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On Lie Group IMU and Linear Velocity
Preintegration for Autonomous Navigation

Considering the Earth Rotation Compensation
Pau Vial , Joan Solà , Narcís Palomeras , and Marc Carreras , Member, IEEE

Abstract—Robot localization is a fundamental task in achieving
true autonomy. Recently, many graph-based navigators have been
proposed that combine an inertial measurement unit (IMU) with an
exteroceptive sensor applying IMU preintegration to synchronize
both sensors. IMUs are affected by biases that also have to be esti-
mated. To increase the navigator robustness when faults appear on
the perception system, IMU preintegration can be complemented
with linear velocity measurements obtained from visual odometry,
leg odometry, or a Doppler Velocity Log (DVL), depending on
the robotic application. Moreover, higher grade IMUs are sensi-
tive to the Earth rotation rate, which must be compensated in
the preintegrated measurements. In this article, we propose a
general purpose preintegration methodology formulated on a com-
pact Lie group to set motion constraints on graph simultaneous
localization and mapping problems considering the Earth rotation
effect. We introduce the SEN(3) group to jointly preintegrate
IMU data and linear velocity measurements to preserve all the
existing correlation within the preintegrated quantity. Field exper-
iments using an autonomous underwater vehicle equipped with a
DVL and a navigational grade IMU are provided and results are
benchmarked against a commercial filter-based inertial navigation
system to prove the effectiveness of our methodology.

Index Terms—Autonomous vehicle navigation, kinematics, lie
theory, marine robotics.

I. INTRODUCTION

INERTIAL Measurement Unit (IMU) preintegration consists
on the aggregation of several consecutive IMU measure-

ments into a single pseudomeasurement representing the relative
motion of the sensor during this interval. In the last years, IMU
preintegration has been applied to several Graph simultaneous
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Fig. 1. Factor graph applying the joint IMU and DVL preintegration fac-
tor and the depth prior z to set a graph-based INS. A robot state Navi ∈
〈SE2(3),R3,R3,R3〉 is formed by the robot orientationR ∈ SO(3), position
p ∈ R3 and linear velocity v ∈ R3 and the sensors bias bacc, bgyr, bdvl ∈
R3.

Fig. 2. Girona 1000 AUV from IQUA Robotics. (a) General view and
(b) robot deployment at sea using the Sextant boat from Universitat de Girona.

localization and mapping (SLAM) problems [1] to synchronize
an exterioceptive sensor with an IMU. By using IMU prein-
tegration, we avoid to set a node for each IMU measurement,
which involves handling very massive graphs since an IMU typ-
ically runs at hundreds of Hertzs. Thus, IMU measurements are
preintegrated between relevant exterioceptive measurements,
that normally are received in a much lower frequency, to set
only a graph node when a key frame is processed, significantly
mitigating the graph growth. IMU preinetgration was first pro-
posed to build a graph-based visual-inertial navigation system
(VINS) [2], where an IMU and an optical camera were fused in a
Graph Simultaneous Localization and Mapping (Graph SLAM)
problem. Through this methodology, a node to the graph was
only set every time a frame of the camera was processed and all
IMU measurements between key frames were accumulated into
a single motion constraint. Many graph-based navigators apply
this principle. For instance, other Visual-Inertial Navigation Sys-
tem (VINS) are [3], [4] and an IMU can also be combined with a
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LiDAR to build a LiDAR-inertial navigation system (LINS) [5]
or with Global Navigation Satellite System (GNSS) measure-
ments to build an inertial navigation system (INS) [6]. Finally,
more sensors can be fused to build more complex navigators,
such as a LiDAR-VINS (LVINS) [7], [8], combining a LiDAR
with an optical camera, or a Visual-Inertial-Magnetic Naviga-
tion System (VIMNS) [9], combining a magnetometer with an
optical camera.

IMUs are classified in four accuracy grades depending on
the technology applied to build the device: customer, industrial,
tactical, and navigational. Lower grade IMUs are based on
Micro-ElectroMechanical Systems (MEMS) that can measure
both linear acceleration and angular rate depending on the
movement of suspended masses. This kind of device has a
very competitive accuracy-cost rate. However, the sensor biases
grow fast, degenerating the pose integration in a few seconds.
Higher grade IMUs are typically based on the combination
of MEMS-based accelerometers with Fibre-Optic Gyroscopes
(FOG). FOGs are high precision gyroscopes that measure the
angular rate of a moving body based on the phase shift expe-
rienced by photons that travel at opposite directions through a
fiber optic coil due to the Sagnac effect. Through this technology,
high grades of precision are obtained, giving rise to devices
sensitive to the Earth rotation rate (15◦/h). Therefore, when
high grade IMUs are preintegrated, the Earth rotation rate has
to be removed from the FOG measurements, as in common
accelerometers, where measurements are compensated from
gravity. New MEMS-based IMU designs can also reach tactical
precision grades by setting a multi-IMU array equipped with
several MEMS IMUs in a compact device. It has been proved
that this kind of sensor can also be sensitive to the Earth rotation
effect [10], [11]. Therefore, compensating for the perturbation
caused by the Earth’s rotation when preintegrating a higher grade
IMU is crucial to reduce the drift of the estimation.

Usually preintegration only applies to IMUs, where gyro-
scopes are integrated to obtain robot orientation and accelerome-
tres are double integrated to obtain robot position. However,
the double integration of accelerometers produces significant
positional error, specially if lower grade accelerometers that
rapidly accumulate bias are used. To improve the accuracy of a
preintegrated measurement, an IMU can jointly be preintegrated
with a Linear Velocity Sensor (LVS). As linear velocity is only
integrated once, the robot position estimation can be improved
and linear velocity measurements can help to better estimate
the accelerometers bias. This preintegration approach was first
proposed for a legged robot [7], where the linear velocity of
the robot was extracted from the leg kinematics and it was
preintegrated with the IMU measurements building a Graph
SLAM problem combining optical and LiDAR information.
However, other methodologies to measure the robot linear ve-
locity are available for other robot typologies, such as the use
of a Doppler Velocity Log (DVL) in underwater robotics in-
volving an Autonomous Underwater Vehicles (AUVs) or visual
odometry extracted from optical cameras or event cameras [12],
[13] mounted on autonomous aerial vehicles (AAVs) or ground
robots. Therefore, complementing IMU preintegration with lin-
ear velocity measurements is an interesting approach to improve

the preintegrated measurements accuracy, especially during ex-
teroceptive data outages to maintain an acceptable estimation of
the IMU bias.

An important aspect to consider when jointly preintegrating
an IMU and an LVS is the correlation that appears between the
obtained preintegrated quantities. Although we are considering
two senors providing independent measurements, the obtained
preintegrated IMU and LVS positions are correlated through
the preintegrated orientation as both quantities are built sharing
the same gyroscopes measurements. This fact, consisting in the
appearance of an unexpected correlation between preintegrated
measurements build using independent measurements, was first
observed in legged robotics. In that case, the IMU preintegration
was combined with joints preintegration considering centroidal
dynamics and a correlation was observed between the estimated
forces and the measured linear acceleration [14], [15, Chap. 7].
Thus, when such a correlation appears, the sensors have to be
preintegrated in a single measurement for two main reasons.
First, to naturally find all the correlation existing between the
quantities to define a tightly coupled estimation problem. Sec-
ond, to not break the independence between factors imposed
by the Graph SLAM problem definition that allows to factorize
the problem joint probability distribution into small probability
distributions or factors. However, to the best of the authors’
knowledge, no published IMU and LVS preintegration method-
ology jointly preintegrates both sensors in a single compact
group.

In this article, we present a general purpose methodology to
preintegrate IMU and LVS measurements and to evaluate its
residuals in a single compact group to solve a Graph SLAM
problem. The key features of this methodology are as follows:

1) The combination of IMU measurements with linear ve-
locity measurements to increase the estimator accuracy.

2) The compensation of the perturbation caused by the
Earth’s rotation measured by higher grade IMUs.

To do it we introduce the SENN (3) group, which is a gen-
eralization of the SE(3) group, and we analyze three different
sensors configurations: (i) gyroscopes and LVS, (ii) IMU-only,
and (iii) IMU and LVS; being (iii) the main contribution of this
article. Working at the SENN (3) group allows to:

1) define a general and rigorous formulation for all the ana-
lyzed cases considering Lie groups;

2) jointly preintegrate all the measurements in a single fac-
tor preserving all the existing correlation and ensuring a
tightly coupled estimator.

In addition, all the required jacobians are provided in an-
alytic form in the SENN (3) group with their proofs. Field
experiments are performed to test the proposed methodology
concretized on an AUV equipped with a navigational grade
IMU, sensitive to the Earth rotation rate, and a DVL used as
the LVS. The experimentation was performed in the absence of
exteroceptive measurements to prove the robustness of the sys-
tem, showing how the navigator can manage perception outages
of at least 1 h long when applying the joint IMU and LVS
preintegration and considering the Earth rotation compensation.

The rest of this article is organized as follows. Section II
summarizes the state of the art. Section III defines the considered
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robotic system and Section IV reviews the preintegration theory
formulated on Lie groups. To do it, we follow the notation and
terminology for Lie theory used by Solà et al. [16]. In Sec-
tion V the methodology to compute preintegrated measurements
is presented, whereas preintegration residuals are provided in
Section VI. Finally, the proposed methodology is tested on field
experiments. Section VII describes the experimental setup, Sec-
tion VIII presents the results, which are discussed in Sections IX.
Finally, Section X concludes this article.

II. STATE OF THE ART

IMU preintegration was first proposed by Lupton et al. [2],
[17] to build a graph-based VINS, where the IMU kinematic
model was formulated using Euler angles. In this preliminary
work, Lupton already introduced the first-order Taylor approx-
imation of the preintegrated measurements on the sensor biases
that is commonly used to update the preintegrated measure-
ment when a better estimation for the biases is available. The
methodology proposed by Lupton was also used by Indelman
et al. [18] to build a graph-based navigator fusing IMU, GNSS,
and stereo camera measurements. Forster et al. [3], [19] pro-
posed another graph-based VINS introducing Lie theory [16]
to propagate the IMU preintegrated uncertainty formulating
the IMU kinematic model at the 〈SO(3)× T (3), R3〉 com-
posite manifold, where SO(3)× T (3) parameterizes the robot
pose and R3 represents the robot linear velocity. Forster
et al. made his IMU preintegration implementation available
in the GTSAM library [20], and it is the standard open-source
implementation nowadays. The IMU kinematic model applied
by Forster et al. is a discrete-time model, corresponding to
an approximation of the real continuous-time model. On the
contrary, Eckenhoff et al. [21], [22] proposed two continuous
models, where IMU measurements and error dynamics are an-
alytically preintegrated in a continuous-time fashion, defining
the piecewise constant measurements model (PCMM) and the
piecewise constant local true acceleration model, in contrast to
the discrete-time model applied by Forster that they call the
constant global acceleration model (CGAM). Finally, Brossard
et al. [23], [24] proposed a new preintegration methodology,
formulating the IMU kinematic model at the SE2(3) group,
supporting the continuous-time Piecewise Constant Measure-
ments Model (PCMM) and the discrete-time Constant Global
Acceleration Model (CGAM). By applying Monte-Carlo simu-
lations, they demonstrated that the SE2(3) group is the proper Lie
group to model the IMU preintegration uncertainty, obtaining a
probabilistic dispersion that resembles the expected “banana”
shape more than the standard Gaussian ellipse obtained by
applying the 〈SO(3)× T (3), R3〉 composite manifold.

Another important contribution of the work of Brossard
et al. is the introduction of the Earth rotation compensation
on the IMU kinematic model to be able to preintegrate higher
grade IMUs. By applying this methodology, they could remove
the Earth rotation rate perturbation on the gyroscope measure-
ments and the centrifugal and Coriolis accelerations caused
by the Earth rotation rate on the accelerometer measurements,
showing better pose accuracy on the estimation. Tang et al. [25]

proposed a similar methodology to compensate the Earth rota-
tion effect, but they formulated the IMU kinematic model at
the 〈S3 × T (3), R3〉 composite manifold, using quaternions
instead of the SO(3) group. In the results, they demonstrated
that the Earth rotation compensation is also necessary for higher
grade MEMS-based IMUs, proving that these devices are also
sensitive to the Earth rotation effects. Jiang et al. [26] applied
a similar IMU kinematic model, where the Earth rotation and
the gravity change through the robot geodetic position was
considered for long term operation covering huge areas, a fea-
ture already considered for most filter-based Inertial Navigation
Systems (INS). Moreover, in his algorithm, Jiang propagates
the preintegration uncertainty in the square root information
matrix form in order to have better numerical stability. Zhang
et al. [27] proposed a more accurate IMU kineamtic model
than that applied at [24] and [25], which improves the esti-
mation accuracy for vehicles submitted to huge dynamics at
high speed. However, the model was formulated at the 〈SO(3)×
T (3), R3〉 composite manifold, not correctly representing the
preintegrated uncertainty. They tested their algorithm using a
FOG-based IMU and showed that their IMU model outper-
forms filtered-based INS. Finally, Ding et al. [28] proposed the
equivalent rotation vector model to compensate Earth rotation,
propagating uncertainty on the 〈SO(3)× T (3), R3〉 composite
manifold.

In order to improve the navigator accuracy when faults appear
on the exteroceptive sensor, Chang et al. [29] extended the IMU
preintegrated measurement with car odometer measurements,
preintegrating together the vehicle kinematic model with the
IMU kinematic model, considering the CGAM defined at the
〈S3 × T (3), R3〉 composite manifold using quaternions. By ap-
plying this methodology, they built a car navigator, fusing prein-
tegrated measurements with GNSS and LiDAR observations.
Bai et al. [30] applied a similar approach to build a graph-based
navigator applying GNSS measurements. Their results show
how by applying this coupled preintegrated measurement, the
estimation accuracy improves in the presence of GNSS outages
in comparison to filters. In a different approach to improve
the preintegration accuracy, Wisth et al. [7] combined IMU
preintegration with linear velocity preintegration using velocity
measurements obtained from leg odometry. To do this, they
considered two different factors: a preintegrated IMU factor
considering the CGAM [3] and a new preintegrated factor con-
sidering a constant velocity model defined at the SO(3)× T (3)
group aggregating the gyroscopes and the LVS measurements.
As the preintegrated orientation was computed at both factors,
they needed to impose a constraint to the problem to only
consider it once. However, by applying two different factors that
share the same gyroscopes measurements, they break the factors
independence constraint imposed at the Graph SLAM problem
definition, as both preintegrated quantities are correlated. The
same preintegration methodology was applied by Thoms et
al. [8] on a navigation problem implying a surface marine vehicle
that used a DVL as the LVS. Finally, novel approaches increase
the navigator robustness by substituting the typical Brownian
motion modeling IMU bias dynamics for a neural network that
learns the IMU bias evolution during perception outages [31] or
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Fig. 3. Robot with sensors rigidly attached. The IMU is on the body frame
{B} and the LVS and the pressure sensor have their own frames. The robot is
moving relative to an inertial reference frame {W} with time-varying velocity
v and angular rate ω. Gravity g and Earth rotation Ω are constant at {W}.

by using Gaussian Processes to learn the IMU dynamics avoid-
ing imposing any kinematic model and performing a continuous
analytical preintegration [32].

In this article, we propose a preintegration methodology that
1) jointly preintegrates IMU and LVS measurements to improve
the navigator robustness in the presence of exteroceptive sensor
faults; 2) defines the preintegration model at a compact group to
properly propagate the preintegrated measurement uncertainty;
and 3) compensates the Earth rotation to properly use higher
grade IMUs. To the best of the authors’ knowledge, no method-
ology exists combining these three key features.

III. ROBOTIC SYSTEM DESCRIPTION

We assume a mobile robot equipped with an IMU, providing
robot linear accelerationa and angular rateω; an LVS, measuring
robot linear velocity v; and a pressure sensor, providing absolute
height or depth W z. As shown in Fig. 3, we set the robot base
link {B} at the IMU reference frame and we consider that
the pressure sensor and the LVS may not be assembled at the
base link of the robot, being BRLVS and BtLVS the orientation
and the position of the LVS at the body frame and BtPRS the
position of the pressure sensor at the body frame. Since depth is
derived from pressure, which is an absolute measurement in the
global frame, there is no need to consider any orientation of the
pressure sensor.

The whole system shown in Fig. 3 is referenced to an inertial
reference frame called world {W}, where the robot position and
orientation are, respectively, modeled by W pB and WRB . The
world frame is considered a North East Down (NED) system
placed on the Earth surface, defined by a latitude φ0 and a
longitude λ0. At this reference frame, the gravity g and the Earth
rotation Ω vectors are modeled as follows:

g =
[
0 0 g

]T
,

Ω = ωE

[
cosφ0 0 − sinφ0

]T
, (1)

TABLE I
GLOBAL ACTIONS ACTING ON THE ROBOT

where g is the gravity acceleration and ωE is the Earth rotation
rate. In this article, we consider the common accepted approxi-
mations at the Mediterranean coast given in Table I.

For the sensors observation model, we assume that all mea-
surements (linear acceleration a, angular rateω and linear veloc-
ity v) are affected by a Gaussian white noise and accelerometers,
gyroscopes and the LVS are biassed

a = a− bacc + ηacc with ηacc ∼ N (03×1, Q
acc) ,

ω = ω − bgyr + ηgyr with ηgyr ∼ N (03×1, Q
gyr) ,

v = v − blvs + ηlvs with ηlvs ∼ N (
03×1, Q

lvs
)
, (2)

where all biases b are modeled by a Brownian motion as they
are slow time-varying quantities

bacc
k+1 = bacc

k + ηba with ηba ∼ N (
03×1, Q

ba
)
,

bgyr
k+1 = bgyr

k + ηbg with ηbg ∼ N (
03×1, Q

bg
)
,

blvs
k+1 = blvs

k + ηbv with ηbv ∼ N (
03×1, Q

bv
)
. (3)

Considering that the LVS is rigidly attached to the robot, both
systems form a rigid body that is in rototranslation. Since the
LVS is measuring the robot linear velocity at its own frame LVSv,
this measurement can be mapped to the body frame by applying
screw theory

Bv = BRLVS
LVSv +

[
BtLVS

]
×

Bω (4)

where Bω is the angular velocity of the vehicle measured by the
IMU gyroscopes (placed at the robot base link). Since the robot
is in motion in reference to an inertial reference frame {W}, the
robot linear velocity measured at the body frame can be mapped
to the world frame by applying

W v = WRB
Bv (5)

where Bv is defined at (4). Considering the sensors observation
model, substituting (2) into (5), the observation model for the
robot linear velocity at the world frame is

W v = WRB

(
BRLVS(v − blvs

+ ηlvs) +
[
BtLVS

]
×

(
ω − bgyr + ηgyr

))
. (6)

IV. PREINTEGRATION PRELIMINARIES

In Graph SLAM problems preintegration allows the combi-
nation of many measurements between two key frames into a
single relative motion constraint. In this section, we introduce
a general model for preintegration considering Lie Groups. To
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do so, first, we present a generalization of the Special Euclidean
group SE(3) (SE(3)) group where this model is formulated.

A. The SEN (3) Group

The SEN (3) group [33], [34] is the Lie Group [16] of N
isometries jointly encoding a rotation matrix R ∈ SO(3) with
N vectors ui ∈ R3. Using homogeneous matrices, the SEN (3)
group can be algebraically expressed as

SEN (3) :=

{
T=

[
R u1 . . . uN

0N×3 IN

]
∈R(3+N)×(3+N)

∣∣∣∣∣R ∈ SO(3)

ui ∈ R3

}

where matrix multiplication provides composition and matrix
inverse gives the inverse element, having the closed form

T−1 =

[
RT −RTu1 . . . −RTuN
0N×3 IN

]
. (7)

The group tangent space is ε = [φT νT1 . . . νTN ]T ∈
R3N+3, where φ ∈ R3 encodes orientation and νi ∈ R3. To
transform elements from the tangent space to the manifold and
vice-versa, the exponential map and the logarithm map are

Exp(ε) =

[
exp(φ) Jl(φ)νi . . . Jl(φ)νN
0N×3 IN

]
,

Log(T ) =

⎡
⎢⎢⎢⎢⎣

log(R)

J−1
l (log(R))ui

...

J−1
l (log(R))uN

⎤
⎥⎥⎥⎥⎦ , (8)

where exp(φ), log(R), and Jl(φ) are the exponential map, the
logarithm map, and the left jacobian of the Special Orthogonal
group SO(3) group (see [16, Appendix B]). Using these opera-
tors, the right-handed addition and subtraction at the group are
defined as

T2 = T1 ⊕ ε � T1 · Exp(ε),

ε = T2 � T1 � Log(T−1
1 · T2), (9)

where T1, T2 ∈ SEN (3) and ε is a perturbation at the tangent
space of SEN (3). To map a vector tangent to the point T ∈
SEN (3) to a vector tangent to the Identity, the adjoint map is

Ad(T ) =

⎡
⎢⎢⎢⎢⎣

R 03 . . . 03

[u1]×R R . . . 03
...

...
. . .

...

[uN ]×R 03 . . . R

⎤
⎥⎥⎥⎥⎦ ∈ R(3N+3)×(3N+3)

(10)
where []× is the hat operator converting an R3 vector into a
skew symmetric matrix R3×3. The right jacobian of the group,
corresponding to the derivative of the exponential map, is

Jr(T ) =

⎡
⎢⎢⎢⎢⎣
Jr(φ) 03 . . . 03

Qφ,ν1
Jr(φ) . . . 03

...
...

. . .
...

Qφ,νN
03 . . . Jr(φ)

⎤
⎥⎥⎥⎥⎦ ∈ R(3N+3)×(3N+3)

(11)

where Jr(φ) is the right jacobian of the SO(3) group and

Qφ,ν =
1

2
ν× +

φ− sinφ

φ3
(φ×ν× + ν×φ× + φ×ν×φ×)

+
φ2+2 cosφ−2

φ4
(φ2

×ν×+ν×φ2
×−3φ×ν×φ×)

+
2φ− 3 sinφ+ φ cosφ

φ5
(φ×ν×φ2

× + φ2
×ν×φ×).

B. Preintegration on Lie Groups

In the context of Graph SLAM, the preintegrated mea-
surement Υk between two consecutive keyframes Tk, Tk+1 ∈
SEN (3) is related by [24]

Tk+1 = Γk · Φ(Tk, τ) ·Υk (12)

where Γ,Υ ∈ SEN (3) are elements of the same Lie Group
as T and Φ : SEN (3),R → SEN (3) is an automorphism that
integrates T through the sampling time τ of the sensor, as the
robotic system kinematics defines a group affine system [24],
[35]. Analyzing the composition defined by (12), Γ is an ele-
ment encoding global actions on Tk, whereas Υ encodes local
actions on Tk. In the context of robotics where Tk is modeling
robot motion, Γ encodes motion modeled at the world frame,
whereas Υ encodes motion modeled at the body frame. This
differentiation between global and local actions simplifies how
to model the preintegration problem.

Preintegration consists of the accumulation of measurements
between two key frames. As proprioceptive sensors are mounted
on a robot, their measurements are referenced on the local frame
of the robot. Therefore, the measurements preintegration can be
modeled by the elementΥ. However, precise inertial sensors not
only measure robot motion, but also the gravity acceleration or
the Earth rotation rate, which are constant actions at the world
frame. Thus, preintegrated measurements at Υ are perturbated
by global actions that have to be compensated in order to estimate
the robot navigation. As the necessary compensation is caused
by constant global actions, it is easier to model them on the Γ
element than to convert global actions to local actions to com-
pensate directly the measurements before preintegrating, as this
is done when filtering. Therefore, by applying the preintegration
scheme of (12), Υ models measurements preintegration and Γ
models gravity and Earth rotation compensation. If only the
gravity compensation is considered, the IMU kinematic model
is called the Flat Earth Model (FEM); whereas if both gravity
and Earth rotation are compensated, the Rotating Earth Model
(REM) is defined. In this article,Γwill be provided in Section VI
for each of these models, whereas Υ will be defined for each of
the analyzed sensors configurations in Section V.

When facing a Graph SLAM problem, two actions are re-
quired: preintegration of measurements while acquiring data
and computation of residuals to solve the problem. During
preintegration, the element Υij is calculated by directly accu-
mulating the raw measurements without applying any type of
compensation. This element can be updated incrementally while
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receiving data by applying [24]

Υij =

j−1∏
k=1

Φ(Υk, (j − 1− k)τ) (13)

where τ is the sampling time of the sensors. Note that this series
depends on the total preintegration time as j appears inside
the series. Thus, the final moment of preintegration needs to
be known a priori before starting to accumulate measurements.
On solving the graph, residuals are evaluated and the accumu-
lated measurements are compensated from global actions. The
preintegration residual between key frames Tj and Ti is found
by inverting (12) reaching

rij = Σ
−1/2
ij

((
Φ(Ti,Δt)

−1 · Γ−1
ij · Tj

)�Υij

)
(14)

where Δt is the elapsed time while preintegrating Υij and Σij

is the covaraince matrix associated to Υij .

V. ON-MANIFOLD PREINTEGRATION

By applying the preintegration model of (12), raw proprio-
ceptive measurements can be accumulated on a preintegrated
measurement Υij . In the following sections, the methodology
to obtain the preintegrated measurement expectation and uncer-
tainty for different sensors configurations is presented.

A. Joint Gyroscopes and Linear Velocity Sensor Preintegration

The combination of three gyroscopes with an LVS usually
is applied to robots with slow dynamics, as a constant velocity
model is assumed. For this configuration, linear velocities and
angular rates are integrated at the SE(3) group

SE1(3) :=

{
T =

[
R p

01×3 1

]
∈ R4×4

∣∣∣∣ R ∈ SO(3)
p ∈ R3

}
where R and p, respectively, model the robot orientation and
position and the group tangent space is ε = [φT , ρT ]T ∈ R6.
Considering that gyroscopes and the LVS may not be assembled
at the same place on the robot, in comparison to an IMU, where
accelerometers and gyroscopes are referenced to the same frame,
the observation model of (4) must be applied. By combining this
observation model with a constant velocity kinematic model,
measurements are exponentiated to the SE(3) group as

Υlvs
k =

[
exp(ωkτ) τ(BRLVSvk + [BtLVS]×ωk)

01×3 1

]
(15)

where vk and ωk follow the observation model of (2).
Considering a first order Taylor expansion, SO(3) jacobians

relate small perturbations at the tangent space of SO(3) by
exp(φ+ δφ) ≈ exp(φ) exp(Jr(φ)δφ). Applying this identity
on the rotational part of (15), Υlvs

k can be factorized into two
factors

Υlvs
k ≈ Υ

lvs
k · Exp

(
Glvs

k

[
ηgyr

ηlvs

])
(16)

where

Υ
lvs
k =

[
exp(ω̂kτ) τ(BRLVSv̂k + [BtLVS]×ω̂k)

01×3 1

]
,

Glvs
k =

[
τJr(ω̂kτ) 03

τexp(ω̂kτ)
T [BtLVS]× τexp(ω̂kτ)

TBRLVS

]
,

being Υ
lvs
k a noise agnostic factor that can be evaluated using the

sensor data, ω̂k = ωk − bgyr and v̂k = vk − blvs.
To incrementally compute the preintegrated measurement

Υ
lvs
ij while receiving measurements, we apply (13). Considering

that at the SE(3) group ΦSE(3)(T, τ) = T , (13) simplifies to the
following incremental form:

Υ
lvs
i(j+1) = Υ

lvs
ij · Υ

lvs
j (17)

that do not depend on the final preintegration time. To compute
the covariance matrix Σlvs

ij related to the preintegrated mea-

surement Υ
lvs
ij , we perform uncertainty propagation on (17) by

applying a first-order Taylor expansion. Taking derivatives on
(17), we can update Σlvs

ij while preintegrating applying

Σlvs
i(j+1) = Alvs

j Σlvs
ij A

lvs
j

T
+Blvs

j Glvs
j

[
Qgyr 03

03 Qlvs

]
Glvs

j
T
Blvs

j
T

(18)
starting from the initial condition Σlvs

ii = 06×6 where

Alvs
j =

∂Υi(j+1)

∂Υij

=
∂Υij ·Υj

∂Υij

= Ad

(
Υ

lvs
j

−1
)
,

Blvs
j =

∂Υi(j+1)

∂Υj

=
∂Υij ·Υj

∂Υj

= I6

and Q models sensors noise defined in (2).
For this configuration, if a null measurement is received, the

robot remains static in position, as in (15) a constant velocity
model is considered. Therefore, no position compensation is
needed to the Γ element of (12) and the only possible compen-
sation is for the rotational part. Thus, at the SE(3) group the
compensation factor has the following form:

Γlvs =

[
ΓR 03×1

01×3 1

]
(19)

where ΓR will be defined later in Section VI for the FEM and
the REM.

B. Joint Gyroscopes and Accelerometers (IMU) Preintegration

An IMU is a sensor widely applied on robotics, having the
accelerometers and the gyroscopes referenced at the same frame.
When this sensor is considered, linear accelerations and angular
rates are integrated at the SE2(3) group [24]

SE2(3) :=

{
T =

[
R p v

02×3 I2

]
∈ R5×5

∣∣∣∣ R ∈ SO(3)
p, v ∈ R3

}
whereR, p, and v, respectively, model the robot orientation, po-
sition and linear velocity measured at world frame and the group
tangent space is ε = [φT , ρT , νT ]T ∈ R9. Robot linear velocity
needs to be represented in the group as it is the intermediate
state between the measured linear acceleration and the estimated
position. Considering the CGAM by assuming a vehicle with
slow dynamics where the acceleration vector is dominated by
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the gravity, measurements are retracted to the SE2(3) group by
the following simplified exponential [22]:

Υimu
k =

⎡
⎣ exp(ωkτ)

τ2

2
ak

∣∣∣∣ τak
02×3 I2

⎤
⎦ (20)

where ak and ωk follow the observation model of (2). Following
a similar development to that of (16),Υimu

k can be factorized into
two factors

Υimu
k ≈ Υ

imu
k · Exp

(
Gimu

k

[
ηacc

ηgyr

])
(21)

where

Υ
imu
k =

⎡
⎣exp(ω̂kτ)

τ2

2
âk

∣∣∣ τ âk
02×3 I2

⎤
⎦ ,

Gimu
k =

⎡
⎢⎢⎣

03 τJr(ω̂kτ)
τ2

2
exp(ω̂kτ)

T 03

τexp(ω̂kτ)
T 03

⎤
⎥⎥⎦ ,

being Υ
imu
k a noise agnostic factor, âk = ak − bacc and ω̂k =

ωk − bgyr.
To incrementally compute the preintegrated measurement

Υ
imu
ij following (13), first, we need to consider the identity

provided in Lemma 1 that can be easily proved.
Lemma 1: Given two poses T1, T2 ∈ SEN (3) and the auto-

morphism Φ : SEN (3),R → SEN (3) defined at Proposition 1
and 2, then

Φ(Φ(T1, τ1) · T2, τ2) = Φ(Φ(T1, τ1), τ2) · Φ(T2, τ2).
Thus, using the definition of ΦSE2(3)(T, τ) given by Propo-

sition 1 provided in the Appendix and applying Lemma 1, (13)
results in

Υ
imu
i(j+1) = ΦSE2(3)(Υ

imu
ij , τ) · Υ

imu
j (22)

which again is an incremental series that does not depend on
the final preintegrated state. To compute the covariance matrix
Σimu

ij related to the preintegrated measurementΥ
imu
ij , we perform

uncertainty propagation on (22) by applying a first-order Taylor
expansion. Taking derivatives on (22), we can incrementally
update Σimu

ij while preintegrating applying

Σimu
i(j+1) = Aimu

j Σimu
ij A

imu
j

T

+Bimu
j Gimu

j

[
Qacc 03

03 Qgyr

]
Gimu

j
T
Bimu

j
T

(23)

starting from the initial condition Σimu
ii = 09×9 where

Aimu
j =

∂Υi(j+1)

∂Υij

=
∂Φ(T ) ·Υj

∂Φ(T )

∂Φ(T, τ)

∂T

= Ad

(
Υ

imu
j

−1
)
· FSE2(3)(τ),

Bimu
j =

∂Υi(j+1)

∂Υj

=
∂Φ(T ) ·Υj

∂Υj

= I9.

Proposition 1 provides FSE2(3)(τ) and Q models sensors noise
defined in (2).

For this configuration, if a null measurement is received,
the robot is in free fall, as in (20) the CGAM is considered.
Therefore, a position and a velocity compensation are needed
to the Γ element of the model in (12). Moreover, a rotation
compensation can also be possible. Thus, at the SE2(3) group
the compensation factor has the following form:

Γimu =

[
ΓR Γp | Γv

02×3 I2

]
(24)

where ΓR, Γp, and Γv will be defined later in Section VI for the
FEM and the REM.

C. Joint IMU and Linear Velocity Sensor Preintegration

To improve the accuracy of an INS when faults appear on the
exteroceptive sensor, we propose to combine the IMU with an
LVS. In this case, two independent sensors are used to form a
unique pseudomeasurement, since to integrate the LVS measure-
ments, the gyroscope information from the IMU is also needed.
Thus, we propose to fuse both sensors in a unique preintegrated
factor to keep all the correlation between the preintegrated IMU
and the preintegrated LVS. The joint preintegration of linear
accelerations, angular rates, and linear velocities is performed
at the SE3(3) group

SE3(3) :=

{
T=

[
R pimu| v | plvs

03 I3

]
∈R6×6

∣∣∣∣∣ R∈SO(3)

pimu, v, plvs ∈ R3

}

where R, p, and v, respectively, model the robot orientation,
position, and linear velocity and the group tangent space is
ε = [φT , ρimuT , νT , ρlvsT ]T ∈ R12. Note that at this group the
robot position is dual:pimu is related to the accelerometers double
integration, whereas plvs is related to the LVS integration. For
a preintegrated measurement, clearly pimu and plvs are different
quantities as they are obtained considering different kinematic
models and using different measurements. However, for any
robot state, pimu and plvs must be equivalent as the robot position
is physically unique. Therefore, for this sensor configuration
Υ ∈ SE3(3), whereas the robot states are defined at the SE2(3)
group. Keeping this in mind, to maintain the model in (12),
the function μ : SE2(3) → SE3(3) defined by Proposition 3
provided in the Appendix is needed to map elements from the
robot state space to the measurement space where the model is
declared, obtaining

Sj = Γij ΦSE3(3)(μ(Ti),Δt) Υij (25)

where Sj only matches μ(Tj) if there is no noise in the system
and the model is exactly correct.

Considering the CGAM for the IMU measurements and a con-
stant velocity model for the LVS measurements and considering
that the IMU and the LVS may be at different frames, sensor
readings are retracted to the SE3(3) group as

Υcomb
k =

⎡
⎣exp(ωkτ)

τ2

2
ak

∣∣∣∣ τak
∣∣∣∣ τ(BRLVSvk + [BtLVS]×ωk)

03 I3

⎤
⎦

(26)
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where ak, ωk, and vk follow the observation model of (2). Fol-
lowing a similar development as in (16),Υcomb

k can be factorized
into two factors

Υcomb
k ≈ Υ

comb
k · Exp

⎛
⎜⎝Gcomb

k

⎡
⎢⎣η

acc

ηgyr

ηlvs

⎤
⎥⎦
⎞
⎟⎠ (27)

where

Υ
comb
k =⎡
⎣exp(ω̂kτ)

τ2

2
âk

∣∣∣∣ τ âk
∣∣∣∣ τ (BRLVSv̂k + [BtLVS]×ω̂k

)
03 I3

⎤
⎦ ,

Gcomb
k =⎡

⎢⎢⎢⎢⎢⎣

03 τJr(ω̂kτ) 03
τ2

2
exp(ω̂kτ)

T 03 03

τexp(ω̂kτ)
T 03 03

03 τexp(ω̂kτ)
T [BtLVS]× τexp(ω̂kτ)

TBRLVS

⎤
⎥⎥⎥⎥⎥⎦ ,

being Υ
comb
k a noise agnostic factor, âk = ak − bacc, ω̂k = ωk −

bgyr and v̂k = vk − blvs.
To incrementally compute the preintegrated measurement

Υ
comb
ij , we apply (13). Using the definition ofΦSE3(3)(T, τ) given

by Proposition 2 provided in the Appendix and applying Lemma
1, (13) results in

Υ
comb
i(j+1) = ΦSE3(3)(Υ

comb
ij , τ) · Υ

comb
j (28)

which again is an incremental series. To compute the covariance
matrix Σcomb

ij related to the preintegrated measurement Υ
comb
ij ,

we perform uncertainty propagation on (28) by applying a
first-order Taylor expansion. Taking derivatives on (28), we can
update Σcomb

ij applying

Σcomb
i(j+1) = Acomb

j Σcomb
ij Acomb

j
T

+Bcomb
j Gcomb

j

⎡
⎢⎣Q

acc 03 03

03 Qgyr 03

03 03 Qlvs

⎤
⎥⎦Gcomb

j
T
Bcomb

j
T

(29)

starting from the initial condition Σcomb
ii = 012×12 where

Acomb
j =

∂Υi(j+1)

∂Υij

=
∂Φ(T ) ·Υj

∂Φ(T )

∂Φ(T, τ)

∂T

= Ad

(
Υ

comb
j

−1
)
· FSE3(3)(τ),

Bcomb
j =

∂Υi(j+1)

∂Υj

=
∂Φ(T ) ·Υj

∂Υj

= I12.

Proposition 2 provides FSE3(3)(τ) and Q models sensors noise
defined in (2).

For this configuration, if a null measurement is received, the
robot is at the same time in free fall for the IMU integrated
position and remains static for the LVS integrated position,
since in (26) the CGAM is considered to preintegrate the IMU
mesurements, whereas a constant velocity model is considered
for the LVS measurements. Therefore, a position and a veloc-
ity compensation are needed at the IMU components of the
Γ element in (12) to maintain the equivalence with the LVS
positional part. Moreover, as for the other sensor configurations,
a rotational compensation can also be considered. Thus, at the
SE3(3) group the compensation factor has the following form:

Γcomb =

[
ΓR Γp | Γv | 03×1

03 I3

]
(30)

where ΓR, Γp, and Γv will be defined later in Section VI for the
FEM and the REM.

Finally, for this configuration, we are fusing two sensors of
different nature that may run at different rates. To synchronize
them, we run the preintegration at the IMU rate and we consider
constant linear velocity between the LVS measurements. Thus,
our approach feeds the graph with two preintegration hypotheses
(a constant velocity model and a constant acceleration model)
making the solver responsible for deciding which option best
matches the exteroceptive measurements based on uncertainty
metrics.

D. Preintegration Considering Sensors Bias Estimation

A fact that we have not considered yet, is the sensors bias
evolution during preintegration. Biases are unobserved variables
that also have to be estimated by the Graph SLAM problem. To
do it, we assume constant biases for a whole preintegrated mea-
surement [2], [3]. However, to compute the uncertainty related
to the bias evolution, we perform covariance propagation on (3)
by applying a first-order Taylor expansion. Taking derivatives
on (3), we can incrementally update Σbias

ij while preintegrating
applying

Σbias
i(j+1) = Abias

j Σbias
ij A

bias
j

T
+Bbias

j QbBbias
j

T
(31)

starting from a zero initial condition whereQb models the biases’
random walk defined in (3), Abias

j = I and Bbias
j = I .

When the sensors bias are considered at the estimation
problem, a new manifold needs to be defined to extend the
problem state. We propose to use the composite manifold
〈SEN (3),R3

1, . . . ,R
3
M 〉, where SEN (3) models the robot state

and R3 models an euclidean base with M bias directions. For
instance, for the IMU-LVS configuration (where N = 3 and
M = 3) the composite manifold tangent space is

ε =
[
φT ρimuT νT ρlvsT baccT bgyrT blvsT

]T
∈ R21.

By using a composite manifold, the group operators are
obtained by the concatenation of the blocks for each com-
ponent [16]. Therefore, the Jacobians for covariance prop-
agation during preintegration can be computed per blocks
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applying

Σfull
i(j+1) = Afull

j ΣijA
full
j

T

+Bfull
j

[
Qη 0(3N+3)×3M

03M×(3N+3) Qb

]
Bfull

j
T

(32)

starting from the initial condition Σii =
0(3N+3+3M)×(3N+3+3M) where

Afull
j

=

[
Asensor

j −Gsensor
j

03M×3N+3 Abias
j

]
∈ R(3N+3+3M)×(3N+3+3M),

Bfull
j

=

[
Gsensor

j 0(3N+3)×3M

03M×3M Bbias
j

]
∈ R(3N+3+3M)×6M ,

and sensor noiseQη and bias random walkQb are, respectively,
defined in (2) and (3). Asensor

j ∈ R(3N+3)×(3N+3) and Gsensor
j ∈

R(3N+3)×3M are defined in (18), (23), or (29) depending on
the applied sensor configuration and Abias

j , Bbias
j ∈ R3M×3M

are defined in (31). Note that the preintegrated measurements
depend on the sensor biases. Following the observation model
defined in (2), bias and noise are small additive quantities to the
measurements. Thus, the derivative of the preintegrated model
through the sensor biases is the same as the derivative through
the sensor noise.

VI. PREINTEGRATION RESIDUALS

After aggregating sensor measurements into preintegrated
measurements, residuals for these quantities can be evaluated.
Preintegrated measurements have been computed assuming a
predefined constant sensor biases. However, sensor biases are
estimated variables whose estimation is improved while solving
the problem. Thus, preintegration measurements must be up-
dated accordingly. In the following, first, we review a mechanism
to update preintegrated measurements when the biases change,
avoiding rebuilding the preintegration. Then, we introduce the
preintegrated residuals at the SEN (3) group for the FEM and
the REM, paying special attention to the mathematical calcula-
tion of the Jacobians and providing its analytical form.

A. Bias Correction

To avoid reintegrating from scratch all the measurements
that form a preintegrated measurement when the estimation for
its associated bias is refined, the measurement can be updated
by performing a first-order Taylor expansion of (13) on the
biases [2] considering the SEN (3) group. Thus, a preintegrated
measurement is built by assuming constant bias b̂i, for instance,
the bias estimation for the previous key frame. Then, when new
estimations bi are available, the preintegrated measurement can

be updated applying

Υij(bi) = Υij(b̂i)⊕ Jij(bi − b̂i) (33)

where Υij(b̂i) is the preintegrated measurement assuming b̂i

and Jij =
∂Υij

∂bi
| b̂i is the derivative of the preintegrated mea-

surement through the bias evaluated at the bias assumption b̂i.
Following [24], this derivative can be incrementally computed
while preintegrating by applying

Ji(j+1) = AjJij −Gj (34)

where Aj and Gj are defined in (18), (23), or (29), depending
on the chosen sensor configuration.

B. FEM Residual

The FEM is a preintegration approximation that only con-
siders gravity as an external perturbation. The continuous-time
analytical model for this approach is

W ṘB = WRB

[
Bω

]
× ,

W v̇ = WRB
Ba+ g,

W ṗB = W v, (35)

where WRB , W v, and W pB are, respectively, the orientation,
linear velocity, and position of the robot at the world frame.
Considering the preintegration model given in (12), the com-
pensation components for the FEM are [3]

ΓR = I3, Γp =
Δt2

2
g, Γv = Δtg, (36)

where Δt is the elapsed time during the preintegration of Υij .
Given a preintegrated measurement Υij and its associated

covariance matrix Σij , considering the residual definition in
(14), the bias update in (33), and the mapping μ(T ) applied
in (25); the residual between robot states Ti and Tj is

rij =

Σ
−1/2
ij Log

{
Υ

−1
ij ·Φ(μ(Ti),Δt)−1 ·Γ−1

ij ·μ(Tj)·Exp(−Jijδbi)
}

(37)

where δbi = (bi − b̂i),Jij is provided by (34) and the definitions
for Φ(T,Δt) and μ(T ) are listed in Table II . The derivatives
of the residual through the robot poses Ti and Tj and the sensor
bias bi at the SEN (3) group are

∂r

∂Ti

=
∂Log(L)

∂L

∂Υ
−1

ij ·K
∂K

∂Φ−1 ·Y
∂Φ−1

∂Φ−1

∂Φ

∂Φ(μ(Ti),Δt)

∂μ(Ti)

∂μ(Ti)

∂Ti

= −Jr(L)
−1 Ad(Y −1 · Φ(μ(Ti),Δt)) F (Δt) M,

∂r

∂Tj

=
∂Log(L)

∂L

∂R · S
∂S

∂μ(Tj) · Exp(λ)
∂μ(Tj)

∂μ(Tj)

∂Tj

= Jr(L)
−1 Ad(Exp(Jijδbi)) M, (38)

∂r

∂bi
=

∂Log(L)
∂L

∂C · Exp(λ)
∂Exp(λ)

∂Exp(λ)
∂λ

∂λ

∂bi

= −Jr(L)
−1 Jr(−Jijδbi) Jij ,
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TABLE II
LIE GROUPS AND FUNCTIONS NEEDED FOR THE ANALYZED SENSORS CONFIGURATIONS

where

Y︷ ︸︸ ︷
L = Υ

−1
ij · Φ(μ(Ti),Δt)−1 · Γ−1

ij︸ ︷︷ ︸
R

·μ(Tj) · Exp(−Jijδbi)︸ ︷︷ ︸
S

K︷ ︸︸ ︷
= Υ

−1
ij · Φ(μ(Ti),Δt)−1 · Γ−1

ij · μ(Tj)︸ ︷︷ ︸
C

·Exp(−Jijδbi),

λ = − Jijδbi.

Exp(T ), Log(T ), Ad(T ), and Jr(T ) are defined in Section IV-A

andF (Δt) =
∂Φ(T,Δt)

∂T
andM =

∂μ(T )

∂T
are provided by the

Propositions listed in Table II.

C. REM Residual

The REM is a preintegration approximation that considers
gravity and Earth rotation as external perturbations. The analyt-
ical model for this approach is

W ṘB = WRB

[
Bω

]
× − [Ω]×WRB ,

W v̇ = WRB
Ba+ g − 2[Ω]×W v − [Ω]2×

W pB ,

W ṗB = W v, (39)

whereΩ is the Earth rotation rate vector defined in (1). To express
this model in the form of the preintegration model in (12), an
automorphismψ : SEN (3) → SEN (3) applied to the robot state
is needed [24]. By applying the definitions of ψ(T ) listed in
Table II, the continuous model becomes

Nj = Γij Φ(ψ(Ti),Δt) Υij , (40)

where Δt is the elapsed time during the preintegration of Υij

and Nj only matches ψ(Tj) if there is no noise in the system
and the model is exactly correct. The compensation components
for this model are [24]

ΓR = exp(ΔtΩ)T ,

Γp =

(
Δt2

2
I3 + a[Ω]× + b[Ω]×

)
g,

Γv = Jr(−ΔtΩ)Δtg, (41)

where θ = ‖Ω‖ and

a =
1

θ3

(
Δtθ cos (Δtθ)− sin (Δtθ)

)
,

b =
1

θ4

(
Δt2θ2

2
− cos (Δtθ)−Δtθ sin (Δtθ) + 1

)
.

Given a preintegrated measurement Υij and its associated
covariance matrix Σij , considering the residual definition in
(14), the bias update in (33), and the functions μ(T ) and ψ(T ),
respectively, applied in (25) and (40); the residual between robot
states Ti and Tj is

rij = Σ
−1/2
ij Log

{
Υ

−1
ij · Φ(ψ(μ(Ti)),Δt)−1 · Γ−1

ij · ψ(μ(Tj))

· Exp(−Jijδbi)
}

(42)

where δbi = (bi − b̂i), Jij is provided by (34) and the defini-
tions for Φ(T,Δt), ψ(T ), and μ(T ) are listed in Table II. The
derivatives of the residual through the robot poses Ti and Tj and
the sensors bias bi at the Special Euclidean N group SEN (3)
(SEN (3)) group are as follows:

∂r

∂Ti
=
∂Log(L)
∂L

∂Υ
−1
ij ·K
∂K

∂Φ−1 · Y
∂Φ−1

∂Φ−1

∂Φ

∂Φ(ψ,Δt)

∂ψ

∂ψ(μ)

∂μ

∂μ(Ti)

∂Ti

= −Jr(L)−1 Ad(Y −1 ·Φ(ψ(μ(Ti)),Δt)) F (Δt) Ψ(μ(Ti))M,

∂r

∂Tj
=
∂Log(L)
∂L

∂R · S
∂S

∂ψ · Exp(λ)
∂ψ

∂ψ(μ)

∂μ

∂μ(Tj)

∂Tj

= Jr(L)
−1Ad(Exp(Jijδbi))Ψ(μ(Tj))M,

∂r

∂bi
=
∂Log(L)
∂L

∂C · Exp(λ)
∂Exp(λ)

∂Exp(λ)
∂λ

∂λ

∂bi

= −Jr(L)−1 Jr(−Jijδbi) Jij , (43)

where
Y︷ ︸︸ ︷

L =Υ
−1
ij ·Φ(ψ(μ(Ti)),Δt)−1 ·Γ−1

ij︸ ︷︷ ︸
R

·ψ(μ(Tj))·Exp(−Jijδbi)︸ ︷︷ ︸
S

K︷ ︸︸ ︷
=Υ

−1
ij · Φ(ψ(μ(Ti)),Δt)−1 · Γ−1

ij · ψ(μ(Tj))︸ ︷︷ ︸
C

·Exp(−Jijδbi),

λ =−Jijδbi.



1356 IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

Exp(T ), Log(T ), Ad(T ), andJr(T ) are defined in Section IV-A

and F (Δt) =
∂Φ(T,Δt)

∂T
, Ψ(T ) =

ψ(T )

∂T
, and M =

∂μ(T )

∂T
are provided by the Propositions listed in Table II.

VII. EXPERIMENTAL SETUP

In this experiment, we test the proposed preintegration
methodology on an AUV that uses a DVL as the LVS. In the
following sections, we describe the navigation algorithm and
the robotic platform used to validate the proposed tool in real
experiments performed at open sea.
A. Underwater Dead Reckoning Algorithm

Combining the preintegrated factor with the factors intro-
duced in a previous work [36], the chained factor graph of Fig. 1
is built. This graph models a dead reckoning problem, defining
a graph-based INS. Compared to a filter-based solution, this
proposal allows perception constraints to be easily added to
the problem by closing loops on the chained graph, converting
the dead reckoning approach into a Graph SLAM problem.
Algorithm 1 establishes the navigation methodology. In this
problem, key frames are set at a constant rate, whereas in a
Graph SLAM problem, key frames are set when a new relevant
measurement from the robot surroundings is received. In the
underwater domain, exteroceptive measurements can be, for
example, an acoustic signal received from a beacon or a point
cloud gathered by a sonar scanner.

Following Algorithm 1, first, the sensors are initialized, the
North East Down (NED) reference frame is established and a
guess for the robot initial pose is estimated using a GNSS. By
considering a graph approach, an imprecise initial condition is
sufficient as the initial orientation of the robot will be improved
as the problem grows, thanks to the global actions measured
by the IMU: the gravity and the Earth rotation. Once the ini-
tial condition is set, the estimation problem starts and GNSS
measurements are no longer considered by this navigator.

Between the reception of key frames, the IMU and DVL
preintegration is running. When a new key frame is received,
the preintegration is stopped, the result is stored and a new
preintegrated measurement is started. Using the obtained prein-
tegrated measurement, a preintegrated factor is set between the
current key frame and the previous one. Moreover, the linear
velocity and pressure priors are set to the current key frame
using the newest DVL and pressure measurements [36]. Finally,
combining the estimation for the previous key frame with the
preintegrated measurement, a seed for the current key frame is
provided to the solver. By using the iSAM2 solver [37], which
is an incremental solver, the problem is solved every time a new
key frame is set, giving an online AUV navigator estimating the
whole robot trajectory.

B. Robot Setup

Sea experiments have been carried using the Girona 1000
AUV [38] – from IQUA Robotics, Girona (Catalonia) – a
reconfigurable underwater platform suitable for intervention and
surveying that is equipped with several proprioceptive sensors.

1Only applied to IMU-only preintegration setups to account for LVS data.

Algorithm 1: Graph-Based Inertial Navigation System.
Initialize IMU, DVL, SVS and GNSS
Set NED reference frame
Set gravity acceleration direction at NED
Set Earth rotation rate direction at NED
Initialize the navigation factor graph
Set pose, linear velocity and biases priors
Set initial pose, linear velocity and biases seeds
Loop

if not key frame received then
Preintegrate IMU and DVL measurements

else
Set a preintegrated factor and reset preintegration
Set a seed for the new key frame
Set a linear velocity prior to the new key frame1

Set a pressure prior to the new key frame
Solve the navigation factor graph

end if
end loop

Linear accelerations and angular velocities are provided by a
Phins Compact C3 INS – from iXblue, Saint-Germain en Laye
(France) – a navigational grade INS based on FOG and MEMS
accelerometers that is used as an IMU by reading the raw sensor
measurements. Linear velocity is measured by a DVL1000–
4000 m – from Nortek, Rud (Norway) – which is assembled
at the lower AUV cylinder pointing the seabed. Water pressure
is provided by a miniSVS1000 – from Valeport Ltd, Totnes
(United Kingdom) – a Sound Velocity Sensor (SVS) measuring
pressure and sound velocity. Finally, the AUV position at surface
is provided by an L86 – from Quectel, Shanghai (China) – a
compact GNSS mounted at the AUV antenna. All sensors are
connected to the Phins Compact C3 INS to run the commercial
iXblue INS algorithm, a filter-based INS applying an Unscented
Kalman Filter (UKF). Fig. 4 shows the poses of the sensors on
the AUV and Table III provides the values extracted from the
CAD drawings.

Experiments were carried in front of the Sant Feliu de Guixols
harbor (Girona, Catalonia) at shallow waters of 15–20 m depth
with a flat seabed. During the experiments, the AUV was de-
ployed at surface. Through this set up, the DVL could measure
the AUV linear velocity against the seafloor and the AUV
antenna was not submerged, providing GNSS measurements
for the duration of the trajectory. The GNSS was disabled on
the iXblue INS filter to simulate an underwater performance.
Thus, GNSS measurements are used as the AUV ground truth
to benchmark the proposed navigator against the iXblue INS
filter in equal conditions of information. No GNSS deviation is
considered, as the duration and extension of the experiments are
not significant in terms of deviation.

Finally, Table IV shows the temporal rates for the sensors
and the navigator. Although the rates for the SVS and the DVL
are given, the DVL is preintegrated at the IMU rate and prior
factors are set at the navigator rate. Therefore, these values are
only provided to show that these sensors are much faster than
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Fig. 4. Pressure sensor {PRS }, INS { INS}, DVL {DVL } and GPS { GPS}
mounted on the Girona 1000 AUV {B}.

TABLE III
GIRONA 1000 AUV GEOMETRIC PARAMETERS

TABLE IV
SENSOR AND SYSTEM RATES

TABLE V
SENSOR NOISE AND BIAS RANDOM WALK

the navigator and, using the closest measurement to each key
frame, are a good approximation to set the prior factors. Table

V shows the noise and bias random walk standard deviation
considered for the sensors, tuned according to the sensor data
sheet. The only remarkable fact is that gyroscope bias random
walk must change when considering the FEM or the REM, as

Fig. 5. Survey followed by Girona 1000 AUV.

will be discussed according to the results. Finally, the noise for
the priors set to the initial condition is provided.

VIII. RESULTS

The navigator is tested on a surface survey for 1 h, covering
an area of 150× 70 m in corridors of 10 m width. At the end of
the survey, the AUV turned around the perimeter of the surveyed
area (see Fig. 5). The AUV moved along the surface at an average
forward velocity of 0.5 m/s. Many experiments were done, doing
several iterations and obtaining systematic results. Thus, all the
presented tests were done using the same dataset to ease the
comparison.

A. IMU-Only Preintegration Considering the FEM

In this experiment, we used a navigator that performs IMU-
only preintegration considering the FEM. This setup applies the
state-of-the-art preintegration methodology [3] since the DVL
is not preintegrated, missing lots of measurements as only a
small portion is used to set velocity priors, and no Earth rotation
compensation is considered, although using a navigational grade
IMU sensitive to the Earth rotation.

Fig. 6(a) shows the top view of the trajectory followed by
the AUV. GNSS measurements, in blue, are considered as the
robot ground truth. The estimation provided by the iXblue INS
filter is plotted in red and the smoothed trajectory estimated
by the proposed navigator is plotted in purple. Fig. 6(b) plots
the positional error accumulated through the robot trajectory
by the iXblue INS filter and by our proposal, both calculated
against the GNSS measurements. The error is given in NED
components and its euclidean norm is also provided. The same
color code of Fig. 6(a) is maintained. Finally, Fig. 7(a) shows
the estimated IMU biases. In red, we have plotted the estimation
for the last key frame set at each solver call, whereas in blue, we
have plotted the whole smoothed bias trajectory obtained at each
solver call.

B. IMU-Only Preintegration Considering the REM

In this experiment, we applied the same setup as in the
previous experiment, only substituting the FEM with the REM to
compensate the Earth rotation rate measured by the IMU. This
navigator was inspired by the methodology proposed at [24].
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Fig. 6. Estimated trajectory for the proposed navigators compared to GNSS measurements and the iXblue INS filter estimation. (a) AUV trajectory on an x and
y projection at the world frame. (b) Positional error time evolution. Top: x, y, and z components (left to right). Bottom: Euclidean norm.

Fig. 6(a) shows, in green, the top view of the estimated tra-
jectory of the AUV, whereas Fig. 6(b) plots the accumulated
positional error. Finally, Fig. 7(b) shows the estimated bias for
the IMU.

C. Joint IMU and DVL Preintegration Considering the REM

In this experiment, we applied a navigator combining the
joint IMU and DVL preintegration with the REM. This setup
corresponds to our contribution, as an IMU sensitive to the
Earth rotation is compensated and all DVL measurements are

preintegrated to mitigate the robot drift. Fig. 6(a) shows, in
orange, the smoothed AUV trajectory, whereas Fig. 6(b) plots
the accumulated positional error. Finally, Fig. 7(c) shows the
estimated IMU and DVL biases. Note that this setup allows to
estimate the DVL bias. To provide a broader experimentation of
our contribution, we prove this navigator under equal conditions
on other datasets, described by the duration and the AUV mean
velocity. Table VI provides the error for the last robot position
and the positional Root Mean Squared Error (RMSE) through
the AUV trajectory between our navigator, the GNSS measure-
ments and the iXblue INS estimation.
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Fig. 7. Online sensor biases estimation (red) and smoothed sensor biases trajectory (blue) for all the graph key frames. (a) IMU-only preintegration considering
the flat earth model. (b) IMU-only preintegration considering the rotating earth model. (c) Joint IMU and DVL preintegration considering the rotating earth model.
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TABLE VI
LAST POSITION ERROR (LPE) AND POSITIONAL ROOT MEAN SQUARE ERROR (PRMSE) THROUGH THE AUV TRAJECTORY BETWEEN DIFFERENT SYSTEMS AND

DATASETS UNDER EQUAL CONDITIONS

Dataset      Duration      Mean velocity       LPE our/GNSS      LPE INS/GNSS      PRMSE our/GNSS       PRMSE INS/GNSS      PRMSE our/INS

Fig. 8. Orientation error on the first robot key frame (solid) and on the current
AUV pose (dotted). Dotted lines match solid lines almost perfectly and are
almost not visible. Top to bottom: pure x, y, and z rotation misalignment.

D. Recovery From Bad Initialization

In this experiment, we applied the same navigator as in
Section VIII-C. However, we relaxed the AUV orientation prior
to 1.0 rd and we perturbed the initial AUV orientation to test
how a graph-based navigator can recover from an incorrect
initialization. We applied separately pure misalignments on the
initial x, y and z orientations. For the roll and pitch rotations
we applied misalignments up to 90◦, whereas for the yaw ori-
entation we applied misalignments up to 150◦. Fig. 8 shows the
orientation error evolution, computed against the iXblue INS
filter estimation as no orientation ground truth can be measured
in a real experiment. The continuous line plots the error for the
first key frame, and the dotted line plots the error for the current
robot orientation.

IX. DISCUSSION

Analyzing the results for the experiment proposed in Sec-
tion VIII-A shown in Fig. 6, we see that this navigator setup
does not properly estimate the robot trajectory. Drift appears on
the estimation since a navigational grade IMU sensitive to the
Earth rotation is used but this perturbation is not considered by
the preintegration model. To resolve this, the navigator tries to
compensate the perturbation in the gyroscope biases. Analysing
the right plots of Fig. 7(a), at the x and y components, an
oscillation appears to have the same order of magnitude as the
Earth rotation rate that matches with the AUV trajectory. As the
Earth rotation rate is a constant global vector and the gyroscopes
are moving with the robot, every time that the AUV turns 180◦

to follow a new survey transect, the perceived Earth rotation rate

Fig. 9. Smoothed AUV trajectory obtained by the IMU-only navigator consid-
ering the FEM (purple) and GNSS measurements (blue) proving how the Earth
rotation rate is integrated.

swaps direction. However, this compensation of the perturbation
is not possible at the z component of the gyroscope bias, which
presents a growing tendency, since the problem is not observable
for the z orientation of the robot when considering the FEM.
Therefore, it is impossible for the navigator to compensate for
the Earth rotation perturbation in this direction, implying that a
constant rotation rate is integrated, generating the twist of the
trajectory shown at Fig. 6(a). In particular for this experiment,
the z component of the Earth rotation rate at the NED reference
is 2.78 · 10−3◦/s. Integrating this value for the one hour survey
we obtain the 10◦ that can be measured at Fig. 9.

The results for this experiment clearly show that the Earth
rotation effect must be compensated when using a navigational
grade IMU. One way of doing this is to use exteroceptive
measurements by defining a SLAM problem that makes the
problem observable. Otherwise, to maintain a dead reckoning
approach, the estimation can be improved by considering the
REM for IMU preintegration, by removing the undesired per-
turbation when evaluating residuals. This second option also
has benefits for the bias estimation. Biases are modeled as slow
time-varying quantities by imposing a Brownian motion. Having
to compensate for the Earth rotation, this hypothesis on the bias
dynamics fails, implying some undesired performance.

Analyzing the results for the experiment proposed in Sec-
tion VIII-B we see that, by considering the REM, the navigation
map and the positional error in Fig. 6 are more consistent with the
position ground truth. We quantify in Fig. 6(b) that the maximum
positional error for this navigator has been reduced to 12 m,
not yet matching the 6 m accuracy of the iXblue INS filter.
Furthermore, in Fig. 7(b), we observe that the gyroscope biases
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estimation is much smaller than in the previous experiment,
two orders of magnitude less than the Earth rotation rate. This
behavior confirms that the REM performs well the Earth rotation
compensation. Thus, the bias can model other phenomena with
slower dynamics closer to that imposed by the Brownian motion.
As the bias evolution is now less significant, we can reduce
the dynamics of the Brownian motion as it is parameterized in
Table V. Moreover, analyzing the accelerometer biases we see
that, in comparison to the previous experiment, they are also
free from an oscillatory behaviour. This is another benefit of
considering the REM, as due to the problem correlation the Earth
rotation compensation also have implications on the accelerom-
eters bias. However, we observed no effect in enhancing the
REM with Coriolis and Centrifugal contributions due to Earth
rotation on the accelerometer readings.

The results for the experiment proposed in Section VIII-C
show that by jointly preintegrating the IMU and the DVL, an
estimation slightly better than the obtained by the iXblue INS
filter is obtained. The positional error evolution plotted in Fig.
6(b) shows a similar behavior for both systems, following the
same trend and magnitude for all axes. Contrary to what is
expected from the literature, the graph-based navigator does
not substantially outperform a filter-based solution since a dead
reckoning problem is solved and linearization errors cannot be
accumulated. The advantage for graph-based systems would
be appreciated in a Simultaneous Localization and Mapping
(SLAM) problem, where the application of exteroceptive data
implies error accumulation. Compared to filter-based systems,
extending the dead reckoning problem into SLAM is easy
following our approach due to the graph representation of the
problem.

The results for this experiment show that by jointly preinte-
grating IMU data with linear velocity measurements, the robust-
ness of the navigation system increases, as it is able to increase
the time elapsed between perception key frames. In comparison
to the previous experiment, the navigator rate can now be halved
while improving the estimation, as shown in Table IV. This
feature is very interesting for managing smaller graphs while
maintaining a robust odometry estimation during perception
outages. Thus, DVL preintegration helps to estimate the IMU
biases and reduce the drift during perception faults. Moreover,
the DVL bias can also be estimated, as shown in Fig. 7(c) (right).
This estimation allows compensation of incorrect measurements
of the DVL level arm or of the water sound speed due to
the salinity gradient through the water column. In conclusion,
through this experiment we demonstrated that by preintegrating
a DVL jointly with a navigational grade IMU compensated from
Earth rotation, perception faults of at least 1 h can be handled
correctly. Systematic results are obtained on other datasets, as it
is shown in Table VI. The positional error between the systems is
coherent for all datasets, and our navigator and the commercial
iXblue INS show similar performance.

Finally, the experiment proposed at Section VIII-D proves
how a graph-based navigator can recover from a bad initial-
ization. By applying misalignments up to 90◦ in roll and pitch
and 150◦ in yaw, the error on the estimation for the first key
frame is removed following different time constants depending

on the orientation direction. For roll and pitch misalignments, the
system can recover in seconds as these directions are observed by
measuring the gravity that has a considerable value (9.81m/s2).
On the contrary, for a yaw misalignment, the system needs
minutes to recover as the yaw becomes observable by measuring
the Earth rotation rate that has a very small value (15◦/h). Thus,
to correct this misalignment, time is need to integrate rotational
error and perceive it.

X. CONCLUSION

In this article, we presented a general purpose methodology
to jointly preintegrate IMU and linear velocity measurements
at the SEN (3) group preserving all the existing correlation
within the preintegrated quantity. Linear velocity measurements,
obtained by different methodologies such as leg odometry, visual
odometry or a DVL, increase the accuracy of the dead reckoning
estimation and increase the stability of the navigation system to
handle perception outages preventing the degeneration of the
IMU bias estimation. Moreover, this methodology is suitable
for higher grade IMUs sensitive to the Earth rotation, being
able to consider the REM during preintegration. Finally, the pro-
posed methodology applies a rigorous on-manifold formulation
to propagate the problem uncertainty thanks to the introduction
of the SEN (3) group.

Field experiments testing the proposed methodology are re-
ported. A dead reckoning problem was solved using an AUV
equipped with a DVL and a navigational grade IMU. The
AUV acted as a surface vehicle to obtain GNSS measurements
to evaluate different navigator setups. Results showed that by
jointly preintegrating the IMU and the LVS and considering the
Earth rotation compensation, we can obtain an estimation that
slightly outperforms the output of a commercial filter-based INS,
proving the capabilities of our graph-based system. Furthermore,
our proposal can easily be extended to a VINS or LiDAR-Inertial
Navigation System (LINS) and does not require any precise
initial robot pose, refining the initial pose estimation during robot
navigation.

Future work is to test this methodology on other LVS typolo-
gies, such as visual odometry extracted from event cameras [12],
[13] in an Intervention-AUV application. Also, it is interesting to
test the robustness on the IMU bias estimation provided by the
LVS preintegration for lower-grade IMUs. Moreover, develop
a methodology to update the preintegrated measurements de-
pending on the LVS level arm it would allow its calibration and
improve the robot navigation. An interesting research question is
if it is possible to extend the Special Galilean Group SGal(3) [39]
in N isometries in the same way that we extended the SE(3)
group. By using this group, time is also contained within the
group, modeling not only the problem geometry, but also the
physics. Thus, the automorphism of the preintegration model
in (12) is no longer necessary and Υ and Γ elements can be
deduced directly from the exponential function definition, with-
out the need to impose any assumptions. Finally, the proposed
preintegration framework could be applied in a Graph SLAM
problem, for instance to build a Multibeam ecosounder Inertial
Navigation System (MINS) applying sonar scan matching.
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APPENDIX

Proposition 1: Given a pose T ∈ SE2(3) and ΦSE2(3) :
SE2(3),R → SE2(3) defined as

ΦSE2(3)(T, τ) =

[
R | p+ τv | v

02×3 | I2

]
(44)

then

FSE2(3)(τ) =
∂ΦSE2(3)(T, τ)

∂T
=

⎡
⎢⎣I3 03 03

03 I3 τI3

03 03 I3

⎤
⎥⎦ . (45)

Proof: Applying the derivative definition

∂Φ(T )

∂T
= lim

ε→0

Φ(T ⊕ ε)� Φ(T )

ε
(46)

where ε = [φT ρT νT ]T is a perturbation defined at the tan-
gent space of T . Developing terms we arrive at

Φ(T ⊕ ε) = Φ(T · Exp(ε)) =

[
Rexp(φ)| a | b
02×3 | I2

]
(47)

where a = RJl(φ)(ρ+ ντ) + p+ vτ , b = RJl(φ)ν + v and

Φ(T )−1 =

[
RT | −RT (p+ τv) | −RT v
02×3 | I2

]
. (48)

Composing (47) and (48), we get

Φ(T ⊕ ε)� Φ(T ) = Log
[
Φ(T )−1 · Φ(T ⊕ ε)

]

=

⎡
⎢⎣I3 03 03

03 I3 τI3

03 03 I3

⎤
⎥⎦
⎡
⎢⎣φρ
ν

⎤
⎥⎦ . (49)

Substituting back (49) to the definition in (46), we obtain

∂Φ(T )

∂T
= lim

ε→0

⎡
⎢⎣I3 03 03

03 I3 τI3

03 03 I3

⎤
⎥⎦ =

⎡
⎢⎣I3 03 03

03 I3 τI3

03 03 I3

⎤
⎥⎦ . (50)

�
Proposition 2: Given a pose T ∈ SE3(3) and ΦSE3(3) :

SE3(3),R → SE3(3) defined as

ΦSE3(3)(T, τ) =

[
R | p+ τv | v | p
03 | I3

]
(51)

then

FSE3(3)(τ) =
∂ΦSE3(3)(T, τ)

∂T
=

⎡
⎢⎢⎢⎣
I3 03 03 03

03 I3 τI3 03

03 03 I3 03

03 03 03 I3

⎤
⎥⎥⎥⎦ .

(52)
Proof: Applying the derivative definition in (46) and follow-

ing a development similar to (47) and (48) we get:

Φ(T ⊕ ε)� Φ(T ) = Log
[
Φ(T )−1 · Φ(T · Exp(ε))

]

=

⎡
⎢⎢⎢⎣
I3 03 03 03

03 I3 τI3 03

03 03 I3 03

03 03 03 I3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
φ

ρ

ν

ρ

⎤
⎥⎥⎥⎦ . (53)

Substituting back (53) to the definition in (46), we obtain

∂Φ(T )

∂T
= lim

ε→0

⎡
⎢⎢⎢⎣
I3 03 03 03

03 I3 τI3 03

03 03 I3 03

03 03 03 I3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
I3 03 03 03

03 I3 τI3 03

03 03 I3 03

03 03 03 I3

⎤
⎥⎥⎥⎦ .

(54)
�

Proposition 3: Given a pose T ∈ SE2(3) and μSE3(3) :
SE2(3) → SE3(3) defined as

μSE3(3)(T ) =

[
R | p | v | p
03 | I3

]
(55)

then

MSE3(3) =
∂μSE3(3)(T )

∂T
=

⎡
⎢⎢⎢⎣
I3 03 03

03 I3 03

03 03 I3

03 I3 03

⎤
⎥⎥⎥⎦ . (56)

Proof: Applying the derivative definition

∂μ(T )

∂T
= lim

ε→0

μ(T ⊕SE2(3) ε)�SE3(3) μ(T )

ε
(57)

where ε = [φT ρT νT ]T is a perturbation defined at the tan-
gent space of T . Following a development similar to (47) and
(48), we get

μ(T ⊕ ε)� μ(T ) = Log
[
μ(T )−1 · μ(T · Exp(ε))

]

=

⎡
⎢⎢⎢⎣
I3 03 03

03 I3 03

03 03 I3

03 I3 03

⎤
⎥⎥⎥⎦
⎡
⎢⎣φρ
ν

⎤
⎥⎦ . (58)

Substituting back (58) to the definition in (57), we obtain

∂Φ(T )

∂T
= lim

ε→0

⎡
⎢⎢⎢⎣
I3 03 03

03 I3 03

03 03 I3

03 I3 03

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
I3 03 03

03 I3 03

03 03 I3

03 I3 03

⎤
⎥⎥⎥⎦ . (59)

�
Proposition 4: Given a pose T ∈ SE2(3) and ψSE2(3) :

SE2(3) → SE2(3) defined as

ψSE2(3)(T ) =

[
R | p | v + [Ω]×p

02×3 | I2

]
(60)

then

ΨSE2(3)(T ) =
∂ψSE2(3)(T )

∂T
=

⎡
⎢⎣I3 03 03

03 I3 03

03 [RTΩ]× I3

⎤
⎥⎦ . (61)
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Proof: Applying the derivative definition

∂ψ(T )

∂T
= lim

ε→0

ψ(T ⊕ ε)� ψ(T )

ε
(62)

where ε = [φ ρ ν]T is a perturbation defined at the tangent
space of T . Developing terms we arrive at

ψ(T ⊕ ε) = ψ(T · Exp(ε)) =

[
Rexp(φ)| a | b
02×3 | I2

]
(63)

where a = RJl(φ)ρ+ p, b = RJl(φ)ν + v + [Ω]×(RJl(φ)ρ+
p)

ψ(T )−1 =

[
RT | −RT p | −RT (v + [Ω]×p)
02×3 | I2

]
. (64)

Composing (63) and (64), we get

ψ(T ⊕ ε)� ψ(T ) = Log
[
ψ(T )−1 · ψ(T ⊕ ε)

]

=

⎡
⎢⎣I3 03 03

03 I3 03

03 C I3

⎤
⎥⎦
⎡
⎢⎣φρ
ν

⎤
⎥⎦ (65)

where C = J−1
l (φ)[RTΩ]×Jl(φ). Considering that for small

rotations Jl(φ) ≈ I3 +
1

2
[φ]× and J−1

l (φ) ≈ I3 − 1

2
[φ]×

lim
φ→0

J−1
l (φ)[RTΩ]×Jl(φ) = [RTΩ]× . (66)

Substituting back (65) to the definition in (62) considering (66),
we obtain

∂ψ(T )

∂T
= lim

ε→0

⎡
⎢⎣I3 03 03

03 I3 03

03 C I3

⎤
⎥⎦ =

⎡
⎢⎣I3 03 03

03 I3 03

03 [RTΩ]× I3

⎤
⎥⎦ . (67)

�
Proposition 5: Given a pose T ∈ SE3(3) and ψSE3(3) :

SE3(3) → SE3(3) defined as

ψSE3(3)(T ) =

[
R | p1 | v + [Ω]×p1 | p2
03 | I3

]
(68)

then

ΨSE3(3)(T ) =
∂ψSE3(3)(T )

∂T
=

⎡
⎢⎢⎢⎣
I3 03 03 03

03 I3 03 03

03 [RTΩ]× I3 03

03 03 03 I3

⎤
⎥⎥⎥⎦ .
(69)

Proof: Applying the derivative definition in (62) and follow-
ing a development similar to (63) and (64), we get

ψ(T ⊕ ε)� ψ(T ) = Log
[
ψ(T )−1 · ψ(T · Exp(ε))

]

=

⎡
⎢⎢⎢⎣
I3 03 03 03

03 I3 03 03

03 C I3 03

03 03 03 I3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
φ

ρ

ν

ρ

⎤
⎥⎥⎥⎦ (70)

where C is defined in (65). Substituting back (70) to the defini-
tion in (62) considering (66), we obtain

∂ψ(T )

∂T
= lim

ε→0

⎡
⎢⎢⎢⎣
I3 03 03 03

03 I3 03 03

03 C I3 03

03 03 03 I3

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
I3 03 03 03

03 I3 03 03

03 [RTΩ]× I3 03

03 03 03 I3

⎤
⎥⎥⎥⎦ . (71)

�
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