
Real-time Polymer Electrolyte Membrane Fuel Cell Parameter Estimation in Absence of
Excitation

Andreu Ceciliaa,b,∗, Maria Serrac,, Ramon Costa-Castellóa,

aUniversitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
bUniv. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR5007, Villeurbanne, F-69100, France

cInstitut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain

Abstract

Parameter estimation is crucial for polymer electrolyte membrane fuel cell monitoring and control. Nonetheless, most parameter

estimation algorithms rely on a persistence of excitation condition, which is rarely satisfied and not convenient in fuel cell systems.

For this reason, this work presents and compares three algorithms to estimate in real-time some critical PEMFC parameters in the

voltage equation: the ohmic resistance, the charge transfer coefficient and the oxygen activity of a proton exchange fuel cell. The first

algorithm is a standard gradient descent, while the other two are based on a set of pre-preprocessing dynamics. It is shown that, while

the gradient descent requires the persistence of excitation condition, the addition of the pre-processing dynamics ensures reliable

estimation under significantly weaker excitation assumptions. Moreover, it is shown that the pre-processing dynamics improves the

transient behaviour and noise performance of the estimators. The results are validated through a set of numerical simulations and in

an experimental prototype, where sensor noise and unmodelled disturbances are considered.
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1. Introduction

Degradation issues limit the technical and economical via-

bility of polymer electrolyte membrane fuel cells (PEMFCs) [1].

For example, in the context of vehicular applications, existing

research shows that variable operating conditions including, but

not restricted to, variable load, start-stop and idle speed, are the

main reason for fuel cell degradation [2, 3]. Indeed, frequent

load changes induce significant variations of multi-dimensional

internal states, which have to be properly managed to guarantee

adequate operation, performance and life-span of the system.

This context has motivated the development of several algo-

rithms to operate the PEMFC. Precisely, fault diagnosis algo-

rithms have been developed to detect and ensure that the system
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is operating in a secure, safe and reliable manner [4]. Prognostics

algorithms have been designed to estimate the State-of-Health

of the system [5]. Observers have been proposed to monitor in

real-time the unmeasured internal-states of the PEMFC [6] and

multiple control algorithms have been proposed to adequately

operate the PEMFC [7]. It should be mentioned that most of

these algorithms are designed and implemented using a mathe-

matical model of the PEMFC dynamics. This consideration is

one of the reasons that have motivated the development of novel

PEMFC mathematical models [8–10]. Furthermore, all the com-

mented algorithms have to be implemented in real-time, which

motivates the development of computational efficient models

that can run in parallel to the PEMFC operation [11, 12].

In this line of research, a significant obstacle is that PEM-
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FCs dynamics are described by highly nonlinear and uncertain

equations, where multiple parameters may be unknown and of

time-varying nature. This lack of parameter knowledge stems

from two reasons. First, the presence of certain electrochemical

processes that are difficult to measure. Second, the approxima-

tions that are considered in order to reduce the computational

complexity of the model. It should be remarked that the knowl-

edge of these parameters is crucial for deploying model-based

PEMFC algorithms. For this reason, there is a necessity of ex-

ploiting real-time parameter estimation algorithms to compute

online the unknown model parameters from easily measurable

data [13–18].

Real-time parameter estimation algorithms have been deeply

studied in the past decades and have been used in a wide variety

of systems. Commonly, these algorithms generate a consistent

estimation by minimizing the observed error through a gradient

descent algorithm [19], least-squares method [20], high-order

sliding mode differentiators [21] or neural-network methods [22].

Nonetheless, the accuracy and robustness of these estimators

is based on a persistence of excitation assumption [23]. That

is, the inputs of the system have to “move” the system internal

states such that the effect of the parameters can be noticed from

the measured signals. Indeed, it is obvious that the measured sig-

nals need to contain enough information to derive the unknown

parameters. What is not obvious is that this excitation condition

needs to be satisfied persistently, that is, for all time. Therefore,

if at any moment of the PEMFC operation the excitation condi-

tion is not satisfied, the real-time parameter estimation algorithm

is immediately degraded, may provide unreliable estimations

and may become numerically unstable. Moreover, to minimize

degradation issues, PEMFCs systems usually require minimal

input variations, thus, the excitation condition may not be sat-

isfied in a persistent manner and may be undesirable for these

systems. This is a critical limitation that prevents the practical

application of such algorithms in PEMFCs and, to the authors’

best knowledge, has been obviated in the PEMFC literature.

Multiple authors from the control community have proposed

novel real-time parameter estimation algorithms that overcome

this excitation limitation [23–28]. Precisely, the stringent persi-

tence of excitation condition, that is rarely satisfied in PEMFC,

is relaxed to a much less restrictive interval excitation condition

that can be satisfied in PEMFC systems. The main objective of

this work is to implement some of these algorithms in a PEMFC

parameter estimation problem and to study its benefits in relation

to more common options. To the best of the authors’ knowledge,

this is the first time that these algorithms are implemented in

a PEMFC system. The main contributions of this work can be

summarized as follows:

• Three algorithms to estimate in real-time the unknown

parameters in the PEMFC voltage equation are proposed.

The first one is a standard gradient descent. The other two

are algorithms that can be implemented in the absence of

persistence of excitation.

• The algorithms are compared through a set of numerical

simulations, where sensor noise, unmodelled disturbances

and the lack of persistence of excitation is considered.

• The reliability of the algorithms is compared in a PEMFC

experimental prototype.

The remainder of this paper can be summarized as follows.

Section 2 presents the PEMFC mathematical model and presents

the main objectives of this work. Section 3 formulates these

objectives as a parameter estimation problem. Section 4 presents

the three algorithms that are implemented to solve the parameter

estimation problem. Section 5 compares the algorithms in a

set of numerical simulations. Section 6 validates and compares

the algorithms in a real experimental prototype. Finally, some

conclusions are drawn in Section 7.
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2. Fuel cell model and objectives

Electrochemical models are used to predict PEMFC voltage

by combining the theoretical maximum cell potential, Er, with

the major potential losses. That is, the ohmic losses, Vohm, and

the cathode activation polarization losses, Vact,c [29]:

V = ncell(Er − Vohm − Vact,c), (1)

where ncell is the number of cells in the fuel cell stack.

It should be mentioned that the voltage equation in (1) is

not the most general one, but provides an adequate voltage

prediction for a wide range of PEMFC operating conditions.

Indeed, in general, the anode activation polarization losses are

order of magnitudes lower than Vact,c. For this reason, the anode

activation losses can be neglected. Moreover, due to degradation

issues, it is usually undesirable to operate the PEMFC at high

current densities where concentration losses become significant.

For this reason, concentration losses have also been obviated.

The potential losses are related to the operating conditions of

the PEMFC. Specifically, the ohmic losses are computed through

the Ohm’s law. That is,

Vohm = RohmI,

where Rohm is the ohmic resistance and I is the PEMFC current.

The activation losses Vact,c are computed through the following

expression

Vact,c =
RT

2αcF
ln

(
I

A io,c

)
,

where αc is the charge transfer coefficient, F is the Faraday’s

constant, R is the ideal gas constant, T is the fuel cell temperature

and A is the cell active area. The factor io,c depicts the exchange

current density at the cathode layer, which is related to the

PEMFC temperature, T , and physical properties and conditions

of the catalyst layer

io,c = γc
√

aO2 exp
[
−

Eca

RT

(
1 −

T
293

)]
, (2)

where γc is the exchange current density at reference conditions,

aO2 is the oxygen activity in the catalyst layer and Eca is the

activation energy of the reaction.

Although the electrochemical model of the fuel cell is rela-

tively simple, the model contains a trio of parameters that cannot

be directly measured and can vary depending on the PEMFC

operating conditions. Indeed, the charge transfer coefficient, αc,

may vary according to the degradation level of the catalyst layer.

Furthermore, the ohmic resistance, Rohm, strongly depends on

the water content of the membrane, which may vary depending

on the temperature and humidity conditions in the inlet channels,

the fuel cell membrane temperature and the amount of water gen-

erated due to the reduction reaction. Finally, the factor γc
√

aO2

depends on the oxygen concentration in the cathode catalyst

layer, which varies according to the oxygen concentration in the

inlet channels, the diffusion constants in the porous media and

amount of oxygen consumed in the catalyst layer. The rest of

parameters can be assumed to be known and fixed.

The main objective of this work is to develop an algorithm

that can infer the value of the parameters, Rohm, αc and γc
√

aO2 ,

in real-time. The capability of estimating these parameters in

real-time has interesting practical implications. On the one

hand, even if the parameters are unknown or change during

the PEMFC operation, allows the real-time computation of the

voltage equation in (1). On the other, as the value of each

parameter is related to a particular operating conditions of the

fuel cell, its estimation can be used to monitor and diagnose the

system. For example, a low value in the ohmic resistance, Rohm,

may be related to a dry membrane operating condition.

Finally, it is convenient to design such algorithm based only
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on easy to measure signals as the current I, the stack voltage V

and the fuel cell temperature T . This decision prevents the need

of adding additional sensors or complex computing equipment

in order to implement the algorithm.

3. Problem formulation

To ease the design of a real-time parameter estimation al-

gorithm for the PEMFC, it is convenient to re-formulate the

electrochemical model presented in Section 2 as a linear regres-

sion equation. Precisely, consider that a measured signal, y ∈ R,

and a vector of unknown parameters, θ ∈ Rq, are related through

a linear regression equation of the form

y = φ>θ, (3)

where y and φ ∈ Rq are bounded measurable and known signals

and θ ∈ Rq is a vector of constant unknown parameters. Usually,

the factor φ is denoted as the regressor vector.

To re-write the fuel cell model in Section 2 in the form (3)

consider the following signal

y =
V

ncell
− Er. (4)

Then, it can be shown that the regression equation in (3) is

satisfied with

φ> =

[
−I −

RT
2F

[Eca

RT

(
1 −

T
293

)
+ ln

( I
A

)] RT
2F

]
(5)

θ> =

[
θ1 θ2 θ3

]
=

[
Rohm

1
αc

ln(γc
√

aO2 )
αc

]
.

It should be mentioned that the regressor vector, φ, can be com-

puted using the PEMFC temperature, T , and the exchange cur-

rent, I. Moreover, notice that the parameters θ and the unknown

PEMFC parameters are related through the following set of

expressions

Rohm = θ1, αc =
1
θ2
, γc

√
aO2 = exp

(
θ3

θ2

)
. (6)

That is, if the unknown parameters θ are correctly estimated,

the unknown PEMFC voltage parameters, Rohm, αc and γc
√

aO2 ,

can be recovered through the expressions in (6). With this in

mind, the main objective of this work is to design a real-time

estimation algorithm that, based on the value of the measured

signal, y, and the regressor vector, φ, generates an estimation of

the unknown parameters, θ̂, such that

lim
t→∞
|θ − θ̂(t)| = 0. (7)

4. Proposed parameter estimation algorithms

This section presents three different parameter estimation

algorithms to solve the proposed parameter estimation problem.

This section does not focus in any particular fuel cell model

and presents the algorithms in a general manner. Thus, the

presented algorithms are not restricted to the particular problem

considered.

4.1. Algorithm 1: Classical gradient-descent

This subsection recalls the well-known gradient descent es-

timator. Although the material of this section is well-known, it

has been included to make the document self-contained.

In its most basic form, a gradient-descent estimator of the

unknown parameters, θ, of a linear regression of the form (3) is

given by the following equation

˙̂θ = Γgdφ(y − φ>θ̂), (8)

where Γgd = Γ>gd > 0 is the adaptation gain of the estimator.

Before presenting the main convergence properties of the

gradient-descent estimator in (8), the concept of persistence of
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excitation has to be introduced.

Definition 4.1. A bounded vector signal φ(t) ∈ Rq is said to be

persistently excited if there exist some positive constant T > 0

such that ∫ t+T

t
φ(τ)φ(τ)>dτ > 0, ∀t ≥ 0. (9)

Roughly speaking, persistence of excitation establishes that

for any time t the trajectory of the measured signal y in (3) from

t to t + T contains enough information to infer the unknown

parameters θ. Notice that this property has to be satisfied in a

persistent manner, that is, for all time instants t.

With this definition in mind, the main convergence properties

of the gradient-descent estimator in (8) can be established [19,

20]. Indeed, assume that the regressor vector φ of the linear

regression (3) is persistently exciting as in Definition 4.1. Then,

the gradient-descent equation in (8) satisfies the convergence

property in (7).

It should be remarked that, in practice, it is very difficult

to achieve the persistence of excitation condition in a PEMFC.

Indeed, it is well-known that the identification of the ohmic

resistance, Rohm, requires high-frequency modulations of the

PEMFC current, while the identification of the parameters in

the activation polarization losses is reserved to low-frequencies

[30–32]. Consequently, the persistence of excitation condition

in Definition 4.1 requires a high-frequency and low-frequency

modulation of the current, I, and a low-frequency modulation

of the PEMFC temperature, T . This variation of the current and

temperature will have an inevitable impact on the performance

and degradation of the PEMFC. Notice that this modulation of

current and temperature has to be maintained uninterruptedly,

otherwise, once the variation is stopped, the algorithm may lose

the convergence property (7) and the estimation θ̂ may drift to

an erroneous value. This fact, makes the classic gradient descent

in (8) unreliable in practice.

It should be mentioned that some authors implement a recur-

sive least-squares algorithm [13] instead of the classic gradient

descent in (8), due to its better transient behaviour and noise

performance. The only difference between the continuous time

recursive least-squares and the gradient-descent is that the gain

matrix Γgd is time-varying and computed through the following

dynamics

Γ̇gd = −Γgdφφ
>Γgd.

Nonetheless, the convergence of the estimation to the true value

still requires the persistence of excitation condition [33, Section

4.4.2.2]. For this reason, the recursive least squares algorithm

has been obviated in this work.

4.2. Algorithm 2: Gradient descent + pre-processing dynamics

(GD+PD)

This subsection introduces the algorithm presented in [25].

In this algorithm, the signals y and φ are pre-processed by a set

of dynamics before introducing them to the gradient descent

algorithm. It is proven in [25] that such processing improves the

transient performance of the estimator and ensures the conver-

gence of the estimation under less restrictive excitation assump-

tions.

Precisely, first, the signals y and φ are processed through the

following set of dynamics

η̇ = α1Ωφ(y − φ>η), η(0) =

[
0 0 0

]>
,

Ω̇ = −α1φφ
>Ω, Ω(0) = I3 (10)

where I3 is the identity matrix of order 3, α1 > 0 is a parameter to

be tuned, η ∈ R3 and Ω ∈ R3×3 are the pre-processing dynamics

internal variables. Intuitively, the equations in (10) serve as

some kind of "memory dynamics" that store the parts of the

measured signal trajectory that are exciting.

Second, the variables η and Ω are used to compute a new
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signal, ypd, and a new regressor vector φpd

ypd = adj{I3 −Ω}η

φpd = det{I3 −Ω}, (11)

where det{·} is the determinant and adj{·} is the adjugate. The

operations in (11) serve to diagonalize the matrixΩ. The authors

in [24] proves that these operations significantly improve the

transient performance of the parameter estimation algorithm.

Finally, the classic gradient descent in (8) is implemented

over the new measured signal ypd and the new regressor vector

φpd. That is,

˙̂θ = ΓA2φpd(ypd − φ
>
pdθ̂), (12)

where ΓA2 is the adaptation gain of the estimator.

Before presenting the main convergence properties of the es-

timator in (12), it is important to introduce the notion of interval

excitation.

Definition 4.2. A bounded signal φ(t) ∈ Rq is said to be inter-

vally excited if there exists a constant tc > 0 such that

∫ tc

0
φ(τ)φ(τ)>dτ > 0.

It should be remarked that the interval excitation condition in

Definition 4.2 is significantly less restrictive than the persistence

of excitation condition in Definition 4.1. Indeed, persistence of

excitation is a condition that has to be satisfied at all time instants

t. Thus, persistent changes in the current and temperature have to

be imposed on the PEMFC at all times, otherwise, the estimation

θ̂ of the gradient descent (8) may diverge. Alternatively, interval

excitation only needs to be satisfied during a finite time tc, which

is a much more feasible assumption in PEMFC systems.

With this definition in mind, the main convergence properties

of the estimator can be summarized as follows [25]. If the

regressor vector φ satisfies the interval excitation condition in

Definition 4.2, then the GD+PD dynamics in (12) satisfy the

convergence property in (7).

4.3. Algorithm 3: Gradient descent + pre-processing dynamics

with forgetting factor (GD+PD+FF)

A limitation of the pre-processing dynamics in (10) is that

theΩmatrix can become arbitrarily small, which critically slows

down the parameter estimation [33, Section 4.4.2.2]. To over-

come this limitation, a new set of pre-processing dynamics where

proposed in [28]. Specifically, similar to the algorithm in Sub-

section 4.2, the signals y and φ are pre-processed through the

following set of dynamics:

η̇ = α2Ωφ(y − φ>η), η =

[
0 0 0

]
Ω̇ = −α2Ωφφ

>Ω + β(1 − |Ω|)Ω, Ω(0) = I3

ż = −β(1 − |Ω|)z, z(0) = 1, (13)

where α2 > 0 and β > 0 are design parameters, | · | is the induced

norm of the matrix and η,Ω, z are the pre-processing dynamics

internal variables. Again, intuitively, the dynamics in (13) store

the parts of the measured signal trajectory that are exciting.

Nonetheless, different from the pre-processing dynamics in (10),

the ones in (13) include a forgetting factor in theΩ to slow down

the convergence of the matrix Ω to small values.

Then, the variables η,Ω and z are used to compute a new

measured signal ypd and regressor vector φpd as follows

ypd = adj{I3 − zΩ}η

φpd = det{I3 − zΩ}. (14)

Finally, the standard gradient-descent in (8) is applied over

the signal ypd and φpd

˙̂θ = ΓA3φpd(ypd − φ
>
pdθ̂), (15)
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where ΓA3 is the adaptation gain of the estimator.

The main convergence properties of the estimator can be

summarized as follows [28]. If the regressor vector φ satis-

fies the interval excitation condition in Definition 4.2, then the

GD+PD+FF dynamics in (15) satisfies the convergence prop-

erty in (7). Similar to the GD+PD in (12), the estimator in (15)

ensures reliable parameter estimation under the less restrictive

assumption of interval excitation.

5. Numerical Simulations

In this section, the performance of the 3 estimators is com-

pared in 3 different case scenarios. In the first scenario case A,

it is assumed an ideal situation where the voltage sensor is free

of noise and there are no unmodelled disturbances. In the Case

B, it is assumed that the measured stack voltage is corrupted by

white noise. Finally, in the Case C, it will be assumed that the

linear regression equation (3) is affected by an unknown additive

time-varying disturbance.

In all the simulations, the model presented and experimen-

tally validated in [34] will be used as ground truth. That is, the

model in [34] will be excited by some particular current profiles

to generate the signals y and φ that are used in the estimators to

infer the value of the unknown parameters. Moreover, in all the

simulations, a particular current profile, I, is used such that the

regressor vector φ is not persistently excited as in Definition 4.1

but is intervally excited as in Definition 4.2. As commented in

Subsection 4.1 this is a common scenario in PEMFC systems.

The algorithms have been implemented with the parame-

ters presented in Table 1. This parameters have been tuned to

have an adequate trade-off between convergence rate and noise

sensitivity.

5.1. Case A: Ideal scenario

The first case scenario considers the ideal situation where the

voltage sensor is free of any noise and there are no unmodelled

Table 1: Estimation algorithms design parameters during simulations.
Parameter Value

Algorithm 1
Γgd 10 · I3

Algorithm 2
α1 1
ΓA2 10 · I3

Algorithm 2
α2 2
β 2
ΓA2 10 · I3

dynamics in the PEMFC model. The result of the simulation is

presented in Figure 1.

Figure 1: Simulation result in the ideal scenario. The purple line depicts the true
value of the parameters. The rest of the lines are the estimation evolution of the
presented algorithms.

This simulation exemplifies the effect of the lack of persis-

tence of excitation (see Definition 4.1) on the quality of the

estimation of the classic gradient descent (8). Indeed, even in
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the absence of noise and disturbances, the classic gradient de-

scent (Algorithm 1) cannot converge to the true value of the

parameters, due to the absence of excitation.

Alternatively, the benefits of the pre-processing dynamics

of Algorithm 2 in (12) and Algorithm 3 in (15) can be noticed

in Figure 1. First, the lack of persistence of excitation problem

is solved and the parameter estimation converges to the true

value. Second, the algorithms present better transient behaviour

with respect to the classic gradient descent. Indeed, it can be

observed that the gradient descent present significant oscillations,

while Algorithm 2 and Algorithm 3 present a better monotonic

convergence.

Finally, it can be observed that the Algorithm 3 presents sig-

nificantly faster convergence rate than the other two algorithms.

Precisely, while Algorithm 2 requires around 700 seconds to

converge, Algorithm 3 converges in around 100 seconds.

5.2. Case B: Presence of sensor noise

The second case scenario compares the performance of the

algorithms when the voltage sensor is affected by additive white

noise of variance 0.1. It should be stated that this noise variance

is significantly larger than the one expected in experimental

set-ups. The result of the simulation is presented in Figure 2.

Naturally, in this case scenario, the estimation does not converge

to a constant value but converges to an oscillatory trajectory that

is induced by the noise.

It can be seen that the classic gradient descent (Algorithm

1) (8) presents the worst performance of the three in two senses.

First, for the same reasons discussed in Subsection 5.1, the

lack of persistence of excitation makes the estimation of the

gradient descent converge to a significantly biased value. Second,

the gradient descent is very sensitive to sensor noise. That is,

the accuracy of the estimation is significantly affected by the

presence of noise. Indeed, Figure 1 shows that the gradient

descent algorithm achieves an estimation of the parameter θ1

Figure 2: Simulation result in the presence of sensor noise. The purple line
depicts the true value of the parameters. The rest of the lines are the estimation
evolution of the presented algorithms.

with a relative error1 of 18.1% in the absence of sensor noise.

Meanwhile, Figure 2 shows that the same estimation converges

to a relative error of 31.2% in the presence of sensor noise.

In relation to Algorithm 2 and Algorithm 3, it is noticeable

that the estimations converges to an oscillatory trajectory of low

frequency in relation to the classic gradient descent estimation.

This behaviour appears due to the pre-processing dynamics,

which have a low-pass filter property between the measured

signal y and the generated signals ypd. Moreover, Algorithm 3

presents better estimation accuracy than Algorithm 2. Precisely,

for the parameter θ3, Algorithm 2 converges to a relative error of

1The relative error between a value x and its estimation x̂ is computed as
|x − x̂|
|x|

· 100.

8



5.4% while Algorithm 3 converges to a relative error of 2.122%.

Algorithm 3 also presents lower relative error in the estimation

of the parameters θ̂1 and θ̂3.

5.3. Case C: Presence of additive disturbances

The last case scenario considers the situation where the

regressor vector φ is not perfectly modelled. That is, the equation

in (3) does not model exactly the PEMFC voltage equation.

Precisely, the estimation algorithm used as a regressor vector is

disturbed as follows

φ> =[
−I + d −

RT
2F

[Eca

RT

(
1 −

T
293

)
+ ln

( I
A

)]
+ d

RT
2F

+ d
]
,

where d is a disturbance signal generated as a sinusoidal of

the form d = 0.1sin(0.1t). The results of the simulations are

depicted in Figure 3.

For the same reasons discussed in Subsection 5.1 and Sub-

section 5.2 the classic gradient descent (Algorithm 1) converges

to the largest relative error of the three.

Naturally, the presence of unmodelled elements prevents the

convergence of the Algorithm 2 and Algorithm 3 to the true

value. Nonetheless, the estimation of these algorithms converge

to a relative error that is significantly lower than the one of the

classic gradient descent. For example, for the third parameter,

θ3 the classic gradient descent converges to a relative error of

55.3%, the Algorithm 2 converges to a relative error of 5.5319%

and the Algorithm 3 converges to a relative error of 7.8%. It

is noticeable that in this case scenario, Algorithm 2 presents

a slightly better accuracy than the Algorithm 3. This result

validates the robustness of Algorithm 2 and Algorithm 3 with

respect to unmodelled disturbances.

Figure 3: Simulation result in the presence of additive disturbances in the
regressor vector. The purple line depicts the true value of the parameters. The
rest of the lines are the estimation evolution of the presented algorithms.

6. Experimental Validation

6.1. Experimental Set-up

In this section, the presented algorithms will be compared in

an experimental prototype. The experimental set-up incorporates

a PEMFC model H-100 with an open-cathode architecture. In

the cathode side, the stack includes a controlled fan that delivers

ambient air. The controller of the fan is implemented through

a NI-9505 PWM module of National Instruments. Moreover, a

sensor model EE75 of E+E Elektronik is included in the cathode

to measure the air velocity. In the anode side, pure hydrogen is

delivered through a compressed cylinder. The set-up does not

include any flow controller. Consequently, the PEMFC operates

in purged dead-end mode [29] with a pressure regulator that
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maintains the anode inlet at 0.4 bar.

Due to its open-cathode architecture, the PEMFC is sensitive

to the ambient temperature, humidity and gas composition. For

this reason, the PEMFC is enclosed inside an environmental

chamber that regulates humidity, oxygen concentration, and

temperature.

The cell temperature is measured through a type K thermo-

couple. The temperature of the stack, T , is assumed to be the

average of all cell temperatures.

The current can be modified through a programmable load

that emulates some external energy demand. Finally, an isolation

amplifier AD215 from Analog Devices is used to measure the

stack voltage, v f c and a Hall effect sensor model LTS 6 NP is

implemented to measure the current.

A scheme of the set-up and a photography can be found in

Fig. 4.

The signal y in (4) and the regressor vector, φ, require a set

of parameters that have been tuned to the considered PEMFC

model H-100. These parameters have been tuned following a

particle swarm optimization approach similar to the one used in

[14]. This set of parameters is presented in Table 2.

Table 2: H-100 model parameters during the experiment

Parameter Description Value
Er Theoretical cell potential 18.3816 V

ncell Number of cells 24
R Ideal Gas constant 8.314 J/(K mol)
F Faraday’s constant 96485 C/mol

Eca Activation energy ORR 70000 J/mol
A Area cathode catalyst layer 0.01 m2

6.2. Methodology

A specific current profile is introduced in the PEMFC stack

to generate a voltage, V , and temperature, T , profile. This signal

values are depicted in Figure 5. The current profile has been

designed to generate sufficient excitation in order to estimate the

parameters.

The experimental profiles in Figure 5 and the parameter

values in Table 2 are used to generate the signals y and φ that are

introduced in the presented algorithms to estimate the unknown

parameters, θ.

It should be mentioned that the parameters θ cannot be di-

rectly measured. Therefore, different from the numerical sim-

ulation analysis in Section 5, the estimation of the algorithms

cannot be compared with any ground truth. Consequently, in

order to validate the algorithms and compare its performance, a

specific methodology has to be developed.

As it will be shown in the next subsection, each algorithm

estimation converges to a different set of values at the end of

the experiment. These values can be used to compare the per-

formance of the algorithms. Precisely, once the algorithm has

converged to a value, θ̂
∗
, this value can be used to generate an

estimation of the voltage signal as follows

V̂ = ncell (Er + φ>θ̂
∗
)

where the regressor vector φ is computed with the data in Fig-

ure 5 and the parameters in Table 2. Then, the accuracy of the

estimated parameter, θ̂
∗
, can be computed through the mean

squared error between the estimated voltage, V̂ , and the mea-

sured voltage, V . That is,

MS E(θ̂
∗
) =

1
n

n∑
i=1

(V(i) − V̂(i)), (16)

where the sampling time to compute the mean squared error has

been fixed at 2 seconds. The algorithm with the lower mean

squared error computed through (16) can be concluded to be the

most accurate.

Finally, it should be stated that the presented algorithms

are implemented with the parameters in Table 3. The value of

these parameters are significantly lower than the ones during
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Figure 4: (a) Environmental chamber and H-100 PEMFC. (b) H-100 experimental set-up scheme.

Figure 5: Sensor data of the PEMFC experiment.

the simulations (see Table 1). This reduction on the parameters

slows down the convergence rate of the estimators, but, eases

the practical implementation of the algorithms to the considered

system with a sampling time of 2 seconds.

Table 3: Estimation algorithms design parameters during the experiment
Parameter Value

Algorithm 1
Γgd 0.1 · I3

Algorithm 2
α1 0.1
ΓA2 5 · I3

Algorithm 2
α2 0.1
β 0.1
ΓA2 5 · I3

6.3. Results and Discussion

The experimental data has been introduced in the Algo-

rithm 1 in (8), the Algorithm 2 in (12) and the Algorithm 3

in (15). The generated estimation is depicted in Figure 6. Simi-

lar to the Numerical Simulations in Section 5, each algorithm

presents a significantly different transient trajectory. Precisely, it

can be seen that the classic gradient descent presents oscillatory

behaviour, while the Algorithm 2 and Algorithm 3 presents a

much “smoother" trajectory.
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Figure 6: Unknown parameter estimation of the presented algorithms using
experimental data.

Furthermore, it is noticeable that each algorithm has con-

verged to a significantly different set of parameters. This result

shows why selecting the adequate algorithm has a significant

impact on the real-time parameter estimation problem. In or-

der to compare the accuracy of each parameter estimation, the

mean squared error (16) is computed in each algorithm. Pre-

cisely, the classic gradient descent presented a mean squared

error of 0.1123, the Algorithm 2 presented a mean squared error

of 0.1118 and the Algorithm 3 presented a mean squared error of

0.0295. This validates that the Algorithm 3 estimation has con-

verged to a more accurate set of parameters in the experimental

set-up.

7. Conclusions

This work has presented three algorithms to estimate in

real-time parameters of the PEMFC voltage equation. The first

algorithm is the classic gradient descent, while the other two are

estimators that are based on a set of pre-processing dynamics.

The main advantage of these pre-processing dynamics is that

reliable estimation can be obtained under an interval of excita-

tion condition, while the classic gradient descent (or recursive

least squares) requires a more stringent persistence of excitation

condition, that is rarely satisfied in PEMFCs. To the authors’

best knowledge, this is the first time that a real-time parameter

estimation algorithm that does not rely on the persistence of

excitation condition has been proposed for a PEMFC system.

The benefits of Algorithm 2 and Algorithm 3 in front of the

classic gradient descent have been validated through numerical

simulations and in an experimental prototype. These benefits

can be summarized as follows:

• Reliable estimation can be obtained in the absence of

persistence of excitation.

• The transient behaviour of the estimation is improved.

12



Precisely, while the classic gradient descent presents oscil-

latory behaviour, Algorithm 2 and Algorithm 3 presents a

much smoother convergence.

• The pre-processing dynamics acts as a low-pass filter,

which reduces the effect of the sensor noise on the estima-

tion.

• Adding disturbances to the regressor does not destabi-

lize the pre-processing dynamics and the estimation error

induced by these disturbances is reduced.

Finally, the numerical simulations and the experiment have

been used to compare the performance between Algorithm 2

and Algorithm 3. From the numerical simulations, it can be

concluded that Algorithm 3 presents much faster convergence

rate than Algorithm 2. Moreover, Algorithm 3 is less sensitive

to sensor noise. Nonetheless, in the presence of additive distur-

bances in the regressor vector, Algorithm 2 presented a slightly

lower estimation error. The benefits of Algorithm 3 over Algo-

rithm 2 have been further validated in the experimental prototype,

where it has been shown that the parameters estimated through

Algorithm 3 presented significantly better voltage prediction

capabilities.

It should be remarked that these algorithms are not limited to

the considered set of parameters, and can also be implemented to

estimate other PEMFCs parameters. Indeed, it is expected that

these algorithms can be utilized to estimate parameters related

to the liquid water dynamics [16], where expecting a persistence

of excitation condition is unfeasible.
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