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Abstract. We present an algorithm that, given an irreducible polynomial g over a general valued

field (K, v), finds the factorization of g over the Henselianization ofK under certain conditions. The

analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié
and Herrera-Olalla-Mahboub-Spivakovsky, whose work we review in our context. The correctness

is based on a key new result (Theorem 4.10), exhibiting relations between generalized Newton

polygons and factorization in the context of an arbitrary valuation. This allows us to develop a
polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete,

rank-one case. These foundational results may find applications for various computational tasks

involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux
series or valuation theory.

Introduction

In a pioneering work along the 1920s, Ø.Ore conjectured the existence of an algorithm to compute
the prime ideal decomposition of a prime number p in the number field Q[x]/(g) defined by an irre-
ducible polynomial g ∈ Q[x] [36, 37]. Ore’s proposal was based in the iteration of two “dissections”:
• Computation of Newton polygons of g with respect to some valuations on Q[x].
• Factorization in certain residue fields, of residual polynomials of g associated to the sides of

the Newton polygons.
In the 1930s, S. Mac Lane solved this problem in a more general context. For a given discrete

rank-one valued field (K, v), he found an algorithm to compute all extensions of v to the field
K[x]/(g) defined by an irreducible polynomial g ∈ K[x] [22, 23]. These extensions can be identified
with certain valuations µ on K[x] with support gK[x], determined by the different irreducible factors
of g in Kv[x], where Kv is the completion of K at v. For each such µ, Mac Lane constructed a chain
of augmentations of valuations on K[x] getting arbitrarily close to it:

µ0 < µ1 < · · · < µn < · · · < µ

In these augmentations, some key polynomials for the valuations µn are involved. This procedure can
be reinterpreted as a polynomial factorization algorithm in Kv[x]. If a valuation µn is sufficiently
close to µ, then its key polynomial is an approximation to the irreducible factor of g in Kv[x]
intrinsically associated to µ.

Motivated by the computation of integral bases in finite extensions of local fields, K. Okutsu
constructed similar approximations without using valuations on K[x], nor key polynomials [35, 12].
Still in the discrete rank-one case, J. Montes developed in 1999 certain residual polynomial operators
leading to the design of a practical algorithm following the exact pattern that Ore had foreseen
[24, 13, 14, 41]. This algorithm is known as the OM-algorithm, named after Ore, Mac Lane, Okutsu
and Montes.

Montes’ ideas led to the computation of integral bases too [16, 6, 42]. More generally, the OM-
algorithm is very efficient in the resolution of many arithmetic-geometric tasks in number fields and
function fields of algebraic curves [17, 15, 40].
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Mac Lane’s theory was generalized to arbitrary valued fields, independently by M. Vaquié [43,
44, 45] and F.-J. Herrera, M.-A. Olalla, W. Mahboub and M. Spivakovsky [18, 19]. In this general
frame, limit augmentations and the corresponding limit key polynomials appear as a new feature.

A prototype of a general OM-algorithm was sketched in [19]. Other partial approaches can be
found in [11] and [25] too. However, none of these ideas crystallizes into a real algorithm, because of
the existence of limit augmentations. Thus, the extension of Mac Lane’s work [23] to a polynomial
factorization algorithm over arbitrary Henselian fields is still an open problem.

Main results. In this paper, we present an executable OM-algorithm for arbitrary valued fields
(Theorem 5.1) whose termination is guaranteed in cases strictly larger than what was previously
known. This leads to new results about factorization of polynomials over Henselian fields.

Let Kh be a Henselization of (K, v). Denote p the residual characteristic of K. We assume that
usual arithmetic operations in K are available and that univariate factorization over the residue field
is available too (see Section 5.4 for details). We prove :

Theorem 0.1. Assume that v has rank one (not necessarily discrete). There exists a deterministic
algorithm which, given g ∈ K[x] irreducible with p > deg(g) or p = 0, outputs

(a) Approximations to all irreducible factors of g over Kh[x] up to an arbitrary given precision
(b) All extensions of v to the field K[x]/(g), together with a computation of their ramification

indices and residual degrees.

For valuations of arbitrary rank we get :

Theorem 0.2. Let v of arbitrary rank. There exists a deterministic algorithm which, given g ∈ K[x]
irreducible with p - deg(g), tests if g is irreducible in Kh[x]. In such a case, the algorithm computes
the ramification index and the residual degree of the unique extension of v to the field K[x]/(g).

Up to our knowledge, these results were known only for discrete rank one valuations. Notice that
in such a case, they hold with no restriction on the residual characteristic and we can give precise
complexity estimates [41]. The extension of this accurate complexity analysis to the more general
setting of Theorem 0.1 and Theorem 0.2 is a delicate task, which goes beyond the scope of this
paper.

Applications. In analogy with the 0- and 1-dimensional cases, this general theory should lead to
the development of efficient algorithms for the resolution of arithmetic-geometric tasks involving
valuations of function fields of algebraic varieties of higher dimension. In particular, Theorem 0.1 is
relevant for local uniformization thanks to a recent theorem of Novacoski-Spivakovsky which asserts
that local uniformization along rank one valuations implies local uniformization in its full generality
[33, 34].

Another application concerns the computation of multivariate Puiseux series, in the vein of Mac
Donald’s algorithm [21]. This algorithm uses a non discrete rank one valuation, and Theorem 0.1
should improve [21] both from a complexity point of view (dealing with minimal residual exten-
sions, in the vein of [8, 39]) and from a practical point of view (computing the relevant arithmetic
information).

In the course of the paper, we will give an explicit illustration of such an application, by running
our algorithm on a particular polynomial g of degree 1152 over a non discrete, rank-one valued field
(Example 1.5). In Section 4.5, we provide the factorization of g over Kh[x] (see also Section 6.2.6).

Higher rank valuations are useful to take into account arithmetic and geometric informations
by mixing p-adic valuations (p ∈ Z a prime) and t-adic valuations (t a variable), as illustrated by
additional examples in Section 5.5. As an application, we may hope to factorize polynomials in
Z[t, x] using a rank-two lifting and recombination strategy.

Organisation. In Sections 1–3, we review the necessary background on valuations on K[x], their
graded algebras and Mac Lane–Vaquié chains of augmented valuations.

In Section 4, we discuss Newton polygons and extend Ore’s dissections to this completely general
setting. If v has rank one, then K is dense in Kh and the content of this section can be easily
deduced from Montes’ original arguments in the discrete case. However, for v of arbitrary rank, the
key polynomials for a valuation µ on K[x] extending v need not be irreducible over Kh[x]. Thus,
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the description of the unique extension of µ to Kh[x] is more subtle and the proof of the main result
(Theorem 4.10) is more involved.

In Section 5, we present our general OM-algorithm and we prove that, if it terminates, it leads
to a solution of the above mentioned problems (a) and (b). The only obstacle for this algorithm to
terminate is the existence of infinite sequences of refinement steps. We show that there are exactly
three different situations where infinite refinements occur, and we exhibit concrete examples of each
one.

Finally, we present in Section 6 the proof of Theorems 0.1 and 0.2. The algorithms generalize
similar constructions by Poteaux-Weimann in the discrete rank-one case [41]. Besides the underlying
OM-algorithm, a key ingredient is the use of approximate roots which allow to compute efficiently
optimal key polynomials under some assumptions on the residual characteristic (Proposition 6.3).
A second ingredient is a valuated Hensel lifting for arbitrary valuations which allows to increase
quadratically the precision of a given approximate factorization (Proposition 6.8). These results are
illustrated on Example 1.5 in Subsection 6.2.6.

Acknowledgement. We warmly thank the referees, whose enlightening comments led us to improve
the presentation, and Josnei Novacoski for sharing his insights about the content of Section 4.

Notation. For any field K, we denote by Irr(K) the set of monic, irreducible polynomials in K[x].

1. Commensurable extensions of a valuation to the polynomial ring

Let (K, v) be a valued field with valuation ring O, maximal ideal M and residue class field
k = O/M. Let Γ = v(K∗) be the value group and denote by ΓQ = Γ⊗Q the divisible hull of Γ. In
the sequel, we write ΓQ∞ instead of ΓQ ∪ {∞}.

The equivalence classes of commensurable extensions of v to the polynomial ring K[x] are param-
eterized by the set T = T (K,ΓQ) of all ΓQ-valued valuations on K[x],

µ : K[x] −→ ΓQ∞,

whose restriction to K is v. The support of µ is the prime ideal

p = supp(µ) := µ−1(∞) ∈ Spec(K[x]).

The valuation µ induces a valuation µ on the field L of fractions of K[x]/p. That is, L = K(x) if
p = 0, or L = K[x]/p if p = gK[x] for some g ∈ Irr(K).

The residue field kµ of µ is, by definition, the residue field of µ. The value group of µ is the
subgroup Γµ ⊂ ΓQ generated by µ (K[x] \ p). By definition, µ/v commensurable means that the
quotient Γµ/Γ is a torsion group. We say that µ is residually transcendental if the extension kµ/k
is transcendental. In this case, its transcendence degree is necessarily equal to one [20].

The set T admits a partial ordering. For µ, ν ∈ T we say that µ ≤ ν if

µ(f) ≤ ν(f), ∀ f ∈ K[x].

The poset T has the structure of a tree. By this, we simply mean that all intervals (−∞, µ ] :=
{ρ ∈ T | ρ ≤ µ} are totally ordered [25, Thm. 3.9].

A node µ ∈ T is a leaf if it is a maximal element with respect to the ordering ≤. Otherwise, we
say that µ is an inner node. We distinguish two kinds of leaves: finite and infinite. We denote

T = T inn t Lfin t L∞

the subsets of inner nodes, finite leaves, and infinite leaves, respectively. For all µ ∈ T , the subset
to which µ belongs can be characterized as follows [4, Sec. 1-2]:

• µ ∈ T inn if and only if µ is residually transcendental.
• µ ∈ Lfin if and only if supp(µ) 6= 0.
• µ ∈ L∞ if and only if supp(µ) = 0 and kµ/k is algebraic.

The infinite leaves of T are valuation-algebraic in the terminology of Kuhlmann [20]. They play
no role in the polynomial factorization problem.
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Let us fix an algebraic closure K of K, and an extension v̄ of our base valuation v to K. This
determines a Henselization (Kh, vh) of (K, v). If Ksep is the separable closure of K in K, the field
Kh ⊂ Ksep is the fixed field of the decomposition group

Dv̄ := {σ ∈ Gal(Ksep/K) | v̄ ◦ σ = v̄} .

The valuation vh is the restriction of v̄ to Kh and it has a unique extension to K, namely v̄.

Theorem 1.1. [29, Thm. A] Let T h := T (Kh,ΓQ) be the tree of commensurable extensions of vh

to Kh[x]. Restriction of valuations induces an isomorphism of posets:

T h −→ T , ν 7−→ ν|K[x],

preserving inner nodes, finite leaves and infinite leaves.

Actually, the bijection between finite leaves of T h and T is a classical fact. To any F ∈ Irr(Kh)
we can associate a valuation vF ∈ Lfin(T h) defined as

vF (q) := v̄(q(θ)) for all q ∈ Kh[x],

where θ ∈ K is a root of F . By the Henselian property, this construction does not depend on the
choice of θ. Clearly, supp(vF ) = FKh[x]. We denote the restriction of vF to K[x] by:

wF := (vF )|K[x] ∈ Lfin(T ).

Now, supp(wF ) = NKh/K(F )K[x], where NKh/K(F ) ∈ Irr(K) is the monic generator of the prime

ideal
(
FKh[x]

)
∩K[x].

Proposition 1.2. [9, Sec. 17] The following two mappings are bijective:

Irr(Kh) −→ Lfin(T h) −→ Lfin(T ), F 7→ vF 7→ wF .

More generally, for any polynomial g ∈ Irr(K), this construction facilitates the description of
the extensions of v to the simple extension K[x]/(g). Since Kh/K is a separable extension, we
have g = G1 · · ·Gr with pairwise different Gi ∈ Irr(Kh). Since NKh/K(Gi) = g for all i, each
wGi ∈ Lfin(T ) induces a valuation wGi on the field K[x]/(g).

Theorem 1.3. [9, Sec. 17] The extensions of v to K[x]/(g) are wG1
, . . . , wGr .

In particular, wG1
, . . . wGr are all finite leaves of T with support gK[x].

Summary. The irreducible factors of g in Kh[x] can be identified with the extensions of v to
K[x]/(g), which are in turn determined by some finite leaves of the tree T . The main goal of the
OM-algorithm is to solve the following problem :

Problem 1.4. Compute, for each irreducible factor G ∈ Kh[x] of g, a chain of valuations in T inn

getting sufficiently close to wG to determine the ramification index and residual degree of wG.

The valuations in the chains will be constructed using some key polynomials which eventually give
approximations of the irreducible factors of g. Hence, Problem 1.4 is closely related to irreducibility
and factorization issues, as we will see in Section 6.

We now introduce a concrete polynomial with coefficients in a non-discrete valued field, to illus-
trate how our methods are able to solve Problem 1.4 in previously untractable situations.

Example 1.5. Let p = 1523, and consider K = Fp(t1, t2) with the valuation v defined by v(t1) = 1

and v(t2) =
√

2. The value group Γ := Z +
√

2Z ⊂ (R,+) has rank one, but rational rank 2. The
residue field is k = O/M = Fp. Consider the following polynomials in K[x]:

P = x2 + x+ 1, Q = P 72 + 1406 t61 t
4
2.

We aim to solve Problem 1.4 for the following polynomial of degree 1152:

g = Q8 + 1410 t57
1 t30

2 P 36 ∈ K[x].
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2. Graded algebra and key polynomials

Take any µ ∈ T and let p = supp(µ). For all α ∈ Γµ, consider the O-modules:

Pα := {g ∈ K[x] | µ(g) ≥ α} ⊃ P+
α := {g ∈ K[x] | µ(g) > α}.

The graded algebras of v and µ are the integral domains:

Gv :=
⊕

α∈Γ
(Pα ∩K) /

(
P+
α ∩K

)
, Gµ :=

⊕
α∈Γµ

Pα/P+
α .

There is an obvious embedding of graded algebras Gv ↪→ Gµ.
Consider the initial coefficient mapping inµ : K[x]→ Gµ, given by inµ p = 0 and assigning to each

g ∈ K[x] \ p the following homogeneous element of grade µ(g) :

inµ g := g + P+
µ(g) ∈ Pµ(g)/P+

µ(g).

In this section, we will see that for any inner node µ ∈ T , the factorization of inµ g in Gµ determines
the directions we need to take in the tree T to get closer to the finite leaves wG > µ determined
by the irreducible factors G of g in Kh[x]. Furthermore, we will show that this factorization can be
efficiently computed by means of a residual polynomial operator.

2.1. Key polynomials. The mapping inµ is multiplicative but not additive. For instance, if
µ(f) = µ(g) = α, then,

inµ f + inµ g =

{
inµ(f + g), if µ(f + g) = α,

0, if µ(f + g) > α.

Definition 2.1. Let g, h ∈ K[x]. We say that

• g, h are µ-equivalent, and write g ∼µ h, if inµ g = inµ h.
• g is µ-divisible by h, and write h |µ g, if inµ h | inµ g in Gµ.
• g is µ-irreducible if inµ g is a prime element.
• g is µ-minimal if g -µ f for all nonzero f ∈ K[x] with deg(f) < deg(g).

Consider the set H(Gµ) = {inµ g | g ∈ K[x] \ p} of all nonzero homogeneous elements in Gµ. Let
H(G∗µ) ⊂ H(Gµ) be the multiplicative group of all homogeneous units. Recall that π ∈ H(Gµ) is a
prime element if the homogeneous principal ideal of Gµ generated by π is a prime ideal. In this case,
for all t ∈ H(Gµ) the order n = ordπ(t) is determined by the conditions πn | t, πn+1 - t.

For all φ ∈ K[x] \K we define the truncation µφ as follows:

g =
∑

n≥0
anφ

n, deg(an) < deg(φ) =⇒ µφ(g) := min
n≥0
{µ (anφ

n)} .

This function µφ is not necessarily a valuation, but it is useful to characterize the µ-minimality
of φ. Let us recall [27, Prop. 2.3].

Lemma 2.2. A polynomial φ ∈ K[x] \K is µ-minimal if and only if µφ = µ.

Definition 2.3. A (Mac Lane-Vaquié) key polynomial for µ is a monic polynomial in K[x] which
is simultaneously µ-minimal and µ-irreducible. The set of key polynomials for µ is denoted KP(µ).
All key polynomials are irreducible in K[x].

Example. Consider Gauss’ valuation:

(2.1) ω
(∑

n≥0
anx

n
)

= min {v(an) | n ≥ 0} .

Then, KP(ω) is the set of all monic polynomials in O[x] whose reduction modulo M is irreducible.
For instance, if v(a) < 0, then inω(x + a) = inω a is a homogeneous unit, so that x + a is neither
ω-irreducible nor ω-minimal.

The existence of key polynomials characterizes the inner nodes of T .

Theorem 2.4. [27, Thm. 4.4] A valuation µ ∈ T is a leaf if and only if KP(µ) = ∅. This is
equivalent to H(Gµ) = H(G∗µ) too.
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From now on, we assume that µ is an inner node of T and φ ∈ KP(µ) is a key polynomial. Also,
we denote

π := inµ φ, a := inµ a for all a ∈ K[x].

Since φ is µ-minimal, Lemma 2.2 shows that µ acts on φ-expansions as follows

(2.2) g =
∑

n≥0
anφ

n, deg(an) < deg(φ) =⇒ µ(g) = min
n≥0
{µ (anφ

n)} .

Let us define

(2.3) Sµ,φ(g) = {n ≥ 0 | µ (anφ
n) = µ(g)} .

For all nonzero g ∈ K[x], we have

(2.4) g =
∑

n∈Sµ,φ(g)
anπ

n, ordπ(g) = min (Sµ,φ(g)) .

If φ is a key polynomial of minimal degree, then all these coefficients an derived from a φ-expansion
are homogeneous units in Gµ [27, Prop. 3.5].

Let G0
µ ⊂ Gµ be the subalgebra generated by the set of all homogeneous units. Equivalently, G0

µ

is the relative algebraic closure of Gv in the embedding Gv ↪→ Gµ. The following result is classically
known (cf. for instance [32, Prop. 4.5]).

Theorem 2.5. Let φ be a key polynomial of minimal degree for µ. Then, the prime π = inµ φ is
transcendental over G0

µ and Gµ = G0
µ[π].

Definition 2.6. For a nonzero g ∈ K[x], its µ-degree degµ(g) ∈ N and its leading coefficient

lcµ(g) ∈ G0
µ are defined to be the degree and leading coefficient of inµ g as a polynomial in π = inµ φ

with coefficients in G0
µ, for some φ ∈ KP(µ) of minimal degree.

These definitions are independent of the choice of φ among all key polynomials of minimal degree
for µ. Note that a homogeneous element inµ g is a unit if and only if degµ(g) = 0. Also, we have in
general degµ(g) = max (Sµ,φ(g)).

Definition 2.7. The degree of an inner node µ ∈ T is deg(µ) := deg(φ), where φ ∈ KP(µ) is any
key polynomial of minimal degree. For a finite leaf wF ∈ Lfin we let deg(wF ) := deg(F ).

2.2. Tangent directions of inner nodes. A tangent direction of an inner node µ of T is a µ-
equivalence class [φ ]µ ⊂ KP(µ) containing all key polynomials having the same initial coefficient in
Gµ. We denote the set of all tangent directions of µ by:

td(µ) := KP(µ)/∼µ .
This terminology is justified by item (ii) of the following result.

Lemma 2.8. [4, Lem. 2.2, Prop. 2.4] Let µ < ν be two nodes in T . Let t(µ, ν) be the set of monic
polynomials φ ∈ K[x] of minimal degree satisfying µ(φ) < ν(φ).

(i) The set t(µ, ν) is a tangent direction of µ. Moreover, for any φ ∈ t(µ, ν) and any nonzero
g ∈ K[x], the equality µ(g) = ν(g) holds if and only if φ -µ g.

(ii) If µ < ν′ for some ν′ ∈ T , then
t(µ, ν) = t(µ, ν′) ⇐⇒ (µ, ν ] ∩ (µ, ν′ ] 6= ∅.

Whenever µ < ν in T , there is an homomorphism of graded algebras Gµ → Gν , defined by

inµ f 7−→

{
inν f, if µ(f) = ν(f),

0, if µ(f) < ν(f).

By Lemma 2.8, the kernel of Gµ → Gν is the homogeneous prime ideal generated by inµ φ. The
image is the subalgebra G0

ν [28, Cor. 2.6].

Let HP(Gµ) ⊂ H(Gµ) be the subset of all homogeneous prime elements in Gµ. The multiplicative
group H(G∗µ) acts on H(Gµ) and HP(Gµ) by ordinary multiplication. We denote the orbit of any
t ∈ H(Gµ) by

[ t ]unit := tH(G∗µ) ∈ H(Gµ)/H(G∗µ).
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Clearly, two homogeneous prime elements generate the same ideal if and only if they have the same
class in HP(Gµ)/H(G∗µ). Thus, this quotient set can be identified with the set of all homogeneous
principal prime ideals in Gµ. The next result, which follows easily from [27, Thm. 6.8], shows that
all these prime ideals are generated by initial coefficients of key polynomials.

Theorem 2.9. Let µ ∈ T inn.

(i) All t ∈ H(Gµ) factorize as a product of prime elements. The factorization is unique up to
reordering the factors and multiplication by homogeneous units.

(ii) There is a canonical bijection:

td(µ) −→ HP(Gµ)/H(G∗µ), [φ]µ 7−→ [inµ φ]unit.

For a given g ∈ Irr(K), let F(g) be the set of monic irreducible factors of g in Kh[x]. Also, for
all µ ∈ T inn, let us denote

Fµ(g) = {G ∈ F(g) | µ < wG} .
As mentioned in Problem 1.4, the OM-algorithm aims to compute, for each G ∈ F(g), a chain

of valuations in T inn getting sufficiently close to the valuation wG. To this purpose, for a given
valuation µ ∈ T inn, we need to compute the tangent directions of µ “pointing out” to leaves wG ∈ Lfin

associated to some G ∈ F(g); that is, we need to solve :

Problem 2.10. Compute the tangent directions of µ determined by the set Fµ(g).

To this aim, we use the following criterion of Barnabé-Novacoski [5, Thms. 1.1,1.3].

Theorem 2.11. Let µ ∈ T inn and g ∈ Irr(K). The image of the composition

Fµ(g)→ td(µ)→ HP(Gµ)/H(G∗µ), G 7→ t(µ,wG) 7→ t(µ,wG)H(G∗µ).

is the set of prime homogeneous factors of inµ g ∈ Gµ, up to units. In particular, Fµ(g) = ∅ if and
only if inµ g is a unit in Gµ.

Problem 2.10 is thus equivalent to :

Problem 2.12. Given a nonzero g ∈ K[x], compute the prime factorization of inµ g in Gµ.

After Theorem 2.5, this amounts to factorizing inµ g in the algebra G0
µ[X] (where X is an inde-

terminate). However, working in this algebra is computationally painful. A crucial feature of the
OM-algorithm is that it provides the factorization of inµ g by working in the subring

∆µ := P0/P+
0 ⊂ Gµ

of all homogeneous elements of grade zero, which is a polynomial ring with coefficients in a field.
This is the aim of Section 2.3.

2.3. Residual polynomial operators. Let κ := κ(µ) be the relative algebraic closure of k in kµ.
There are canonical injective ring homomorphisms

k ↪→ κ ↪→ ∆µ ↪→ kµ.

Let Γ0
µ := {µ(a) | a ∈ K[x], 0 ≤ deg(a) < deg(µ)} be the subgroup of all grades of homogeneous

units. By (2.2), we have Γµ =
〈

Γ0
µ, µ(φ)

〉
.

Definition 2.13. The relative ramification index of µ is e = erel(µ) :=
(
Γµ : Γ0

µ

)
. This is the least

positive integer such that eµ(φ) ∈ Γ0
µ.

The following result is classical. A proof can be found in [27, Thms. 4.5, 4.6].

Theorem 2.14. Let π = inµ φ for a key polynomial φ of minimal degree. Take any homogeneous
unit u ∈ H(G∗µ) of grade eµ(φ). Then, ξ = πeu−1 ∈ ∆µ is transcendental over k and satisfies
∆µ = κ[ξ]. Moreover, the canonical embedding ∆µ ↪→ kµ induces an isomorphism κ(ξ) ' kµ.
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The pair φ, u determines a residual polynomial operator

R = Rµ,φ,u : K[x] −→ κ[y].

Let us recall its definition. We agree that R(0) = 0. Having in mind definition (2.3), for a nonzero
g ∈ K[x] with φ-expansion g =

∑
n≥0 anφ

n, let us denote

S := Sµ,φ(g), `0 := min(S), ` := max(S) = degµ(g),

Note that ā` = lcµ(g). Let γ = µ(φ). For all n ∈ N we have

n ∈ S ⇐⇒ µ(an) + nγ = µ(a`0) + `0γ ⇐⇒ (n− `0)γ = µ(a`0)− µ(an).

This implies (n− `0)γ ∈ Γ0
µ, so that n− `0 = je for some j ∈ N. Since ` ∈ S, this shows in particular

that `− `0 = de for some d ∈ N. Let us denote

`j := `0 + je, 0 ≤ j ≤ d.

Note that `d = `. Finally, for all 0 ≤ j ≤ d, consider the residual coefficient

ζj :=

{
(ā`)

−1
uj−d ā`j ∈ ∆∗µ = κ∗, if `j ∈ S,

0, otherwise.

Definition 2.15. R(g) := ζ0 + ζ1 y + · · ·+ ζd−1y
d−1 + yd ∈ κ[y].

Since `0 ∈ S, we have ζ0 6= 0. The following result reflects the essential property of this operator.

Theorem 2.16. For all nonzero g ∈ K[x], inµ g = lcµ(g)ud π`0 R(g)(ξ).

Indeed, as lcµ(g) = ā`, this follows immediately from:

ā−1
` inµ g =

∑
`j∈S

ā−1
` ā`j π

`j = π`0
∑
`j∈S

ā−1
` ā`j π

je = udπ`0
∑
`j∈S

ζj (πe/u)j .

Corollary 2.17. [27, Cor. 5.4] For all g, h ∈ K[x] we have R(gh) = R(g)R(h).

With this tool in hand, [27, Props. 6.3, 6.6] determine the whole set KP(µ).

Theorem 2.18. For a residually transcendental µ, take φ ∈ KP(µ) of minimal degree m. A monic
Q ∈ K[x] is a key polynomial for µ if and only if either

• deg(Q) = m and Q ∼µ φ, or

• deg(Q) = me deg(R(Q)) and R(Q) is irreducible in κ[y].

Moreover, for all Q, Q′ ∈ KP(µ), we have

Q |µ Q′ ⇐⇒ Q ∼µ Q′ ⇐⇒ R(Q) = R(Q′) =⇒ deg(Q) = deg(Q′).

Corollary 2.19. Let µ be a valuation on K[x] admitting a key polynomial φ ∈ KP(µ). For any
valuation µ < ν, we have

t(µ, ν) = [φ]µ ⇐⇒ µ(φ) < ν(φ).

Proof. If t(µ, ν) = [φ]µ, then µ(φ) < ν(φ) by the definition of the tangent direction. Conversely,
suppose µ(φ) < ν(φ) and let t(µ, ν) = [ϕ]µ. Then, ϕ |µ φ, and this implies ϕ ∼µ φ by Theorem
2.18. �

It is easy to design a lifting routine [27, Cor. 5.6]

liftµ,φ : Irr(κ) \ {y} −→ KP(µ), ψ 7−→ Q,

to construct Q ∈ KP(µ) with a given R(Q) = ψ. We deduce a bijection

td(µ) −→ Irr(κ), [Q]µ 7−→

{
y, if Q ∼µ φ,
R(Q), otherwise,

which depends on the choice of the pair φ, u. The variation of R(Q) with respect to the pair φ, u is
exhaustively discussed in [27, Sec. 5].
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Solution of Problem 2.12. The efficient factorization of inµ g follows from Theorem 2.16. Let us
factorize R(g) as a product of powers of pairwise different irreducible polynomials in κ[y]:

R(g) = ψn1
1 . . . ψnrr , ψ1, . . . , ψr ∈ Irr(κ).

By [27, Lem. 6.1], we obtain a factorization R(g)(ξ) = ψ1(ξ)n1 . . . ψr(ξ)
nr as a product of homo-

geneous prime elements in Gµ. Take Qi ∈ KP(µ) lifting ψi and denote πi := inµQi, for all i. By
Theorem 2.16,

πi ∼unit ψi(ξ) for all 1 ≤ i ≤ r,
where ∼unit indicates equality up to multiplication by some unit. Therefore, we obtain the following
factorization of inµ g:

(2.5) inµ g ∼unit π
`0ψ1(ξ)n1 . . . ψr(ξ)

nr ∼unit π
`0πn1

1 . . . πnrr .

The exponents n1, . . . , nr are all positive, but `0 = min(Sµ,φ(g)) might vanish.

Example. Let ω be the Gauss’ valuation on K[x], as defined by (2.1). Consider the key polynomial
φ = x and its corresponding homogeneous prime element π = inω x ∈ Gω. Since ω(1) = 0 = ω(x),
we may consider u = inω 1 and ξ = π. We have natural identifications k = κ and ∆ω = k[π]. Given
g =

∑
aix

i ∈ K[x], the residual polynomial Rω,φ,u(g) ∈ k[y] can be identified to the reduction
ḡ := g(y)/a` (mod Ov) where ` is the greatest exponent for which ω(g) = v(a`). The factorization
of (2.5) mimicks the factorization of ḡ into a product of irreducible polynomials in k[y]. The exponent
`0 is equal to ordy(ḡ).

Convention. Throughout the paper, we shall denote the operator Rµ,φ,u simply by Rµ,φ, omitting
its dependence on the choice of a suitable homogeneous unit u ∈ Gµ. Note that the degree of Rµ,φ(g)
does not depend on the choice of u.

Summary. Now that we know how to compute the direction in which we need to progress in the tree,
we must build from an inner node µ ∈ T and a tangent direction [φ]µ some suitable “augmented”
valuations µ < ν. The next section is dedicated to describe the various kinds of augmentations
(ordinary or limit) together with the chain they form in the tree T . Also, we compute the residual
degree and the ramification index of the end nodes of these chains.

3. Mac Lane–Vaquié chains

3.1. Depth-zero valuations and ordinary augmentations. For all a ∈ K, γ ∈ ΓQ∞, we may
construct the depth-zero valuation µ = [v; x− a, γ] ∈ T , defined in terms of (x− a)-expansions as

g =
∑

n≥0
an(x− a)n =⇒ µ(g) = min{v(an) + nγ | n ≥ 0}.

Note that µ(x− a) = γ. If γ < ∞, then µ is an inner node of T and x− a is a key polynomial for
µ of minimal degree. If γ = ∞, then µ is the unique finite leaf of T with support (x − a)K[x]. In
both cases, deg(µ) = 1.

Let µ be an inner node of T . For all φ ∈ KP(µ) and all γ ∈ ΓQ∞ such that µ(φ) < γ, we may
construct the ordinary augmented valuation ν = [µ; φ, γ] ∈ T , defined in terms of φ-expansions as

g =
∑

n≥0
anφ

n, deg(an) < deg(φ) =⇒ ν(g) = min{µ(an) + nγ | n ≥ 0},

Note that ν(φ) = γ, µ < ν and t(µ, ν) = [φ]µ. If γ < ∞, then ν is an inner node of T and φ is a
key polynomial for ν of minimal degree [27, Cor. 7.3]. If γ = ∞, then ν is a finite leaf of T with
support φK[x]. In both cases, deg(ν) = deg(φ).

3.2. Limit augmentation of valuations. Let C = (ρi)i∈A be a totally ordered family of inner
nodes of T , not admitting a last element. Assume that A is a totally ordered set and ρi < ρj if and
only if i < j in A.

We say that C has stable degree if deg(ρi) is stable for all sufficiently large i ∈ A. In this case, we
denote this stable degree by deg(C).

We say that g ∈ K[x] is C-stable if for some index i ∈ A, we have ρi(g) = ρj(g) for all j > i, and
C-unstable otherwise. We may define a stability function ρC(g) = max{ρi(g) | i ∈ A}, on the set of
all C-stable polynomials.
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Definition 3.1. A limit key polynomial for C is a monic C-unstable polynomial of minimal degree.
Let KP∞(C) be the set of all limit key polynomials. Since the product of stable polynomials is stable,
all limit key polynomials are irreducible in K[x].

We say that C is an essential continuous family of valuations if it has stable degree and admits
limit key polynomials of degree greater than deg(C).

For all φ ∈ KP∞ (C) and all γ ∈ ΓQ∞ such that ρi(φ) < γ for all i ∈ A, we may construct the
limit augmented valuation µ = [C; φ, γ] ∈ T , defined in terms of φ-expansions as:

g =
∑

n≥0
anφ

n, deg(an) < deg(φ) =⇒ µ(g) = min{ρC(an) + nγ | n ≥ 0}.

Note that µ(φ) = γ and ρi < µ for all i ∈ A.
If γ <∞, then µ is an inner node of T and φ is a key polynomial for µ of minimal degree [27, Cor.

7.13]. If γ =∞, then µ is a finite leaf of T with support φK[x]. In both cases, deg(µ) = deg(φ).

3.3. Mac Lane–Vaquié chains. Take a chain of finite length r, of valuations in T

(3.1) v
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ · · · −→ µr−1

φr,γr−→ µr = µ

in which µ0 = [v; φ0, γ0] is a depth-zero valuation, and each other node is an augmentation of the
previous node, of one of the two types:

Ordinary augmentation: µn+1 = [µn; φn+1, γn+1], for some φn+1 ∈ KP(µn).
Limit augmentation: µn+1 = [Cn; φn+1, γn+1], for some φn+1 ∈ KP∞(Cn), where Cn is an

essential continuous family whose first valuation is µn.

The continuous families Cn underlying the limit augmentations are omitted in the synthetic de-
scription (3.1) of the chain.

Definition 3.2. A chain of mixed augmentations as in (3.1) is said to be a Mac Lane–Vaquié
(MLV) chain if every augmentation step satisfies:

• If µn → µn+1 is ordinary, then deg(µn) < deg(µn+1).
• If µn → µn+1 is limit, then deg(µn) = deg(Cn) and φn 6∈ t(µn, µn+1).

In this case, we have µ(φn) = γn for all n. As shown in [28, Sec. 4.1], the MLV chain induces a
chain of value groups

Γµ−1
:= Γ ⊂ Γµ0

⊂ · · · ⊂ Γµr = Γµ,

such that Γµn−1 = Γ0
µn for all 0 ≤ n ≤ r, and

(3.2) Γµn =
〈

Γµn−1
, γn

〉
if γn <∞, Γµ = Γµr−1

if γr =∞.

For all 0 ≤ n ≤ r, let us denote en := erel(µn) =
(
Γµn : Γµn−1

)
.

Also, the homomorphisms Gµn → Gµn+1
induce a tower of finite and simple extensions of fields

κ(µ−1) := k → κ(µ0) → · · · → κ(µr) = κ(µ).

For all 0 ≤ n < r, let us denote

fn := [κ(µn+1) : κ(µn)] = deg (Rµn,φn(φn+1)) ,

the last equality by [28, Lem. 5.2,5.3].
If µ has nontrivial support gK[x], then we can read in the MLV chain of µ the ramification index

e(µ/v) := (Γµ : Γ) and residual degree f(µ/v) := [kµ : k] of the valuation µ induced by µ on the field
K[x]/(g). Obviously, Γµ = Γµ and (by definition) kµ = kµ.

Proposition 3.3. [28, Thm. 5.4] If γr = ∞, then µ is a finite leaf with kµ = κ(µ). In particular,
e(µ/v) = e0 · · · er−1 and f(µ/v) = f0 · · · fr−1.

The following theorem is due to Mac Lane, for the discrete rank-one case [22], and Vaquié for the
general case [44]. Another proof may be found in [28, Thm. 4.3].

Theorem 3.4. All µ ∈ T inn t Lfin are the end node of a finite MLV chain.
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The main advantage of MLV chains is that we may read in them several data intrinsically asso-
ciated to the valuation µ, like the length of the chain, the positive integers deg(µn), en, fn for all
n ≥ 0, and the character “ordinary” or “limit” of each augmentation step [28, Sec. 4.3].

Definition 3.5. The depth of µ is the length of any MLV chain with end node µ. We say that µ is
inductive if all augmentations in its MLV chain are ordinary.

3.4. Inductive valuations and Henselization. Let (Kh, vh) be a Henselization of (K, v) and let
µh be the unique common extension of µ and vh to Kh[x] (Theorem 1.1). The mapping inµ g 7→
inµh g, for all g ∈ K[x], induces an embedding Gµ ↪→ Gµh of graded algebras.

Theorem 3.6. [30, Thm. 1.2] For all valuations µ on K[x] the canonical embedding Gµ ↪→ Gµh is
an isomorphism of graded algebras.

Lemma 3.7. Let µ be an inductive valuation on K[x], admitting a MLV chain as in (3.1). Then,
KP(µ) ⊂ KP(µh) and µh is inductive, admitting a MLV chain with the same length r and data
(φn, γn) for all 0 ≤ n ≤ r:

vh
φ0,γ0−→ µh0

φ1,γ1−→ µh1
φ2,γ2−→ · · · −→ µhr−1

φr,γr−→ µhr = µh.

Moreover, the numerical data e0, . . . , er; f0, . . . , fr−1 attached to both chains coincide.

Proof. The first statement follows from [30, Sec. 5.2]. The value groups of both MLV chains
coincide by (3.2); hence, both chains determine the same data e0, . . . , er. Finally, the two towers of
fields κ(µn)→ κ(µn+1) and κ(µhn)→ κ(µhn+1) are isomorphic by Theorem 3.6 and the commutativity
of the diagrams

Ghµn −→ Ghµn+1

↑ ↑
Gµn −→ Gµn+1

.

Hence, both chains determine the same data f0, . . . , fr−1 as well. �

Summary. We have seen how to extend a valuation µ in a direction [φ]µ for a given parameter
γ ∈ ΓQ∞. The next section is devoted to show that, as in the discrete rank one case, the slopes
of a certain Newton polygon provide the suitable γ ∈ ΓQ∞ which are necessary to construct MLV
chains solving our original Problem 1.4.

4. Newton polygons and double dissections

Consider two points P = (n, α), Q = (m,β) in the Q-vector space Q× ΓQ. The segment joining
P and Q is the subset

S :=
{
P + δ

−−→
PQ | δ ∈ Q, 0 ≤ δ ≤ 1

}
⊂ Q× ΓQ.

If n 6= m, this segment has a natural slope: (β − α)/(m− n) ∈ ΓQ.
A subset of Q×ΓQ is convex if it contains the segment joining any two points in the subset. The

convex hull of a finite subset C ⊂ Q× ΓQ is the smallest convex subset of Q× ΓQ containing C.
The border of this hull is a sequence of chained segments. If the points in C have different

abscissas, the leftmost and rightmost points are joined by two different chains of segments along the
border, called the upper and lower convex hull of C.

4.1. Classical Newton polygons. Let v̄ be a fixed extension of v to K and (Kh, vh) the corre-
sponding Henselization of (K, v) . Let us recall the classical Newton polygon operator

Nv,x : K[x] −→ P (Q× ΓQ) ,

where P (Q× ΓQ) is the power set of the rational vector space Q× ΓQ. The Newton polygon of the
zero polynomial is the empty set.

Definition 4.1. For a nonzero g = a0 + · · ·+ a`x
` ∈ K[x], the Newton polygon Nv,x(g) is the lower

convex hull of the finite cloud of points {(n, v(an)) | n ≥ 0}.
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Figure 1. Newton polygon N = Nµ,φ(g) of a general g ∈ K[x].
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Thus, N := Nv,x(g) is either a single point or a chain of segments, S1, . . . , St, called the sides of
the polygon, ordered from left to right by increasing slopes. The abscissa of the left endpoint of N
is ordx(g). We define the length `(Si) of a side as the length of its projection to the x-axis.

For all g ∈ K[x], let Z(g) be the multiset of all roots of g in K, counting multiplicities. Also,
let V (g) be the multiset of all values v̄(θ) ∈ ΓQ, for θ running on Z(g) \ {0}. Both multisets have

cardinality ` = deg(g). We indicate λ(n) for λ repeated n times.

Theorem 4.2. [31, Satz 6.3] For a nonzero g ∈ K[x], suppose that the sides of Nv,x(g) have slopes

−λ1 < · · · < −λt and lengths `1, . . . , `t. Then, V (g) =
{
λ

(`1)
1 , . . . , λ

(`t)
t

}
.

By the Henselian property, all roots of an irreducible polynomial in Kh[x] have the same v̄-value.
Hence, Theorem 4.2 determines a slope factorization of g :

g = xordx(g)F1 · · ·Ft, Fi ∈ Kh[x], deg(Fi) = `i,

where Fi is the product of all irreducible factors of g in Kh[x] such that the v̄-value of its roots is
λi. Therefore, the Newton polygon determines a dissection of the multiset F(g) of all irreducible
factors of g in Kh[x], counting multiplicities.

Moreover, for each irreducible factor G ∈ Kh[x] of g, we have

G | Fi =⇒ [v; x, λi] ≤ wG, for all 1 ≤ i ≤ t.
Thus, it is natural to take [v; x, λi] as the initial node of all MLV chains aiming to describe wG for
all irreducible factors G of Fi in Kh[x].

Example 4.3. Let us see how this applies to the polynomial g = Q8 + 1410 t57
1 t30

2 P 36 of Example

1.5. Recall that P = x2 +x+1 and Q = P 72 +1406 t61 t
4
2 ∈ Fp(t1, t2), with v(t1) = 1 and v(t2) =

√
2.

Since g has coefficients in O, the whole classical Newton polygon Nx,v(g) lies in the non-negative
quadrant. Moreover, g is monic and its constant coefficient is (1 + 1406t61t

3
2)8 + 1410 t57

1 t30
2 , which

has value zero; therefore Nx,v(g) consists of a single side of slope 0.
Thus, all MLV chains we are aiming to construct will have the same initial node: the Gauss’

valuation µ0 = [v; φ0, γ0], where φ0 = x and γ0 = 0. Since Γµ0 = Γ, we have e0 = 1.
The dissection associated to Nx,v(g) being trivial, we detect no reducibility at this stage.

4.2. General Newton polygons. A type is a pair (µ, φ), where µ is an inner node of T and φ is
a key polynomial for µ. Any type (µ, φ) yields a Newton polygon operator

Nµ,φ : K[x] −→ P (Q× ΓQ) .

The Newton polygon of the zero polynomial is the empty set.

Definition 4.4. For a nonzero g ∈ K[x] with φ-expansion

g =
∑

n≥0
anφ

n, an ∈ K[x], deg(an) < deg(φ),

we define N := Nµ,φ(g) as the lower convex hull of the finite set {(n, µ (an)) | n ≥ 0}.

The abscissa of the left endpoint of N is ordφ(g) in K[x]. The abscissa `(N) := bdeg(g)/ deg(φ)c
of the right endpoint of N is called the length of N . In Figure 1, we displayed the typical shape of
such a polygon.
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Figure 2. λ-component of N = Nµ,φ(g). The line L has slope −λ and cuts the
vertical axis at (0, µλ(g)), if λ > µ(φ) and µλ = [µ; φ, λ].
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Definition 4.5. For all λ ∈ ΓQ, the λ-component Sλ(N) ⊂ N is the intersection of N with the line
of slope −λ which first touches N from below. In other words,

Sλ(N) := {(x, α) ∈ N | α+ xλ is minimal }.
The abscissas of the endpoints of Sλ(N) are denoted nλ ≤ n′λ. We say that N is one-sided of slope
−λ if N = Sλ(N), nλ = 0 and n′λ > 0.

If N has a side S of slope −λ, then Sλ(N) = S. Otherwise, Sλ(N) is a vertex of N . Figure 2
illustrates both possibilities.

Definition 4.6. The principal Newton polygon N+
µ,φ(g) is the polygon formed by the sides of Nµ,φ(g)

of slope less than −µ(φ). If there are no such sides, then N+
µ,φ(g) is defined to be the left endpoint

of Nµ,φ(g).

Clearly, Sµ,φ(g) (as defined by (2.3)) coincides with the set of abscissas of the points lying on

the segment Sµ(φ)(g). In particular, `
(
N+
µ,φ(g)

)
= min(Sµ,φ(g)). Hence, the following result is an

immediate consequence of (2.4).

Lemma 4.7. The integer `
(
N+
µ,φ(g)

)
is the order with which the prime element inµ φ divides inµ g

in the graded algebra Gµ.

Lemma 4.8. Let (µ, φ) be a type. For λ > µ(φ), let µλ = [µ; φ, λ]. Then, for all nonzero g ∈ K[x],
the line of slope −λ which first touches Nµ,φ(g) from below, cuts the vertical axis at the point of
ordinate µλ(g).

Proof. The line of slope −λ passing through (x, α) cuts the vertical axis at the ordinate α + λx.
The minimal values of this ordinate are taken by (x, α) ∈ Sλ(Nµ,φ(g)). �

4.3. Dissection by Newton polygons. Recall that Fµ(g) is the set of irreducible factors G ∈
Kh[x] of g such that wG > µ. Let us denote

Fµ,φ(g) = {G ∈ Fµ(g) | t(µ,wG) = [φ]µ},
Fµ,φ(g)(λ) = {G ∈ Fµ,φ(g) | wG(φ) = λ}, for all λ ∈ ΓQ.

We will show that the slopes of N+
µ,φ(g) determine a partition of Fµ,φ(g). A crucial point is the

consideration of a special irreducible factor of φ in Kh[x], determined by the valuation µ.

Definition 4.9. The valuation [µ; φ,∞] has support φK[x]. As we saw in Section 1, there exists a
unique irreducible factor Q = Qµ,φ ∈ Irr(Kh) of φ such that

[µ; φ,∞] = wQ.

We say that Q is the irreducible factor of φ over Kh[x] determined by µ.

Theorem 4.10. Let µ be an inner node of T and φ ∈ KP(µ). Denote N = N+
µ,φ(g) and let

Q ∈ Irr(Kh) be the irreducible factor of φ determined by µ. Then,

(i) All G ∈ Fµ,φ(g) have degree a multiple of deg(Q).



14 ALBERICH, GUÀRDIA, NART, POTEAUX, ROÉ, AND WEIMANN

(ii) For all λ ∈ ΓQ, we have∑
G∈Fµ,φ(g)(λ)

deg(G) = ` (Sλ(N)) deg(Q).

In particular, if ` (Sλ(N)) = 1, then Fµ,φ(g)(λ) contains a unique irreducible factor of g in Kh[x],
and this factor has degree deg(Q).

If v has rank one, then φ = Q and this theorem follows easily from Montes’ original arguments
in the discrete rank-one case. The proof in the general case is much more involved. We postpone it
to Section 4.6, which is entirely devoted to this purpose.

Corollary 4.11. Fµ,φ(g) =
⊔
λ Fµ,φ(g)(λ) where −λ runs over the slopes of N+

µ,φ(g).

Proof. Immediate from Theorem 4.10. �

4.4. Dissection by factorization of residual polynomials. For g ∈ K[x] and our fixed type
(µ, φ) as above, let −λ1 < · · · < −λt be the slopes of N+

µ,φ(g). Let us assume that φ - g in K[x], so
that nλ1

= 0.
For each slope −λ of N+

µ,φ(g), consider the augmentation µλ = [µ; φ, λ] and the factorization of

the residual polynomial Rµλ,φ(g) in κ(µλ)[y]:

(4.1) Rµλ,φ(g) = ψn1
1 · · ·ψnss , ψ1, . . . , ψs ∈ Irr(κ(µλ)).

Let ϕi = liftµλ,φ(ψi) ∈ KP(µλ) be arbitrary lifts for all 1 ≤ i ≤ s.

Proposition 4.12. Fµ,φ(g)(λ) =
⊔s
i=1 Fµλ,ϕi(g).

Proof. As we saw in Section 2.3, the factorization (4.1) leads to a factorization of inµλ g into a
product of pairwise different homogeneous prime elements in Gµλ , up to units:

inµλ g ∼unit π
nλπn1

1 · · ·πnss , π = inµλ φ, πi = inµλ ϕi, 1 ≤ i ≤ s.
By Theorem 2.11, if λ < λ1 (so that nλ > 0), the irreducible factors of g in the set Fµλ(g) determine
exactly s+ 1 tangent directions of µλ, which are precisely

[φ]µλ , [ϕ1]µλ , . . . , [ϕs]µλ .

Take any irreducible factor G ∈ Fµλ(g). By Corollary 2.19, wG(φ) > λ if and only if t(µλ, wG) =
[φ]µλ . Therefore, the irreducible factors G with wG(φ) = λ are distributed among the remaining s
tangent directions. The claimed dissection follows. If λ = λ1, then nλ = 0 and we get directly the
same dissection. �

Corollary 4.11 and Proposition 4.12 lead to a double-dissection process, as illustrated by Figure
3. Going on, the computation of each principal Newton polygon N+

µλ,ϕi
(g) will lead to further

double-dissections.

Definition 4.13. We say that the type (µ, φ) singles out an irreducible factor of g in Kh[x] if

Fµ,φ(g) = {G} and deg(G) = deg(Qµ,φ).

If moreover φ is irreducible in Kh[x] (that is φ = Qµ,φ), we say that φ is an approximant of G.

Proposition 4.14. If in the factorization (4.1) we have ni = 1, then the pair (µλ, ϕi) singles out
an irreducible factor of g in Kh[x].

Proof. By Lemma 4.7, we know that

(4.2) `
(
N+
µλ,ϕi

(g)
)

= ni, 1 ≤ i ≤ s.
The result then follows from Theorem 4.10. �

Notice that (4.2) is relevant from a computational perspective: in all required computations of
principal Newton polygons, we know a priori the length of the polygon.

Thus, it suffices to implement a Newton polygon routine

NP(µ, φ, `)(g)

which finds only the first `+ 1 coefficients a0, . . . , a` of the φ-expansion of g, and then computes the
lower convex hull of the set {(n, µ(an)) | 0 ≤ n ≤ `}.
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Figure 3. Double dissection of Fµ,φ(g). The figure represents paths in the tree
T , with initial node µ. The first “slope” dissection leads to the horizontal path
determined by the nodes µ < µλt < · · · < µλ1

< wQ. For each slope λi, the second
“residual” dissection gives tangent directions of µλi represented by upwards paths,
pointing out to the leaves wG for all G ∈ Fµλi ,φ(g).

• ••• •
µ

· · ·· · ·
· · ·

[µ; φ,∞] = wQ

µλt µλt−1
µλ1

�
��

... ···

�
��
···

�
��

... ······

@
@@

Figure 4. Newton polygon Nµ0,φ1
(g). The slope is −γ1, where γ1 :=

(
3 + 2

√
2
)
/36.

•
•

•
•

•
•

•
•

•

•

PPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPPPPPPPPPPPPP
36 72 144 216 288 360 432 504 576

48 + 32
√

2

57 + 30
√

2

0

Summary. We have shown so far that for any given type (µ, φ), we can derive a double-dissection

Fµ,φ(g) =
⊔

λ

⊔s

i=1
Fµλ,ϕi(g).

Theorem 4.10 gives moreover information about the degrees and the number of irreducible factors
of g in these sets. This double-dissection process can be continued inductively and whenever we
find some ni = 1 in (4.1), an irreducible factor of g is singled out. This sketches the OM algorithm,
which will be described in Section 5.

Let us first illustrate the iteration of this double-dissection process in the particular case of
Example 1.5.

4.5. Resolution of Example 1.5. We saw in Example 4.3 that the first dissection at depth zero
detected no reducibility. The second dissection is determined by the factorization of Rµ0,φ0(g) in
k[y] = κ(µ0)[y]. Since g ≡ P 576 (mod M), we get

Rµ0,φ0(g) = (y2 + y + 1)576.

Since this polynomial is a power of the irreducible polynomial ψ0 = y2 + y+ 1, the second dissection
at depth zero detects no reducibility either.

Let us choose a lift of ψ0 with respect to (µ0, φ0). The most natural choice is

φ1 = liftµ0,φ0(ψ0) = x2 + x+ 1 = P.

All augmentations µ = [µ0; φ1, γ1], will have f0 = 2 (with the notation of Section 3.3), because
κ(µ) ' k[y]/(y2 + y + 1). Let us represent this latter field as

κ1 = k(z) ⊂ Fp, z2 + z + 1 = 0.

Although we detect no reducibility yet, we obtain some information about the irreducible factors of
g: all of them have associated valuations with residual degree multiple of 2.
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Figure 5. Newton polygon N+
µ1,φ2

(g). The slope is −γ2, where γ2 := 37γ1.
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•

•
•

•
•
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1 2 3 4 5 6 7 8

584γ1

288γ1

0

Depth one. The first dissection at depth one is given by the slopes of the Newton polygonNµ0,φ1
(g).

The φ1-expansion of g is immediately deduced from:

g = (φ72
1 + 1406 t61 t

4
2)8 + 1410 t57

1 t30
2 φ36

1 .

One checks easily that Nµ0,φ1
(g) is one-sided of length 576. Its concrete shape is displayed in Figure

4. Therefore, we get a unique augmentation:

µ1 = [µ0, φ1, γ1], γ1 =
(

3 + 2
√

2
)
/36.

In particular, e1 = (Γµ1
: Γµ0

) = 36. Although we detect no reducibility yet, we know that all
irreducible factors of g have associated valuations with ramification index multiple of 36.

In order to simplify the computation of Rµ1,φ1(g), we observe that g ∼µ1 Q
8, so that

Rµ1,φ1
(g) = Rµ1,φ1

(Q8) = Rµ1,φ1
(Q)8 =

(
y2 + 1406

)8
in κ1[y]. In the notation of Section 2.2, for the computation of Rµ1,φ1

(Q) we chose u := inµ1
W ,

where W = t31t
2
2. The factorization of Rµ1,φ1

(g) detects that g is not irreducible:

Rµ1,φ1
(g) = (y + 698z + 349)8(y − 698z − 349)8.

This implies a factorization g = F1F2, where F1, F2 ∈ Kh[x] have both degree 576.
Denote A0 = 698x + 349. Then, the irreducible factors of g in Kh[x] determine two different

tangent directions of µ1, represented by the key polynomials:

φ2 := φF1
2 = liftµ1,φ1(y + 698z + 349) = φ36

1 +WA0,

φF2
2 = liftµ1,φ1(y − 698z − 349) = φ36

1 −WA0.

This splits the procedure into two independent tasks, which may be executed in parallel.
From now on, we focus on the factorization of F1, by analyzing suitable augmentations of the

form µ = [µ1; φ2, γ2]. Since the irreducible factor ψ1 := y + 698z + 349 has degree one, we have
f1 = 1, because all these augmentations will have κ(µ) = κ1[y]/ψ1 ' κ1.

Depth two. Factors of F1. The information we are interested in is located in the principal Newton
polygon N+

µ1,φ2
(g). By Lemma 4.7, the length of N+

µ1,φ2
(g) is equal to 8 = ordψ1 Rµ1,φ1(g). Thus, we

need only to compute the (nine) first coefficients of the φ2-expansion of g, and the desired Newton
polygon is the lower convex hull of the corresponding nine points. This turns out to be the polygon
displayed in Figure 5: one-sided, of slope −γ2, where γ2 = 37γ1.

Therefore, we get a unique augmentation:

µ2 = [µ1;φ2, γ2], γ2 = 37γ1.

Thus, e2 = (Γµ2
: Γµ1

) = 1. By choosing u := inµ2
(Wφ1), we get:

Rµ2,φ2(g) =
1

702

(
752− (602z + 301)y − 298y2 + (329z − 597)y3 + 425y4+

(−433z + 545)y5 + 179y6 − (156z + 78)y7 + 702y8
)
,

which factorizes in κ1[y] as: Rµ2,φ2
(g) = ψ8

2 , for ψ2 := y + 973z + 1248.
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So far, we detect no reducibility of F1. Let A1 = 973x+ 1248. A possible lift of ψ2 is:

φ3 = liftµ2,φ2
(ψ2) = φ36

1 +WA0 +WA1φ1.

Note that deg(φ3) = deg(φ2). This means that we get no new information on ramification indices
(e2 = 1) nor residual degrees (f2 = degψ2 = 1).

On the other hand, for any future augmentation µ3 = [µ2;φ3, γ3], the chain

v
φ0,γ0−→ µ0

φ1,γ1−→ µ1
φ2,γ2−→ µ2

φ3,γ3−→ µ3

will not be a MLV chain, because of deg(φ2) = deg(φ3). MacLane showed that, in this situation, φ3

is a key polynomial for µ1 and µ3 = [µ1;φ3, γ3]. In other words:

We may consider φ3 = liftµ1,φ1
(ψ) as a better choice than φ2 as a lift of ψ1 with respect to the

type (µ1, φ1), and obtain µ3 as a direct augmentation of µ1.

A double-dissection that detects no reducibility and the degree of the key polynomial does not
grow is said to be a refinement step. In this case, the most efficient procedure is to go back to µ1

and consider the augmentations based on the type pair (µ1, φ3) instead of (µ1, φ2).
In order to keep a coherent notation, we rename φ3 again as φ2. That is, we take

φ2 := φ36
1 +W (A0 +A1φ1) .

Depth two, again. Consider the following family of linear polynomials:

A1 = 973x+ 1248, A2 = A1, A3 = 235x+ 879, A4 = 528x+ 264,
A5 = 329x+ 926, A6 = 1079x+ 1301, A7 = 103x+ 813, A8 = 1271x+ 1397,

together with A9 = A0 = 698x+ 349.
By iteration of the double-dissection loops, we fall in a series of nine consecutive refinement steps,

leading to the following successive improved candidates for φ2:

φ
(i)
2 = φ36

1 +W

i∑
j=0

Ajφ
j
1, 1 ≤ i ≤ 9.

Let us perform the double-dissection based on the type (µ1, φ2), for φ2 = φ
(9)
2 . Let a0, . . . , a8 ∈

K[x] be the first nine coefficients of the φ2-expansion of g. We have:

a0 ∼µ1
−(322x+ 161)W 16t12

1 , a8 ∼µ1
702W 8.

The polygon N+
µ1,φ2

(g) is the line joining (0, µ1(a0)) with (8, µ1(a8)). Thus, it is a one-sided
polygon of slope −γ2, where

γ2 :=
µ1(a0)− µ1(a8)

8
=

3

2
+ 36γ1.

Moreover, all points (i, µ1(ai)), for 1 ≤ i ≤ 7, lie strictly above this line. Consider the augmentation

µ2 = [µ1;φ2, γ2].

Clearly, e2 = (Γµ2
: Γµ1

) = 2, so that the associated valuations of all irreducible factors of F1 have
ramification index multiple of 72. Also, the residual polynomial Rµ2,φ2(g) will have degree 4.

Since µ2(φ2
2) = 3 + 72γ1, we may choose u := inµ2(W 2t31). We obtain the residual polynomial:

Rµ2,φ2
(g) = y4 − (322z + 161)/702 =

(
y2 − (35z − 419)

) (
y2 + (35z − 419)

)
,

where the two quadratic factors are irreducible.
By Proposition 4.14, we conclude that F1 ∈ Kh[x] is the product of two different irreducible

polynomials of degree 288. They have both ramification index 72 and residual degree 4.
A concrete approximant to each irreducible factor can be obtained as a lift of the quadratic factors

of Rµ2,φ2
(g) with respect to (µ2, φ2). For instance,

φ4
2 − (35x− 419)W 4t61, φ4

2 + (35x− 419)W 4t61.
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The second branch. The analysis of the second branch, based on the type (µ1, φ
F2
2 ), leads to a

completely analogous result. The polynomial F2 ∈ Kh[x] splits as the product of two irreducible
factors of degree 288, with exactly the same arithmetic behaviour as above. Actually, by taking

φ′2 = φ36
1 −W

9∑
j=0

Ajφ
j
1, µ′2 = [µ1; φ′2, γ2],

we obtain completely analogous computations, leading to

Rµ′2,φ′2(g) = y4 + (322z + 161)/702 =
(
y2 − (35z + 454)

) (
y2 + (35z + 454)

)
.

The corresponding approximants are:

φ′2
4 − (35x+ 454)W 4t61, φ′2

4
+ (35x+ 454)W 4t61.

4.6. Newton polygons and Henselization (proof of Theorem 4.10). There is an addition law
for Newton polygons. Consider two polygons N , N ′ with sides S1, . . . , Sr, S

′
1, . . . , S

′
s, respectively.

The left endpoint of the sum N + N ′ is the vector sum in Q × ΓQ of the left endpoints of N and
N ′, whereas the sides of N + N ′ are obtained by joining to this endpoint all sides in the multiset
{S1, . . . , Sr, S

′
1, . . . , S

′
s}, ordered by increasing slopes.

Theorem 4.15. [30, Thm. 4.1] For all φ ∈ KP(µ) and nonzero g, h ∈ K[x], we have

N+
µ,φ(gh) = N+

µ,φ(g) +N+
µ,φ(h).

This follows mainly from the fact that the sum of Newton polygons is simply the lower convex
hull of the Minkowski sum.

4.6.1. Newton polygons with respect to Henselian valuations. We assume in this section that the
valued field (K, v) is Henselian. The following result is crucial for our purpose.

Theorem 4.16. [30, Thm. 4.4] For a Henselian (K, v), let Q ∈ KP(ν) for some extension ν of v
to K[x]. Then, for all F ∈ Irr(K) we have

Q |ν F ⇐⇒ ν < vF and t(ν, vF ) = [Q]ν .

Moreover, if these conditions hold, then:

(i) Either F = Q, or the Newton polygon Nν,Q(F ) is one-sided of slope −vF (Q).
(ii) F ∼ν Q` with ` = `(Nν,Q(F )) = deg(F )/deg(Q).

Let us rewrite Theorem 4.10 in the Henselian case and show that it follows easily from Theorem
4.16.

Theorem 4.17. For a Henselian (K, v), let ν be an extension of v to K[x], Q ∈ KP(ν), g ∈ K[x]
monic and N = N+

ν,Q(g). Then,

(i) For all G ∈ Fν,Q(g), deg(G) is a multiple of deg(Q).
(ii) For all ε ∈ ΓQ, we have∑

G∈Fν,Q(g)(ε)
deg(G) = ` (Sε(N)) deg(Q).

Proof. Let F(g) be the multiset of irreducible factors of g. By Theorem 4.16,

Fν,Q(g) = {G ∈ F(g) | ν < vG, t(ν, vG) = [Q]ν} = {G ∈ F(g) | Q |ν G},
and all polynomials in this set have degree a multiple of deg(Q). This proves (i). Recall that

Fν,Q(g)(ε) = {G ∈ Fν,Q(g) | vG(Q) = ε}

for all ε ∈ ΓQ. We claim that `
(
Sε(N

+
ν,Q(G))

)
= 0 for all G ∈ F(g) such that G 6∈ Fν,Q(g)(ε).

Indeed, if G 6∈ Fν,Q(g), then Q -ν G and Lemma 4.7 shows that `
(
N+
ν,Q(G)

)
= 0. If G = Q,

then Nν,Q(G) = {(1, 0)}. Thus, Sε(N
+
ν,Q(G)) has length zero too. If G ∈ Fν,Q(g) and G 6= Q,

then Theorem 4.16 shows that Nν,Q(G) is one-sided of slope −vG(Q). Thus, if vG(Q) 6= ε, then

necessarily `
(
Sε(N

+
ν,Q(G))

)
= 0. This ends the proof of our claim.
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By Theorem 4.15,

` (Sε(N))) =
∑

G∈F(g)
`
(
Sε(N

+
ν,Q(G))

)
=
∑

G∈Fν,Q(g)(ε)
`
(
Sε(N

+
ν,Q(G))

)
.

Finally, for all G ∈ Fν,Q(g)(ε), we have `
(
Sε(N

+
ν,Q(G))

)
= deg(G)/deg(Q), by Theorem 4.16. This

ends the proof of (ii). �

4.6.2. Newton polygons with respect to non-Henselian valuations. Let us go back to our arbitrary
valued field (K, v) and its Henselization (Kh, vh).

Consider the unique extension µh of µ to Kh[x] whose restriction to Kh is vh (Theorem 1.1). The
strategy to prove Theorem 4.10 is to deduce it from Theorem 4.17 after a suitable comparison of
the sets Fµ,φ(g), Fµ,φ(g)(λ) with the analogous objects Fν,Q(g), Fν,Q(g)(ε), with respect to ν = µh

and Q = Qµ,φ. To this end, we need a relevant consequence of Theorem 3.6.

Proposition 4.18. [30, Prop. 5.6] For φ ∈ KP(µ), let Q ∈ Irr(Kh) be the irreducible factor of φ
determined by µ. Then, Q ∈ KP(µh) and inµh(φ/Q) is a unit in Gµh .

With the above notation, from now on we denote

P := φ/Q ∈ Kh[x], α := µh(P ).

The first thing to observe is that the types (µ, φ) and (µh, Q) “point out” to the same irreducible
factors of g in Kh[x].

Lemma 4.19. Fµ,φ(g) = Fµh,Q(g).

Proof. By Theorem 1.1, for all G ∈ F(g), we have

µ < wG ⇐⇒ µh < (wG)h = vG.

Thus, in order to prove the lemma, we need only to check that

t(µ,wG) = [φ]µ ⇐⇒ t(µh, vG) = [Q]µh .

By Corollary 2.19, this is equivalent to:

(4.3) µ(φ) < wG(φ) ⇐⇒ µh(Q) < vG(Q).

By Proposition 4.18, inµh P is a unit in Gµh . Hence, Q -µh P . Since t(µh, vG) = [Q]µh , this implies

µh(P ) = vG(P ) by Lemma 2.8. Hence,

(4.4) µh(φ)− µh(Q) = µh(P ) = vG(P ) = vG(φ)− vG(Q).

Since, µh(φ) = µ(φ) and vG(φ) = wG(φ), this proves (4.3). �

Corollary 4.20. Item (i) of Theorem 4.10 follows from item (i) of Theorem 4.17.

Corollary 4.21. For all λ ∈ ΓQ, Fµ,φ(g)(λ) = Fµh,Q(g)(λ− α).

Proof. By Lemma 4.19, we may rewrite these subsets as:

Fµ,φ(g)(λ) = {G ∈ Fµ,φ(g) | wG(φ) = λ},
Fµh,Q(g)(λ− α) = {G ∈ Fµ,φ(g) | vG(Q) = λ− α}.

These sets coincide by (4.4). �

In order to finish the proof of Theorem 4.10, we must compare the Newton polygons N+
µ,φ(g)

and N+
µh,Q

(g). Instead of comparing these polygons directly, we compare each one with an auxiliary

polygon. Consider the canonical φ-expansion of g:

g =
∑

n≥0
anφ

n, an ∈ K[x], deg(an) < deg(φ).

We may deduce a trivial Q-expansion of g in Kh[x]:

g =
∑

n≥0
bnQ

n, bn = anP
n.
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This Q-expansion is far from being the canonical one, but it leads to a Newton polygon which is
easily comparable with Nµ,φ(g).

Notation. Let us denote by N (g) the convex hull of the cloud of points

{(n, µh(bn)) | n ≥ 0}.

Let N+(g) be the polygon formed by the sides of N (g) of slope smaller than −ν(Q).

Lemma 4.22. The linear automorphism

Q× ΓQ −→ Q× ΓQ, (x, y) 7−→ (x, y + αx)

maps Nµ,φ(g) to N (g). Moreover, it maps Sλ (Nµ,φ(g)) to Sλ−α (N (g)) and it preserves the lengths
of these components. In particular, it maps N+

µ,φ(g) to N+(g).

Proof. Since µh(bn) = µ(an) + nα, this linear automorphism maps:

{(n, µ(an)) | n ≥ 0} 7−→
{

(n, µh(bn)) | n ≥ 0
}
.

Since linear mappings preserve convex subsets, Nµ,φ(g) is mapped to N (g). The points lying on
Sλ (Nµ,φ(g)) correspond to monomials anφ

n satisfying:

µ(an) + nλ ≤ µ(am) +mλ for all m ≥ 0.

This is equivalent to

µh(bn) + n(λ− α) ≤ µh(bm) +m(λ− α) for all m ≥ 0.

Thus, the linear automorphism maps Sλ (Nµ,φ(g)) to Sλ−α (N (g)), and it preserves the lengths of
these segments. �

Therefore, the proof of Theorem 4.10 follows immediately from Theorem 4.17, once we prove the
next result.

Lemma 4.23. N+(g) = N+
µh,Q

(g).

Proof. It suffices to show that Sε (N+(g)) = Sε

(
N+
µh,Q

(g)
)

, for all ε ∈ ΓQ such that ε > µh(Q).

Consider the augmented valuation νε = [µh; Q, ε]. Recall that Q becomes a key polynomial of
minimal degree for νε. The monomials bnQ

n such that νε(bnQ
n) = νε(g) correspond to points lying

on Sε (N+(g)). Imagine that these monomials are:

bsQ
s + · · ·+ btQ

t.

Then, if we denote for simplicity bn = inνε bn and π = inνε Q, we have:

inνε(g) = bsπ
s + · · ·+ btπ

t ∈ G0
νε [π] = Gνε .

Indeed, by Proposition 4.18, inµh bn = inµh(anP
n) is a unit in Gµh for all n. Hence, Q -µh bn, so

that νε(bn) = µh(bn). Hence, the homomorphism Gµh → Gνε maps inµh bn to bn, and the latter is a
unit in Gνε .

Now, let g =
∑
n≥0 cnQ

n be the canonical Q-expansion of g. We can argue as above. The

monomials cnQ
n such that νε(cnQ

n) = νε(g) correspond to points lying on Sε

(
N+
µh,Q

(g)
)

. If these

monomials are ckQ
k + · · ·+ c`Q

`, we deduce as above:

inνε(g) = ckπ
k + · · ·+ c`π

` ∈ G0
νε [π] = Gνε .

By Theorem 2.5, we deduce that

s = k, t = `, bn = cn

for all s ≤ n ≤ t such that νε(bnQ
n) = νε(g), which must be the same indices for which νε(cnQ

n) =
νε(g). This proves the lemma. �
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5. The OM-algorithm

5.1. A formal OM-algorithm. Results of Section 4 lead to the following algorithm, where NP
stands for the Newton polygon routine described in Section 4.4. Executability of the involved
subroutines is elaborated upon in Section 5.4.

Algorithm 1: OM-algorithm

Input : g ∈ Irr(K), v a valuation on K
Output: A list of types singling out the irreducible factors of g in Kh[x]

Stack← [(v, x,deg(g))]; Types← [ ];

while #Stack > 0 do
pick any (µ, φ, `) ∈ Stack and delete it from Stack;

for −λ slope of NP(µ, φ, `)(g) do
µλ ← [µ; φ, λ];

compute and factorize Rµλ,φ(g) = ψn1
1 · · ·ψnss in κ(µλ)[y];

for 1 ≤ i ≤ s do
ϕ← liftµλ,φ(ψi);

if deg(ϕ) > deg(φ) then
µ← µλ

if ni = 1 then
append (µλ, ϕ) to Types

else
append (µ, ϕ, ni) to Stack

return Types

Theorem 5.1. If the OM-algorithm terminates then it provides:

• An approximant in K[x] to each irreducible factor of g in Kh[x].
• All extensions of v to the field L = K[x]/(g), plus a computation of their ramification indices

and residual degrees.

Proof. Assuming termination, each irreducible factor G ∈ Kh[x] of g is singled out by some output
type (µ, φ) thanks to Corollary 4.11, Proposition 4.12 and Proposition 4.14. We thus have

Fµ,φ(g) = {G} , t(µ,wG) = [φ]µ, deg(G) = deg(Qµ,φ).

Each augmented valuation being ordinary, µ is inductive and Lemma 3.7 shows that φ ∈ KP(µ) ⊂
KP(µh) is irreducible over Kh[x]. Thus, φ = Qµ,φ and φ is an approximant of G (Definition 4.13).
The second point follows from Theorem 5.2 below. �

5.2. Extensions of v to the field L = K[x]/(g). Let (µ, φ) be an output type. By storing all
pairs (µn, φn+1) and slopes γn+1 considered along the procedure, we get a MLV chain of ordinary
augmentations:

(5.1) v
φ0,γ0−→ µ0

φ1,γ1−→ · · · −→ µr−1
φr,γr−→ µr = µ

satisfying moreover deg(φr) < deg(φ).

Theorem 5.2. Let G ∈ Irr(Kh[x]) be the irreducible factor of g singled out by (µ, φ). Then,

e(wG/v) = e0 · · · er, f(wG/v) = f0 · · · fr−1 deg(Rµ,φr (φ)),

where, ei, fj are the numerical data of the MLV chain of µ.

Proof. By Lemma 3.7, φ ∈ KP(µh). Since t(µ,wG) = [φ]µ, we have

µh(φ) = µ(φ) < wG(φ) = vG(φ).
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Hence, t(µh, vG) = [φ]µh , by Corollary 2.19. Now, since µh(G) < vG(G) = ∞, we deduce that

φ |µh G. Since deg(G) = deg(φ), this implies that G is a key polynomial for µh and G ∼µh φ [27,
Lem 2.5].

Therefore, it makes sense to consider the ordinary augmentation [µh; G,∞]. Since this valuation
has support GKh[x], we have [µh; G,∞] = vG, by Proposition 1.2. By Lemma 3.7, we obtain the
following MLV chain of vG:

vh
φ0,γ0−→ µh0

φ1,γ1−→ · · · φr,γr−→ µhr = µh
G,∞−→ vG,

whose numerical data e0, . . . , er; f0, . . . , fr−1 coincide with those determined by the MLV chain (5.1)
of µ. By Proposition 3.3,

e(v̄G/v
h) = e0 · · · er, f(v̄G/v

h) = f0 · · · fr−1 deg(Rµh,φr (G)).

Since G ∼µh φ, [27, Cor. 5.5] shows that Rµh,φr (G) = Rµh,φr (φ). Also, let u ∈ Gµ be a homogeneous

unit such that grµ(u) = µ(φerr ). Let uh ∈ Gµh be the image of u under the isomorphism Gµ ↪→ Gµh .
Then, it is easy to check that the following diagram commutes

K[x] ⊂ Kh[x]

Rµ,φ,u ↓ ↓ Rµh,φ,uh
κ(µ)[y] ↪−→ κ(µh)[y]

where the lower horizontal map is the isomorphism induced by Gµ ↪→ Gµh . We deduce that

deg
(
Rµh,φr (φ)

)
= deg (Rµ,φr (φ)). Therefore, the theorem will be proved if we check that

(5.2) e(wG/v) = e(v̄G/v
h), f(wG/v) = f(v̄G/v

h).

Now, the extension Lh = L ·Kh = Kh[x]/(G) is a Henselization of (L,wG). Hence, the commutative
diagram of extensions of valuations:

(Kh, vh) −→ (Lh, v̄G)

↑ ↑
(K, v) −→ (L,wG)

implies (5.2), because e(vh/v) = 1 = f(vh/v) and e(v̄G/wG) = 1 = f(v̄G/wG). �

5.3. Towards better approximants of the irreducible factors. We may consider the whole
class [φ]µ ⊂ KP(µ) as a set of approximants to G provided by the OM-algorithm. The measure of
the quality of any Q ∈ [φ]µ as an approximant to G is indicated by the value wG(Q−G) = wG(Q).

If v has rank one, then K is dense in Kh and the set wG ([φ]µ) is unbounded in ΓQ. In this case,
there are approximants with arbitrarily large precision. For larger rank, this is unfortunately not
always possible as shown by the following example, for which this set is bounded.

Example 5.3. Take a prime number p ≡ 1 (mod 4) and let ordp be the p-adic valuation. Denote
by ā the reduction modulo p of an integer a ∈ Z. Choose a p-adic root i ∈ Zp of the polynomial
g = x2 + 1:

i = i0 + i1p
`1 + · · ·+ inp

`n + · · · ,
with 0 < in < p for all n. Denote the truncations of i by

an := i0 + i1p
`1 + · · ·+ in−1p

`n−1 ∈ Z.

Consider the field K = Q(t) equipped with the ordt valuation. Every u ∈ K∗ has an initial coeffi-
cient in(u) =

(
u t− ordt(u)

)
(0) ∈ Q∗, with respect to ordt. Consider the following discrete rank-two

valuation on K:

v : K∗ −→ Z2
lex, v(u) := (ordt(u), ordp(in(u))) ,

with values in Z2 equipped with the lexicographical order. The residue field is k = Fp.
The OM-algorithm applied to the polynomial g = x2+1 terminates after a single double-dissection.

Indeed, the Newton polygon Nv,x(g) is one-sided of slope (0, 0) and for µ0 = [v; x, (0, 0)], we have
Rµ0,x(g) = y2 +1 = (y− i0)(y+ i0). Hence, the algorithm detects the irreducible factors x− i, x+ i ∈
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Kh[x], singled out by the output types (µ0, x− i0), (µ0, x+ i0), respectively. However, the quality of
the approximants is bounded:

wG ([x− i0]µ0
) = {v̄(an − i) | n ≥ 0} ⊂ {0} × Z.

The MLV chains of wx−i and wx+i require here a limit augmentation, namely

v
x,(0,0)−→ µ0 −→ wx−i = [C, g,∞], v

x,(0,0)−→ µ0 −→ wx+i = [C′, g,∞],

where C = ([v; x− an, (0, `n)])n≥0 and C′ = ([v; x+ an, (0, `n)])n≥0.

In general, the enlargement of the chain (5.1) into a MLV chain of wG is not easy to describe. It
may be necessary to consider several limit augmentations [30, Ex. 8.6].

5.4. Executability of the OM-algorithm.

Proposition 5.4. Suppose that v has a finite rational rank (dimQ(ΓQ) <∞) and we have algorithms
performing the following tasks.

• Field operations in K and k and computation of the valuation v : K∗ � Γ.
• Computation of the residue class O∗v � k∗ and a section liftv : k∗ → O∗v.
• Polynomial factorization in κ[y] for arbitrary finite extensions κ/k.

Then, there are algorithms performing all subroutines of the formal OM-algorithm.

Proof. Indeed, we use only three subroutines:

NP(µ, φ, `)(−), Rµλ,φ(−), liftµλ,φ(−).

The subroutine NP(µ, φ, `)(−), described in Section 4.4, requires only:
(i) A quotient-with-remainder routine in K[x] to compute truncated φ-expansions.
(ii) A routine to compute µ.

By Lemma 4.8, the computation of µ(a) for any a ∈ K[x] follows easily from the computation of
the Newton polygon

NP (µr−1, φr−1, bdeg(a)/ deg(φr−1)c) (a).

Thus, a recursive descending procedure along the MLV chain (5.1), enables the computation of µ,
based in the end on the routine computing the valuation v.

The routines Rµλ,φ(−) and liftµλ,φ(−) can be obtained by a similar descending recursive proce-
dure, described in [26, Sec. 5]. �

5.5. Refinement steps and termination of the OM-algorithm. The only obstacle for the
termination of the OM-algorithm would be the existence of an infinite sequence of double-dissections
(double for loops).

Since F(g) is a finite set, it admits only a finite number of non-trivial dissections of any of its
subsets. Also, since deg(φ) ≤ deg(g) for all key polynomials φ constructed along the process, the
condition deg(φ) < deg(ϕ) inside the second for loop may occur only a finite number of times. Thus,
the OM-algorithm does not terminate if and only if there is an infinite sequence of refinement steps,
defined as follows.

Definition 5.5. A refinement step for a type (µ, φ, `) is a step of the while loop which yields a
unique new type (µλ, ϕ, n), with moreover deg(ϕ) = deg(φ).

By Theorem 2.18, deg(ϕ) = erel(µλ) deg(ψ) deg(φ). Hence, a refinement step is characterized by
the following two conditions:

• N+
µ,φ(g) is one-sided and its slope −λ satisfies erel(µλ) = 1.

• Rµλ,φ(g) = (y − ζ)`, for some ζ ∈ κ(µλ)∗.

In this case, we just replace (µ, φ, `) with (µ, ϕ, `) in the Stack, where ϕ is the lift of y − ζ.

Montes proved that infinite sequences of refinement steps cannot occur in the discrete rank-one
case [24].

Theorem 5.6. If v is discrete of rank-one, then the OM-algorithm terminates.
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Let us write L = K(θ), where θ ∈ L is the class of x modulo the ideal gK[x]. The proof of this
theorem is based on the finiteness of the local index

ind(g) := v ((Og : Ov[θ])) ∈ Γ,

where Og is the integral closure of Ov in the finite extension L/K. Through an ordered isomorphism
between Γ and Z, this index is identified with a non-negative integer. The theorem follows from the
fact that in all intermediate steps of the algorithm, including the refinement steps, there is a positive
integer contributing to the total value of ind(g) [14, Thm. 4.8].

If v is not discrete of rank one, we can identify three kinds of infinite refinements steps. As we
saw in Section 5.1, the OM-algorithm aims to construct an MLV chain

v
φ0,γ0−→ µ0

φ1,γ1−→ · · · φr,γr−→ µr = µ

of a valuation µ which is sufficiently close to the valuation wG, for some irreducible factor G of g in
Kh[x]. Denote mn := deg(µn) = deg(φn) for all 0 ≤ n ≤ r. For a field K ⊂ K ⊂ Kh, let

Vmn(K) := {wG(f) | f ∈ K[x] monic, deg(f) = mn} ⊂ ΓQ.

For each n > 0, the analysis of the augmentation step µn−1 → µn leads to three different infinite
refinement situations:

(IR1) There exists max (Vmn(K)),
(IR2) max (Vmn(K)) does not exist, but there exists max

(
Vmn(Kh)

)
,

(IR3) max
(
Vmn(Kh)

)
does not exist,

By [28, Thm. 4.7], the augmentation µn−1 → µn is ordinary in the case (IR1) and a limit augmen-
tation in cases (IR2) and (IR3).

Vaquié showed that limit augmentations in the Henselian case occur only when G has defect [45],
[28, Sec. 6]. Thus, we say that µn−1 → µn is a defectless limit augmentation in the (IR2) case,
and a defect limit augmentation in the (IR3) case. Defect limit augmentations occur only when
char(k) = p > 0; also, deg(µn)/deg(µn−1) is necessarily a power of p.

Let us detail some examples of each type of infinite refinement steps.

Example 5.7 ((IR2) case). Let (K, v) = (Q(t), ordt) be the valued field considered in Example 5.3.
Let us apply the OM-algorithm to the polynomial

g := x4 + (t+ 2)x2 + 1 ∈ K[x].

The double-dissection applied to the triple (v, x, 4) yields a one-sided Newton polygon of slope (0, 0).
For µ0 = [v, x, (0, 0)], the residual polynomial factorizes

Rµ0,x(g) = 1 + 2y2 + y4 = (y2 + 1)2 = (y − ā1)2(y + ā1)2 ∈ k[y].

As lifts of the irreducible factors we may take x − a1, x + a1, respectively. We get Stack =
[(v, x− a1, 2), (v, x+ a1, 2)]. By Theorem 4.10, we detect a splitting of g into a product of two
(unknown) polynomials in Kh[x] of degree two.

The application of the double-dissection to the triple (v, x− a1, 2) leads to an infinite sequence of
refinements:

(5.3) (v, x− a1, 2)  (v, x− a2, 2)  · · ·  (v, x− an, 2)  · · ·
and a similar situation occurs for the triple (v, x+ a1, 2). Indeed, the truncated (x− an)-expansion
of g is b0 + b1(x− an) + b2(x− an)2, with

b0 := g(an) = c2n + ta2
n, b1 := g′(an) = 4ancn + 2tan, b2 :=

1

2
g′′(an) = 6cn + t− 4,

where cn := a2
n + 1. One checks easily that λn := v(cn) = (0, `n) and cn/p`n = −2 i0in.

Hence, N+
v,x−an(g) is one-sided of slope −λn and contains the three points (0, 2λn), (1, λn),

(2, (0, 0)). Denote ρn := [v, x − an, λn]. We may identify κ(ρn) = k and take un := inρn(p`n) as a

unit of grade λn. We get Rρn,x−an(g) = (y − īn)
2

and a natural lift of y − īn is (x− an)− inp`n =
x− an+1 ∈ KP(ρn).
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Figure 6. Newton polygon NC,x2+1(g) (or N+
µ0,x−i(g)).
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The totally ordered family of valuations C = (ρn)n ≥ 0 is an essential continuous family of
augmentations of ρ0 = µ0. It can be easily shown that all polynomials of degree one are C-stable, but
φ := x2 + 1 is C-unstable; indeed, for all n we have

φ = (x− an)2 + 2an(x− an) + cn =⇒ ρn(φ) = min{2λn, λn, λn} = λn.

Thus, φ is a limit key polynomial for C and the right triple to append to the Stack would be (C, φ, 2).
The double-dissection loop can be applied to this triple, to continue the OM-algorithm. The

truncated φ-expansion of degree two is the whole φ-expansion:

g = −t+ tφ+ φ2.

The Newton polygon, displayed in Figure 6, is one-sided of slope −λ = −(1, 0)/2. The limit aug-
mentation µ = [C; φ, λ] has erel(µ) = 2. We may still identify κ(µ) = k and take u = inµ t as a unit
of grade 2λ. We get Rµ,φ(g) = y − 1. Thus, g is a lift of y − 1 and the algorithm appends the type
(µ, g) to the output list Types.

We may proceed in a analogous way with the triple (C′, φ, λ), where C′ = (ρ′n)n≥0 is the essential

continuous family of the valuations ρ′n = [v, x+ an, λn].

The OM-algorithm would output two types (µ, g), (µ′, g) which single out two irreducible factors
G, G′ of degree two of g in Kh[x], with MLV chains:

v
x,(0,0)−→ µ0

φ,λ−→ µ
g,∞−→ wG, v

x,(0,0)−→ µ0
φ,λ−→ µ′

g,∞−→ wG′ ,

where µ0 → µ, µ0 → µ′ are limit augmentations and µ→ wG, µ′ → wG′ are ordinary augmentations.
Since µ and µ′ are not inductive, we do not get approximants to the irreducible factors G, G′.
However, we know the ramification indices and residual degrees of their associated valuations. Indeed,
by Proposition 3.3,

(5.4) e(wG/v) = e(wG′/v) = 2, f(wG/v) = f(wG′/v) = 1

Example 5.8 ((IR1) case). Take p, i as in the preceding example and consider the base field K =
Qp(t), equipped with the analogous discrete rank-two valuation

v : K∗ −→ Z2
lex, v(u) := (ordt(u), ordp(in(u))) .

Let us apply the OM-algorithm to the same polynomial g = x4 + (2 + t)x2 + 1.
The double-dissection applied to the triple (v, x, 4) yields two triples (v, x − a1, 2), (v, x + a1, 2),

each one leading to infinite sequences of refinements as in (5.3). However, imagine that our lifting
routine chooses liftµ0,x(y − ā1) = x− i and liftµ0,x(y + ā1) = x+ i.

Then, the double-dissection applied to the triple (v, x − i, 2) is no more a refinement step. The
truncated (x− i)-expansion of g is b0 + b1(x− i) + b2(x− i)2, with

b0 := g(i) = −t, b1 := g′(i) = 2ti, b2 := g′′(i)/2 = t− 4.

Thus, N+
µ0,x−i(g) is the polygon displayed in Figure 6. It is one-sided of slope −λ = −(1, 0)/2. The

ordinary augmentation µ := [µ0; x − i, λ] has erel(µ) = 2. We may still identify κ(µ) = k and take
u := inµ t as a unit of grade 2λ. We get

inµ g = inµ(−t− 4(x− i)2) = −4u

(
1

4
+

(x− i)2

u

)
,

so that Rµ,x−i(g) = y + (1/4), admitting φ = (x − i)2 + (t/4) as a lift. The algorithm appends the
type (µ, φ) to the output list Types.
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We may proceed in a analogous way with the triple (v, x + i, 2) to obtain the augmentation µ′ =
[µ0; x+ i, λ] and a key polynomial φ′ = (x+ i)2 + (t/4). The output of the OM-algorithm is a list of
two types (µ, φ), (µ′, φ′) which single out two irreducible factors G, G′ of degree two of g in Kh[x].

The MLV chains of µ and µ′ contain only ordinary augmentations:

v
x,(0,0)−→ µ0

x−i,λ−→ µ, v
x,(0,0)−→ µ0

x+i,λ−→ µ′

Hence, the key polynomials φ = (x − i)2 + (t/4), φ = (x + i)2 + (t/4) are approximants to the true
factors G, G′, respectively. We have

wG(x− i) = λ = (1/2, 0) = max (V1(K)) .

The ramification indices and residual degrees of their associated valuations are given by (5.4).

Example 5.9 ((IR3) case). Let F be an algebraic closure of the prime field Fp, for some prime
number p. For an indeterminate t, consider the fields of Newton-Puiseux series and Hahn series in
t, respectively:

K :=
⋃
N∈N

F((t1/N )) ⊂ F((tQ))lex.

The Hahn field F((tQ))lex consists of all power series with rational exponents and well-ordered sup-
port. As remarked by Abhyankar [1],

s :=
∑

n≥1
t−1/pn ∈ F((tQ))lex

is a root of the Artin-Schreier irreducible polynomial g = xp − x− t−1 ∈ K[x]. The truncations of s
belong to K:

sn = t−1/p + · · ·+ t−1/pn ∈ K, n ≥ 1.

Consider the valuation v := ordp on K, with value group Γ = Q and residue field k = F. The valued
field (K, v) is Henselian.

Let us apply the OM-algorithm to test the irreducibility of g. The double-dissection applied to
the triple (v, x, p) yields a one-sided Newton polygon of slope 1/p. For µ0 := [v, x,−1/p], and
u0 := inµ0 t

−1/p as a chosen unit of grade −1/p, the residual polynomial is Rµ0,x(g) = (y−1)p ∈ k[y].
Take x− s1 as a lift of y − 1. The iterative application of the double-dissection leads to an infinite
sequence of refinements:

(v, x− s1, p)  (v, x− s2, p)  · · ·  (v, x− sn, p)  · · ·

Consider the essential continuous family C := (ρn)n≥0, where ρn := [v; x − sn, 1/p
n+1]. All

polygons Nv,x−sn(g) are one-sided of slope 1/pn+1 and Rρn,x−sn(g) = (y − 1)p, if we choose un :=

inµn t
−1/pn+1

as a unit of grade −1/pn+1.
The polynomial g is a limit key polynomial, and wg = [C; g,∞]. The unique extension of v to

L = K[x]/(g) is the valuation w̄ naturally induced by wg. It has

e(w̄/v) = f(w̄/v) = 1, d(w̄/v) = p,

where d(w̄/v) is the defect of the extension.

Summary. We developed an executable OM-algorithm over general valued fields, whose termination
depends only of the non-existence of an infinite sequence of refinement steps.
• In order to overcome the existence of infinite sequence of refinements of type (IR1), the lifting

routine liftµn−1,φn−1(−) should be clever enough to compute max(Vmn(K)) in a finite number of
steps, for all n.
• In order to overcome the existence of an infinite sequence of refinements of types (IR2) or (IR3),

the OM-algorithm should be modified in order to be able to detect limit augmentations and compute
limit key polynomials.

In the next section, we will see that termination can be guaranteed in some new situations which
go beyond the usual discrete rank-one case.
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6. Irreducibility and Factorization : proof of Theorem 0.1 and Theorem 0.2

In this section, we extend the OM-based algorithms of Poteaux-Weimann [41] (irreducibility
test and polynomial factorization) from the discrete rank-one case to the more general settings of
Theorems 0.1 and 0.2 stated in the introduction.

A crucial feature of our algorithms is that, under some restrictions on the residual characteristic,
we can show that :
• Infinite refinements of type (IR1) can be avoided by considering approximate roots as “optimal”

key polynomials. This is the main point.
• Infinite refinements of type (IR3) do not occur as there are no defect limit augmentations.
• If g is irreducible, or if v has rank one, there are no infinite refinements of type (IR2) since

defectless limit augmentations do not appear (this is independent of the residual characteristic).
We obtain in this way an irreducibility test for an arbitrary valued field (K, v) and a factorization

algorithm for an arbitrary rank one valued field (possibly non discrete), under some restrictions on
the residual characteristic.

In order to improve the approximations of the irreducible factors, we develop a valuated Hensel
lifting, valid for any augmented valuation and any residual characteristic.

We illustrate our algorithms on Example 1.5 in Section 6.2.6.

6.1. Irreducibility test. Let g ∈ K[x] be a monic polynomial. Let n be a divisor of deg(g) such
that char(K) - n.

Definition 6.1. The approximate root Q = n
√
g is a monic polynomial in K[x], of degree deg(g)/n,

such that the canonical Q-expansion of g:

g = Qn + an−1Q
n−1 + · · ·+ a1Q+ a0, deg(ai) < deg(Q),

satisfies an−1 = 0.

Approximate roots were introduced by Abhyankar and Moh in [3] as a tool to prove the embedding
line theorem (see [38] for a survey). In [2], Abhyankar used approximate roots for an irreducibility
test in C[[x]][y], then generalized in [40, 41] over a complete discrete valuation ring.

It is obvious that the approximate root is unique, if it exists. The existence follows from the
following result, which gives moreover a concrete algorithm to compute it.

Lemma 6.2. [38, proof of Proposition 6.3] Let g ∈ K[x] be a monic polynomial. Let n be a divisor
of deg(g) such that char(K) - n. Take any monic polynomial φ ∈ K[x] of degree deg(g)/n, and
consider the φ-expansion

g = φn + an−1φ
n−1 + · · ·+ a1φ+ a0, deg(ai) < deg(φ).

Take φ∗ = φ + (an−1/n) and let a∗n−1 be the (n − 1)-th coefficient of the φ∗-expansion of g. Then,
if an−1 6= 0, we have deg(a∗n−1) < deg(an−1).

The next result establishes a link between approximate roots and key polynomials.

Proposition 6.3. Let µ be a valuation on K[x] and ϕ a key polynomial for µ. Let g ∈ K[x] be a
monic polynomial such that deg(ϕ) | deg(g), char(kµ) - deg(g) and moreover:

(i) Nµ,ϕ(g) is one-sided of slope −λ.
(ii) For µλ = [µ; ϕ, λ], we have Rµλ,ϕ(g) = ψn, for some ψ ∈ Irr(κ(µλ)).

Then, the following holds:

(a) The approximate root Q = n
√
g is a key polynomial for µλ and Rµλ,ϕ(Q) = ψ.

(b) If Nµλ,Q(g) is one-sided of slope −λ∗ and for ν = [µλ; Q,λ∗] we have Rν,Q(g) = ψn∗∗ for
some ψ∗ ∈ Irr(κ(ν)), then n∗ < n.

Proof. By (i) and (ii), deg(g) = efndeg(ϕ), where e = erel(µλ) and f = deg(ψ). Take any monic
φ ∈ K[x] of degree ef deg(ϕ) = deg(Q) such that Rµλ,ϕ(φ) = ψ. By Theorem 2.18, φ is a key
polynomial for µλ. By Lemma 6.2, we may obtain Q from φ by a finite number of transformations
of the form φ 7→ φ∗ = φ + (an−1/n), where an−1 is the (n − 1)-th coefficient of the φ-expansion of
g. Hence, in order to prove (a), it suffices to show that φ∗ ∈ KP(µλ) and Rµλ,ϕ(φ∗) = ψ.
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By Lemma 4.7, the Newton polygon N+
µλ,φ

(g) has length n. Since

n = deg(g)/ deg(φ) = ` (Nµλ,φ(g)) ,

we deduce that Nµλ,φ(g) = N+
µλ,φ

(g). Thus, all slopes −ε of Nµλ,φ(g) satisfy ε > µλ(φ). Now,

the point of abscissa n − 1 lying on Nµλ,φ(g) is (n − 1, ε), where −ε is the largest slope of this
polygon. Since the point (n − 1, µλ(an−1)) lies on or above the polygon, we have µλ(an−1) ≥ ε.
Since char(kµ) - deg(g), we have µλ(n) = 0, so that

µλ(an−1/n) = µλ(an−1) ≥ ε > µλ(φ).

Thus, φ ∼µλ φ∗. Since deg(φ) = deg(φ∗), we deduce that φ∗ is a key polynomial for µλ and
Rµλ,ϕ(φ∗) = Rµλ,ϕ(φ) = ψ [27, Lem. 2.5, Cor. 5.5]. This proves (a).

Let g =
∑
i≥0 biQ

i be the Q-expansion of g. By the definition of the approximate root, bn−1 = 0.

Under the hypotheses of (b), we have

n deg(Q) = deg(g) = e∗f∗n∗ deg(Q),

where e∗ = erel(ν) and f∗ = deg(ψ∗). Hence, n = e∗f∗n∗ and the equality n = n∗ holds only when
e∗ = f∗ = 1. This is incompatible with the assumptions in (b). Indeed, e∗ = f∗ = 1 implies that
Rν,Q(g) = (y+ζ)n for some ζ ∈ κ(ν)∗. Since char(µλ) - n, the (n−1)-th coefficient of this polynomial
is nζn−1 6= 0. By the definition of the residual coefficients (Section 2.3), the point (n− 1, bn−1) lies
on the Newton polygon. This is a contradiction because bn−1 = 0. This proves (b). �

We obtain Algorithm 2 below as an irreducibility test for arbitrary valued fields (K, v).

Algorithm 2: Irreducibility Test

Input : (K, v) valued field, g ∈ K[x] monic, square-free such that char(k) - deg(g)
Output: True if g is irreducible over Kh[x] and False otherwise

µ← v; φ← x; n← deg(g) ;

while n > 1 do
if Nµ,φ(g) is one-sided (of slope −λ) then

µ← [µ; φ, λ]
else

return False
if Rµ,φ(g) = ψm for some ψ ∈ Irr(κ(µ)) then

φ← m
√
g

else
return False

n← m
return True

Proposition 6.4. Algorithm 2 returns a correct answer and terminates in log(deg(g)) steps. If g
is irreducible over Kh[x], the algorithm computes as byproduct a MLV chain of the valuation wg
together with its residual degree and ramification index.

Proof. The condition deg(φ) | deg(g) holds initially for φ = x and it is preserved along the execution
of the algorithm as long as no factorization of g is detected.

Now, in the very first step, Nv,x(g) could be one-sided of slope −λ ∈ Γ and Rµ,x(g) be the n-th
power of a polynomial of degree one. Thus, e = f = 1, with the notation of the proof of Proposition
6.3. However, as long as we do not detect a factorization of g over Kh[x], Proposition 6.3 shows that
in all further steps we will have e∗f∗ > 1. Therefore, no refinement steps occur and the algorithm
terminates in log(deg(g)) steps. As we did for the OM-algorithm, if g is irreducible over Kh[x],
then by storing all types (µ, φ) obtained along the process, we obtain a MLV chain of its associated
valuation wg. The last statement follows from Theorem 5.2. �
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Figure 7. Right end-side of N = Nµ,φ(g), defined by a splitting pair.
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6.2. Polynomial factorization. Consider a monic, square-free g ∈ K[x] such that char(k) - deg(g).
A splitting pair of g is any pair (µ, φ) considered in the last call of the while loop of Algorithm

2. Note that, either (µ, φ) = (v, x), or (µ, φ) is a type. A splitting pair has the following properties.

Lemma 6.5. Let g ∈ K[x] be monic, square-free with splitting pair (µ, φ).

(i) If (µ, φ) 6= (v, x), then Fµ,φ(g) = F(g).
(ii) Nµ,φ(g) = N+

µ,φ(g) has length `(Nµ,φ(g)) = deg(g)/ deg(φ).

(iii) φ is irreducible over Kh[x].

Proof. Items (i), (ii) follow immediately from the design of the Irreducibility test. Item (iii) follows
from Lemma 3.7, because µ is an inductive valuation. �

6.2.1. Right end-slope factorization. Let −λ be the right end-slope of N = Nµ,φ(g). That is, the
slopes −ε of N satisfy −ε ≤ −λ, or equivalently, ε ≥ λ. Let nλ be the abscissa of the left end-point
of Sλ(N) (cf. Figure 7).

From now on, we assume g reducible in Kh[x] and denote µλ = [µ, φ, λ]. Although a splitting
pair of g is not unique, the valuation µλ is intrinsically associated to g. Indeed, Figure 3 (where
λ = λt) shows that µλ is the greatest common lower node of the finite set of leaves {wG | G ∈ F(g)}
in the tree T . The existence of greatest common lower nodes in T is guaranteed by [4, Prop. 5.2].

By definition of a splitting pair, at least one of the following situations occurs:

• Nµ,φ(g) is not one-sided.
• Rµλ,φ(g) has at least two coprime factors.

The first point is equivalent to nλ > 0. The second point is equivalent to

Rµλ,φ(g) = ψn1
1 · · ·ψnss , ψi ∈ Irr(κ(µλ)) s ≥ 2.

Let ϕi := liftµλ,φ(ψi) ∈ KP(µλ) be monic lifts of ψi for i = 1, . . . , s. We denote n0 := nλ and
ϕ0 := φ for convenience. So, either n0 > 0, or s ≥ 2.

Lemma 6.6. g ∼µλ
∏s
i=0 ϕ

ni
i and deg(g) =

∑s
i=0 deg(ϕnii ).

Proof. By (2.5) in Section 2.3, we know that inµλ g ∼unit inµλ(
∏s
i=0 ϕ

ni
i ). By Lemma 6.5,(ii)

and our choice of λ, we get lcµλ(g) = 1. Since φ ∈ KP(µλ) has minimal degree and ϕi ∈ KP(µλ),
Theorem 2.18 implies that lcµλ(ϕi) = 1 for all i ≥ 0. By Theorem 2.5, inµλ g = inµλ(

∏s
i=0 ϕ

ni
i )

(which proves the first claim) and degµλ(g) =
∑s
i=0 degµλ(ϕnii ).

As mentioned after Definition 2.6, degµλ(g) = max (Sµλ,φ(g)) = deg(g)/ deg(φ). On the other
hand, Theorem 2.18 shows that degµλ(ϕi) = deg(ϕi)/ deg(φ) for all 0 ≤ i ≤ s. This proves the
second claim. �

Let µhλ be the unique common extension of µλ and vh to Kh[x] (Theorem 1.1).

Proposition 6.7. There exist unique monic G0, . . . , Gs ∈ Kh[x] such that g =
∏s
i=0Gi, Gi ∼µhλ ϕ

ni
i

and deg(Gi) = deg(ϕnii ) for all i. If ni = 1, then Gi is irreducible.

Proof. Since the augmentation µ→ µλ is ordinary, the valuation µλ is inductive. Thus, ϕ0, . . . , ϕs ∈
KP(µhλ), by Lemma 3.7. For all 0 ≤ i ≤ s, let Gi be the product of all irreducible factors G of g in
Kh[x] satisfying ϕi |µhλ G. Then, the result follows from Lemma 6.6 and Theorem 4.16. �
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6.2.2. Hensel lifting. The next result is a generalization of the multifactor Hensel lifting [10, Algo-
rithm 15.17] to an arbitrary valuation. We keep the notation of the previous paragraph.

Proposition 6.8. Let γ = µλ(g − ϕn0
0 · · ·ϕnss ) − µλ(g). For all n ∈ N we can compute monic

polynomials G
(n)
0 , . . . , G

(n)
s ∈ K[x] such that µhλ(Gi −G(n)

i ) > µhλ(Gi) + 2nγ.

Proof. Note that γ > 0 by Lemma 6.6. Such a valuated Hensel lifting is detailed in [41, Section
4.3] in the discrete rank-one case. Since ϕnii is strongly monic in φ with respect to µλ ([41, Defini-
tion 5]), then [41, Lemma 7] remains true in our context and [41, Algorithm HenselStep] extends
straightforwardly to the valuation µλ. �

This Hensel-like algorithm has quadratic convergence in the sense that the precision is doubled
at each Hensel step. We refer the reader to Subsection 6.2.6 for an illustrating example with more
details. The following corollary is immediate.

Corollary 6.9. If the sequence (2nγ)n∈N is unbounded, then the sequence (G
(n)
i )n∈N converges to

Gi for all 0 ≤ i ≤ s. In particular, this holds whenever v has rank one.

If v has rank one, any choice of lifts ϕi will allow to approximate the Gi’s with an arbitrary
precision. If v has rank > 1, this is not always possible, as illustrated by Example 5.7.

6.2.3. Gauss valuation and Okutsu bound. Let v0 be Gauss’ valuation on K[x]. In order to fac-

torize recursively each approximant G
(n)
i of Proposition 6.8, we will measure the quality of the

approximation with Gauss’ valuation on Kh[x] :

vh0 : Kh[x]→ ΓQ∞, vh0

(∑
i
cix

i
)

:= min vh(ci),

which offers the advantage of being independent of the current splitting pair (µ, φ). The valuation
vh0 is asymptotically equivalent to the valuation µhλ in the following sense :

Lemma 6.10. Suppose g ∈ O[x] monic, and let µ, φ, λ as above. Then, for all F ∈ Kh[x], we have

vh0 (F ) ≤ µh(F ) ≤ µhλ(F ) ≤ vh0 (F ) + λ
deg(F )

deg(φ)
.

Proof. The assumption g ∈ O[x] ensures that the right end-slope −λ0 of Nv,x(g) satisfies λ0 ≥ 0.
Hence, the first extended valuation µ0 := [v, x, λ0] computed by the irreducibility test of g satisfies
µh0 ≥ vh0 . Since µhλ ≥ µh0 , this proves the left inequality of the lemma. Let us prove the right
inequality. Since µhλ and vh0 coincide on Kh, we may suppose F ∈ Oh[x] up to multiplying F by a
suitable constant c ∈ Kh. Also, it is enough to consider the case F irreducible in Oh[x]. In such a
case, vh0 (F ) = 0 and the claim follows from [27, Theorem 3.9], having in mind that λ = µλ(φ). �

In what follows, splitting pairs of polynomials in Kh[x] are defined as for K[x].

Definition 6.11. Let F ∈ Kh[x] be monic square-free, with splitting pair (µh, φh) and right end-
slope −λ. The Okutsu bound of F is δ0(F ) := µhλ(F ).

Note that δ0(F ) does not depend on the choice of the splitting pair. The notation and terminology
for δ0(F ) is justified by the fact that Definition 6.11 coincides with [25, Definition 5.9] when F is
irreducible.

Proposition 6.12. Let f, g ∈ O[x] be monic, square-free such that v0(f − g) > δ0(g) and char(k) -
deg(f) deg(g). Then, g and f have the same right end-slope and the same right end residual poly-
nomial. In particular, g is irreducible in Kh[x] if and only if f is irreducible in Kh[x].

Proof. Let (µ, φ) be a splitting pair of g with right end-slope λ. Since f, g ∈ O[x], Lemma 6.10
shows that

(6.1) µλ(f − g) ≥ v0(f − g) > δ0(g) = µλ(g) ≥ v0(g) ≥ 0.

Hence, deg(g) = deg(f) and g ∼µλ f . This implies Nµ,φ(g) = Nµ,φ(f) and Rµλ,φ(g) = Rµλ,φ(f) [27,
Cor. 5.5]. The statement follows easily from these properties. �
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Corollary 6.13. Let g ∈ O[x] be monic square-free such that char(k) - deg(g). Running algorithm
Irreducibility(g) with Gauss precision σ > δ0(g) returns a correct answer and allows to compute a
splitting pair (µ, φ) of g. If g is reducible, the precision σ is also sufficient to compute the right
end-slope λ and Rµλ,φ(g).

Remark 6.14. In the discrete rank one case, one has a priori an upper bound for δ0(g) in terms
of the valuation of the discriminant of g, namely

(6.2) δ0(g) ≤ 2v(disc(g))/ deg(g)

by [7, Lemma 2.2]. This bound can be computed efficiently, although it’s not interesting from a
complexity perspective. In practice, we rather start with a small precision and check if it is sufficient
to detect the right end-slope of the current Newton polygon (see [40, Rem.5.4] for more details in an
analoguous discrete rank one situation). If not, we double the precision and restart all computations.
This is the approach we implicitly follow here.

6.2.4. A factorization algorithm. For g ∈ Kh[x] monic square-free, we define

δmax(g) := max{δ0(G), G ∈ F(g)}.
The previous results lead to Algorithm 3 below.

Algorithm 3: Factorization

Input : g ∈ O[x] monic, square-free with char(k) = 0 or char(k) > deg(g) and a precision
σ ∈ Γ such that σ > δmax(g).

Output: The irreducible factors of g in Kh[x] computed with Gauss precision ≥ σ.

Run Algorithm 2 with input g and with precision δ0(g);

if g is irreducible then
return [g]

else
(µ, φ)← splitting pair of g;

−λ← right end-slope of Nµ,φ(g);

µλ ← [µ; φ, λ];

compute and factorize Rµλ,φ(g) = ψn1
1 · · ·ψnss in κ(µλ)[y];

compute some ϕi ← liftµλ,φ(ψi) for 1 ≤ i ≤ s and let (ϕ0, n0)← (φ, nλ);

γ ← µλ(g − ϕn0
0 · · ·ϕnss )− µλ(g);

compute n ∈ N such that 2nγ ≥ σ + λ deg(g)/ deg(φ);

compute G
(n)
0 , . . . , G

(n)
s ∈ O[x] as in Proposition 6.8;

Res ← [ ];

for i = 0, . . . , s do
if ni = 1 then

append G
(n)
i to Res

else

call recursively Algorithm 3 on G
(n)
i and append the output to Res

return Res

Theorem 6.15. If v has rank one, then Algorithm 3 terminates and returns a correct answer.
Moreover, the approximant factors converge to the irreducible factors of g when we let σ →∞.

Proof. Since Γ has rank one and γ > 0, there exists n ∈ N such that

2nγ ≥ σ + λ deg(g)/ deg(φ).

By Proposition 6.8 and Lemma 6.10, vh0 (Gi − G
(n)
i ) > σ, where Gi is given by Proposition 6.7.

Since σ > δmax(g) ≥ δ0(G
(n)
i ), we deduce by induction from Corollary 6.13 that the algorithm will
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recursively detect and compute all irreducible factors of g with the suitable precision. The last
statement is obvious. �

Remark 6.16. Again, the bound δmax(g) is unknown before running Algorihm 3. One checks easily
that (6.2) gives again an a priori computable upper bound δmax(g) ≤ v(disc(g)) in the discrete rank
one case. However, we rather follow in practice the analoguous strategy described in Remark 6.14.

For v of arbitrary rank, the algorithm will return a correct answer as soon as all involved γ’s
satisfy

δmax(g) ≤ sup(mγ,m ∈ N)

since we can then compute a suitable integer n ∈ N at each call. This might be a weaker condition
than that of Corollary 6.9. However, it is not clear that the approximants G(n) of G ∈ F(g) converge
to G.

The following corollary is immediate:

Corollary 6.17. Suppose that v has rank one. Let g ∈ O[x] be monic square-free with char(k) = 0
or char(k) > deg(g). If f ∈ O[x] is monic and satisfies v0(g − f) > δmax(g), then g and f have the
same OM-factorization.

6.2.5. Proof of Theorems 0.1 and 0.2. The first result is a consequence of Theorem 6.15 while
the second result follows from Corollary 6.13. In both cases, we compute the involved indices of
ramification and residual degrees thanks to Theorem 5.2.

6.2.6. Coming back to Example 1.5. Besides factorization, Algorithm 3 gives an alternative way to
solve Problem 1.4, where Hensel lifting and approximate roots replace the refinement steps inherent
to Algorithm 1. This is particularily relevant from a complexity point of view, as shown in [41] in
the discrete rank one case.

Let us illustrate this fact on our Example 1.5 solved in Subsection 4.5. At the end of the depth
one step, one has computed a factorization of the current residual polynomial

Rµ1,φ1(g) = (y + 698z + 349)8(y − 698z − 349)8 =: ψ8
1ψ

8
2 ∈ κ1[y]

which implies a factorization g = F1F2 in Kh[x]. In order to find the next augmented valuations of
the MLV chains of g, we need to compute a key polynomial of degree 72 for each induced tangent

direction, not leading to a refinement step (such as φ
(9)
2 in the notation of Subsection 4.5). As

explained above, this can be achieved as follows :
(1) Compute approximants G̃1, G̃2 of F1, F2 with a high enough precision (Proposition 6.8).

(2) Compute the 8th-approximate roots of G̃1 and G̃2 (Proposition 6.3).
Let us detail step (1), based on the generalized Hensel lifting of [41]. The initialisation requires
to compute G1, G2 ∈ K[x] with G1, G2 monic of degrees deg(Gi) = deg(Fi) and their ”Bézout
cofactors” U1, U2 ∈ K[x] such that µ1(Ui) = −µ1(Gi) and such that

µ1(g −G1G2) > µ1(g) and µ1(U1G1 + U2G2 − 1) > 0.

For G1 and G2, this is equivalent to take an arbitrary monic lift of ψ8
1 and ψ8

2 . Following Subsection
4.5, we can take

G1 = (φ36
1 +W (698x+ 349))8 and G2 = (φ36

1 −W (698x+ 349))8

where W = t31 t
2
2. We check indeed that µ1(g −G1G2) = µ1(g) + γ1 > µ1(g) as required (where γ1

is the current slope). To compute U1, U2, we first compute a residual Bezout relation

u1 ψ
8
1 + u2 ψ

8
2 = 1 ∈ κ1[y].

We find u1(y) = u2(−y), with

u1 = (538− 447z) y7−269y6+(104 + 208z) y5−101y4−(365 + 730z) y3−584y2+(244 + 488z) y+369.

Then we lift u1, u2 in K[x], imposing the conditions µ1(Ui) = −µ1(Gi). We can take :

U1 = (538− 447x)W−15φ252
1 − 269W−14φ216

1 + (104 + 208x)W−13φ180
1 − 101W−12φ144

1

− (365 + 730x)W−11φ108
1 − 584W−10φ36

1 + (244 + 488x)W−9φ36
1 + 369W−8,
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and U2 given by the same formula but replacing W with −W . We can indeed check that µ1(Ui) =
−µ1(Gi) and µ1(U1G1 + U2G2 − 1) = γ1 > 0, as required. Applying several times the classical
Hensel’s step (adapted to the valuation µ1, see [41, Prop.8]) allows to lift this factorization up to a

higher precision. After n steps, we get G̃1, G̃2 ∈ K[x] monic of degrees deg(G̃i) = deg(Fi), which
satisfy

µ1(g − G̃1G̃2) > µ1(g) + 2nγ1

which in turns forces µh1 (Fi − G̃i) > µh1 (Fi) + 2nγ1. By Lemma 6.10, we get

vh0 (Fi − G̃i) > µ1(Fi) +

(
2n − deg(Fi)

deg(φ1)

)
γ1

As we are in the rank one case, one can take n such that the right hand side is greater than δmax(Fi)
(see Remark 6.14 about how to reach in practice a sufficient precision). Then, calling recursively

Algorithm 3 on each factor G̃i will allow to compute the MLV-chains of all irreducible factors of g
(Corollary 6.13).

Notice that deg(G̃1) < char(k), so Proposition 6.3 ensures that the 8th-approximate root φ of

G̃1 leads immediately to a splitting pair (µh1 , φ) of G̃1, hence of F1 by Proposition 6.12. In other

words, we may have chosen φ instead of φ
(9)
2 as a “splitting” key polynomial for F1 in Subsection 4.5.

In the discrete rank one case, it is shown that this approach is less onerous than refinement steps
inherent to Algorithm 1. One reason is that we might need O(δmax) refinement steps to compute a
splitting pair, while Algorithm 3 uses only O(log(δmax)) Hensel steps due to quadratic convergence.
Moreover, it is shown in [41] that we can modify Algorithm 3 to an even more efficient algorithm
using a divide and conquer strategy for the precision.
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BarcelonaTech (IMTech) and Departament de Matemàtiques, Universitat Politècnica de Catalunya ·
BarcelonaTech, Av. Diagonal, 647, E-08028 Barcelona, Catalonia

Email address: Maria.Alberich@upc.edu
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