randomization. An extensive real-world
evaluation has shown that our method can successfully grasp
objects of various sizes, shapes, and softness while minimiz-
ing object movements during the grasp. Our results show that
continuous force control policies can be learned end-to-end
in simulation and outperform hand-crafted controllers on real
robots. An exciting direction for future work is integrating
grasp force control in more complex tasks for which DRL
methods are used.
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