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Abstract

This paper develops a data-driven approach for incipient fault diagnosis based

on ANFIS and Takagi-Sugeno (TS) interval observers. First, the nonlinear

bioreactor system is identified using an adaptive neuro-fuzzy inference system

(ANFIS), which results in a set of polytopic TS models derived from measure-

ment data. Second, a bank of TS interval observers is deployed to detect sensor

and process faults using adaptive thresholds. Unlike other works that require

training fault data, only fault-free data is considered for ANFIS learning in

this work. Fault insolation is based on residual generation and evaluated on

a fault signal matrix (FSM). Parametric uncertainty and measurement noise

are considered to guarantee the method’s robustness. The effectiveness of the

proposed method is tested on a well-known bioreactor Continuous stirred tank

reactor system (CSTR) reference simulator.
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1. Introduction

Bioreactors, at their core, are vessels in which biological processes are carried

out under controlled conditions. They are fundamental tools in biotechnology,

used for cultivating cells or microorganisms to produce a wide range of products,

from pharmaceuticals to biofuels [1]. Bioreactors are designed to provide the5

optimal environment for achieving desired biochemical transformations, with

precise control over factors such as temperature, pH, oxygen supply, and sub-

strate concentration [2].

Despite their critical role, bioreactors are systems subject to various po-

tential risks. One of the primary concerns is the occurrence of operational10

faults, which can arise due to equipment faults, process deviations, or biological

factors such as contamination or unexpected cellular behavior [3]. These faults

can lead to significant consequences, including reduced product performance [4],

compromised product quality [5], and, in some cases, complete process fault [6].

Bioprocess faults can have serious consequences, from losing valuable products15

to potentially dangerous situations. In high-risk industries, such as pharma-

ceuticals, these faults can lead to substantial financial losses and delays in the

availability of products [7].

Motivated by these risks, developing robust fault detection and monitoring

systems is crucial. Such systems must identify and isolate faults quickly and20

adapt to biological processes’ complex and dynamic nature [8]. This has moti-

vated the development of new monitoring and control schemes in bioreactors,

where advanced technologies such as machine learning and artificial intelligence

are used [9].

Implementing fault detection and mitigation strategies is essential to guar-25

antee the stability and safety of these production processes [10]. Therefore, new

fault detection methods are necessary for the successful and sustainable opera-

tion of chemical systems and bioprocesses in industrial and research environments,[11].

Various strategies have addressed faults in CSTR reactors; the essential

methodologies over recent years are presented below, in [12] investigated the30
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detection and diagnosis of faults in a CSTR reactor using artificial neural net-

works using online approaches. Similarly, [13] presented a comprehensive fault

detection, diagnosis, and fault-tolerant control strategy, highlighting the impor-

tance of proportional-integral-derivative (PID) state feedback in FTC against

sensor faults. In that same sense, [14] developed a fault-tolerant active control35

scheme for nonlinear processes by integrating a nonlinear version of the method

based on the generalized probability index applied to CSTR systems. For their

part, [15] presented an algorithm for detecting and identifying faults in nonlin-

ear systems, combining the extended Kalman filter and neuro-fuzzy networks

applied specifically to CSTR.40

A scheme for sensor fault detection in CSTR reactor processes was presented

in [16], using an unknown input observer (UIO), exploring the concept of cross-

domain fault diagnosis. In [17] presented a comprehensive design that includes

a concentration estimator and a fault-tolerant control strategy to compensate

for failures in a CSTR actuator. This study also compared nonlinear, linear,45

and quasilinear models with variable parameters (qLPV) in CSTR systems.

For example, [18] proposed a fault-tolerant control strategy that monitors the

distance of the system state from the boundary of the dynamic safe set and

estimates the size of the fault.

Various works based on models for fault detection have been reported. For50

example, in [19], the problem of designing functional observers to diagnose fail-

ures in nonlinear systems in the presence of noise was addressed; the effect of

sensor noise on fault detection residuals was analytically studied. A robust in-

terval observer was designed to estimate the state and measured output of a

dark biohydrogen fermenter. The concentrations of glucose and biomass were55

estimated, reducing the influence of uncertainty, and faults were detected in sen-

sors [20]. In [21], an estimation of faults in sensors and actuators was proposed

with a control system in a wastewater treatment plant (WWTP), using the sys-

tem with a discrete TS fuzzy model to identify the system; fault detection was

performed using dual TS observers. Also, in [22], a fault detection scheme for60

sensors and actuators in a WWTP was presented based on low-order TS models
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and a generalized sliding mode observer. In [23], a UIO-type observer was de-

signed to detect and isolate faults in two bioreactors. The system has uncertain

nonlinear time delays; the method is robust to production disturbances.

In this context, ANFIS techniques emerge as novel approaches for study-65

ing faults in CSTR reactors, offering an advanced paradigm that combines the

adaptability of fuzzy systems with the learning capacity of neural networks,

thus providing a unique and practical perspective for analyzing and detecting

faults in these systems. The work of [24] explored fault-tolerant control using

a dedicated observer based on an adaptive neuro-fuzzy inference system (AN-70

FIS), complemented by state feedback control supported by a linear quadratic

regulator (LQR) in situations of an abrupt sensor fault. However, [25] used

the subtractive clustering technique to determine the ANFIS structure; this ap-

proach was highlighted when implementing a soft sensor in a chemical plant

and reaching it with an ANFIS-based soft sensor that is based on a quadratic75

cost function. Also, the proposal in [26] focused on a learning approach named

“Extreme-ANFIS”. This method was used to adjust the assumptions and pa-

rameters associated with the Takagi-Sugeno Fuzzy Inference System (TS-FIS)

because it is fast and straightforward.

This work proposes a hybrid approach to diagnose incipient faults of biopro-80

cess systems based on data-driven neuro-fuzzy techniques and Takagi-Sugeno

interval observers. It is highlighted that the identification of the dynamic system

of the bioreactor is based on ANFIS learning, which structures a set of convex

Takagi-Sugeno models. ANFIS is trained only with fault-free data. Then, fault

detection is carried out based on the residual generation obtained by the inter-85

val observers, affected by measurement uncertainty and noise. Different fault

scenarios are considered and evaluated with a fault signal matrix. The main

contributions of this work can be listed as follows:

• A hybrid approach combining ANFIS neuro-fuzzy systems and TS interval

observers for detecting and isolating incipient faults.90

• Utilization of fault-free system measurements for model identification in
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ANFIS, avoiding the need for various types of fault data typically required

in other methodologies.

• Development of interval observers based on TS models that provide robust

fault detection against parametric uncertainty and measurement noise.95

• A practical, data-driven scheme that eliminates the necessity for complex,

calibrated models, leveraging the adaptability of ANFIS and the precision

of interval observers under adaptive thresholds.

This document is organized as follows: Section 2 presents the case study,

fault scenarios, and data preparation. Section 3 describes the fault diagno-100

sis methodology, the structure of the ANFIS, and the design of the interval

observers; then Section 4 presents the results; finally, Section 5 presents the

conclusions.

2. Model of bioreactor CSTR system

Below is a generic model based on fundamental principles for a CSTR biore-105

actor system that operates continuously in a second-order exothermic reaction,

validated in [27] and [28], where species A becomes species B. The equations

(1–3) are material and energy balances for a chemical process.

dC

dt
=
Q

V
(Ci − C)− akC + ν1 (1)

dT

dt
=
Q

V
(Ti − T )− a

(∆Hr)kC

ρCp
− b

UA

ρCpV
(T − Tc) + ν2 (2)

dTc
dt

=
Qc

Vc
(Tci − Tc) + b

UA

ρcCpcVc
(T − Tc) + ν3 (3)

where the bioreactor process variables encompass Ci, the molar concentra-

tion of the inlet reactant, and the concentration C of output product . Both110

are pivotal for the reaction’s progress and are measured in moles per liter. The

reactor’s operational temperature is given by T , while Tc indicates the tem-

perature of the cooling or heating jacket, both vital for managing the reaction
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rate and measured in Kelvin. The coolant flow-rate Qc, measured in liters

per minute, is essential for maintaining the reactor temperature. The variables115

Ci, Ti, and Tci denote the entering reactant concentration, temperature, and

coolant temperature, respectively, which are critical for establishing the starting

conditions of the reaction process. The k is an Arrhenius-type rate constant,

u =
[
Ci Ti Tci

]T
and y =

[
C T Tc Qc

]T
are the inputs and out-

puts respectively, and νi represents the process noise. The values of constant120

process parameters are listed in Table 1.

Table 1: Constant values in the CSTR model

Parameter Description Value Units

k0 Pre-exponential factor to k 7.2× 1010 min−1

ρ, ρc Fluid density Q g/L

Cp, Cpc Fluid heat capacity 1 cal/g/K

∆Hr Heat of reaction −2× 105 cal/mol

UA Heat transfer coefficient 7× 105 cal/min/K

E/R Activation energy 1× 104 K

V Trank volume 150 L

Vc Jacket volume 10 L

Q Inlet flow-rate 100 L/min

The CSTR schematic in Figure 1 illustrates the configuration, highlighting

measurement points and the implemented control strategy. Specifically, the

reactor temperature (T ) is regulated by adjusting the coolant flow-rate (Qc). For

added realism, the controller parameters (Kc = 1.0 and τI = 0.2) are configured125

to saturate below 10L/min and above 200L/min. Intentionally introducing

saturation is essential for simulating scenarios where a developing fault escalates

to a point where control mechanisms cannot effectively manage it. In the model,

both parameters a and b are initially set to 1.00 during normal operation. The

simulation can replicate catalyst decay and heat transfer fouling by gradually130
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reducing these values to zero. Additionally, various faults in the system include

sensor drifts affecting each of the seven measured variables. Further information

on these potential fault scenarios is provided in Table 2.

𝐶[𝑚𝑜𝑙/𝐿]

𝑇𝑖[𝐾]

𝑇𝑐𝑖[𝐾]

𝑄𝑐[𝑚𝑜𝑙/𝐿]

𝑇𝑐[𝐾]

𝑇[𝐾]

TC

𝐶𝑖[𝑚𝑜𝑙/𝐿]

Figure 1: Scheme representing a closed-loop CSTR.

Table 2: Fault Cases in CSTR

Fault ID Description Value of δ Type

1 a = a0 exp(−δt) 0.0005 Multiplicative

2 b = b0 exp(−δt) 0.001 Multiplicative

3 Simultaneous Faults 1 and 2 - Multiplicative

4 C = C0 + δt 0.001 Additive

5 T = T0 + δt 0.05 Additive

6 Tci = Tc,0 + δt 0.05 Additive

7 Qc = Qc,0 + δt −0.1 Additive

2.1. Preparation of data for ANFIS training

Preparing CSTR system data involves conducting simulations over a dura-135

tion of 1200 minutes at a sampling frequency of 4 samples per minute. These

simulations are carried out under fault-free conditions. System inputs are gen-

erated using a random seed and are subject to measurement noise during the

simulations. Since the proposed scheme is data-driven, data is collected from
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Table 3: Output variables to be estimated in regressive form

Output yi Regressive form

Ĉ(k) (C(k), C(k − 1), C(k − 2), Ci(k), Ti(k), Tci(k))

T̂ (k) (T (k), T (k − 1), T (k − 2), Ci(k), Ti(k), Tci(k))

T̂c(k) (Tc(k), Tc(k − 1), Tc(k − 2), Ci(k), Ti(k), Tci(k))

Q̂c(k) (Qc(k), Qc(k − 1), Qc(k − 2), Ci(k), Ti(k), Tci(k))

both input and output sensors. A crucial consideration in data preparation is140

addressing the inherent nonlinearity of the CSTR system. To effectively capture

this nonlinearity, variables are estimated regressively, incorporating information

from two previous instances k. This approach enhances the modeling of complex

and nonlinear relationships in the system’s behavior. The estimated output

variables related to input are structured in the regressive form, as detailed in145

Table 3.

These regressive expressions will serve as inputs for the ANFIS networks, and

through learning, they can identify the estimated variables and obtain Takagi-

Sugeno models to design the interval observers.

3. Hybrid fault diagnosis scheme for the CSTR system150

This section presents a hybrid method for fault diagnosis in CSTR biore-

actors, utilizing exclusively available measurement data during the operational

process, as shown in Figure 2. This approach centers around applying Adaptive

Neuro-Fuzzy Inference Systems (ANFIS) to identify the inherent nonlinear dy-

namic of the bioreactor, with the training process utilizing fault-free operational155

data for capturing system dynamics under normal conditions. Building on the

learning acquired from ANFIS, generated sets of Takagi-Sugeno systems provide

a more accurate representation of the bioreactor’s behavior under adaptative op-

erational conditions. To enhance fault detection, design interval observers with

adaptable thresholds, dynamically adjusting to variations in system conditions160
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and intervening in the early detection of anomalies, thereby improving process

reliability and safety. Finally, fault isolation is addressed through an analysis

of the fault incidence matrix, offering an efficient strategy for identifying the

location and nature of potential faults within the CSTR bioreactor.

Bioreactor

𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
𝑇𝑇𝑐𝑐𝑐𝑐

𝑢𝑢𝑖𝑖(𝑘𝑘)

𝐶𝐶
𝑇𝑇
𝑇𝑇𝑐𝑐
𝑄𝑄𝑐𝑐

𝑦𝑦𝑖𝑖(𝑘𝑘)

Measurements

ANFIS-
TS

𝑇𝑇𝑐𝑐(𝑘𝑘)
𝑇𝑇𝑐𝑐(𝑘𝑘 − 1)

𝑢𝑢𝑖𝑖(𝑘𝑘)

�𝑇𝑇𝑐𝑐(𝑘𝑘) Interval 
TS 

Observer

𝑇𝑇𝑐𝑐 (𝑘𝑘)

𝑇𝑇𝑐𝑐(𝑘𝑘)

ANFIS-
TS

𝑄𝑄𝑐𝑐(𝑘𝑘)
𝑄𝑄𝑐𝑐(𝑘𝑘 − 1)

𝑢𝑢𝑖𝑖(𝑘𝑘)

�𝑄𝑄𝑐𝑐(𝑘𝑘) Interval 
TS 

Observer

𝑄𝑄𝑐𝑐 (𝑘𝑘)

𝑄𝑄𝑐𝑐 (𝑘𝑘)

Adaptive threshold

𝑦𝑦𝑖𝑖(𝑘𝑘)

𝑦𝑦𝑖𝑖 𝑘𝑘 ,𝑦𝑦𝑖𝑖(𝑘𝑘)
𝑟𝑟𝑖𝑖(𝑘𝑘), 𝑟𝑟𝑖𝑖(𝑘𝑘)

Fault detection

Fault signal matrix

𝜑𝜑𝑖𝑖(𝑘𝑘)

Diagnosed fault

ANFIS-
TS

𝐶𝐶(𝑘𝑘)
𝐶𝐶(𝑘𝑘 − 1)

𝑢𝑢𝑖𝑖(𝑘𝑘)

𝐶̂𝐶(𝑘𝑘) Interval 
TS 

Observer

𝐶𝐶 (𝑘𝑘)

𝐶𝐶(𝑘𝑘)
𝐶𝐶(𝑘𝑘 − 2)

ANFIS-
TS

𝑇𝑇(𝑘𝑘)
𝑇𝑇(𝑘𝑘 − 1)

𝑢𝑢𝑖𝑖(𝑘𝑘)

�𝑇𝑇(𝑘𝑘) Interval 
TS 

Observer

𝑇𝑇 (𝑘𝑘)

𝑇𝑇(𝑘𝑘)
𝑇𝑇(𝑘𝑘 − 2)

𝑇𝑇𝑐𝑐(𝑘𝑘 − 2)

𝑄𝑄𝑐𝑐(𝑘𝑘 − 2)

Figure 2: Hybrid scheme for fault diagnosis in CSTR.

3.1. Obtaining Takagi Sugeno systems from ANFIS learning165

Neuro-fuzzy approaches, integrating the advantages of artificial neural net-

works and fuzzy inference systems, have been instrumental in identifying nonlin-

ear behaviors [29]. The ANFIS generates a weighted sum of linear models using

a multilayer feedforward network consisting of antecedent and consequent parts.

Hybrid training algorithms are then employed to ascertain the neuro-fuzzy pa-170

rameters corresponding to each part of the network. As illustrated in Figure 3,
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the ANFIS builds a Takagi-Suigeno model to approximate the variables outputs

of bioreactor y. For example, the input vector θ incorporates variable estimate

C, encompassing values such as C(k), C(k − 1), C(k − 2), Ci(k), Ti(k), and

Tci(k). ANFIS captures the nonlinear behavior and is expressed as polytopic175

Takagi-Sugeno models. The learning stage utilizes fault-free sensor data, struc-

tured to include the input data for ANFIS. The ANFIS model approximates

𝜂11

𝜂21

𝐶(𝑘)

𝜂12

𝜂22

Π1

Π2

Π𝑖

Π32

𝑁1

𝑁2

𝑁𝑖

𝑁32

𝜉1

𝜉2

𝜉𝑖

𝜉32

∑ መ𝐶(𝑘)

ҧ𝜇1𝜇1

𝐶𝑖(𝑘)

𝐶(𝑘 − 1)

𝜂13

𝜂23

𝑇𝑖(𝑘)
𝜂14

𝜂24

𝑇𝑐𝑖(𝑘)
𝜂15

𝜂25

𝜇32
ҧ𝜇32

𝜇2

𝜇𝑖

ҧ𝜇2

ҧ𝜇𝑖

Inputs Layer 1 Layer 2 Layer 3 Layer 4 Output

Figure 3: ANFIS architecture to identify the C variable.

the nonlinear behavior of the bioreactor and is represented through polytopic

Takagi-Sugeno models. The datasets utilized during the learning stage consist

of fault-free sensor data. The input data for ANFIS are constructed for each180

output y and are organized as follows:

θ =
[
C(k) C(k − 1) C(k − 2) Ci(k) Ti(k) Tci(k)

]T
. (4)

**Layer 1**: Known as fuzzification or the antecedent/premise layer, this

layer employs Generalized Bell-Shaped membership functions (MF) for fuzzifi-

cation. Each Bell-Shaped function, denoted as η(·), is characterized by three

neuro-fuzzy parameters (amo, bmo, cmo). The function is defined as ηmo(θo) =185

1

1+ θo−cmo
amo

2bmo
, where θ represents the vector of ANFIS input variables (referred
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to as scheduling parameters), NMF represents the number of MF per scheduling

parameter, and the parameters are adjusted during training epochs.

**Layer 2**: This layer generates rules utilizing the previously defined Bell-

Shaped functions. Each of the Nv = (NMF )
Nθ = 64 nodes is a fixed node190

that multiplies incoming signals and sends the product. The computation is

expressed as µi(θ) =
∏Nθ

o=1 ηmo(θo), where each scheduling parameter θo is esti-

mated and varies within a defined interval θo∈
[
θo, θo

]
⊂R.

**Layer 3**: This normalization layer computes the weighted values associ-

ated with each rule as µ̄i(θ) =
µi(θ)∑Nv
i=1 µi(θ)

.195

**Layer 4**: Referred to as defuzzification or the consequent layer, this

layer employs the fuzzy if-then rules of Takagi and Sugeno [29]. The rules are

expressed as Ri : IF θ1 is ηm1 AND, . . . , AND θNθ
is

ηmNθ
THEN µ̄iξi = µ̄i(θipi + hi), ∀i = 1, . . . , Nv.

**Output**: This layer determines the overall output by summing all in-200

coming signals from the defuzzification layer, i.e.,
∑Nv

i=1 µ̄iξi.

After the completion of ANFIS training and the computation of normalized

weights along with consequent parameters, the subsequent step involves the con-

struction of the polytopic Takagi-Sugeno representation. For this illustration,

we consider the case of C, which is formulated as follows:205

Ĉ(k) =

Nv∑
i=1

µ̄i(θ(k))
(
p1iC(k) + p2iC(k − 1)p3iC(k − 2)+ (5)

p4iCi(k) + p5iTi(k) + p6iTci(k) + hi

)
.

Terms in (5) can be rearranged as:

Ĉ(k) =

Nv∑
i=1


µ̄1
i (θ(k))

µ̄2
i (θ(k))

µ̄3
i (θ(k))





Ai︷ ︸︸ ︷
p11i p12i p13i

p21i p22i p23i

p31i p32i p33i


x︷ ︸︸ ︷

C(k)

C(k − 1)

C(k − 2)

+

Bi︷ ︸︸ ︷
p14i p15i p16i

p24i p25i p26i

p34i p35i p36i


u︷ ︸︸ ︷

Ci(k)

Ti(k)

Tci(k)

+

hi︷ ︸︸ ︷
h1i

h2i

h3i




,

(6)
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where the superscript ι = 1, 2, 3 indicates the number for each learned state.

The polytopic equation is rewritten as a state-space presentation:

x(k + 1) =

Nv∑
i=1

µ̄i(θ(k))
(
Aix(k) +Biu(k) + hi

)
,

y(k) = Cx(k), (7)

In this context, Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , hi ∈ Rnx , and C ∈ Rny×nx de-

note the system matrices, and y(k) ∈ Rny is calculated based on these matrices.210

It is essential to note that the system is subject to uncertainties originating from

model mismatches model, such that Takagi-Sugeno is structured as follows:

x(k + 1) =

Nv∑
i=1

µ̄i(θ(k))
(
(Ai +∆Ai)x(k) +Biu(k) + hi

)
,

y(k) = Cx(k), (8)

Here, ∆Ai represents the level of uncertainty. The uncertain matrices’ magni-

tudes are directly linked to the fuzzy parameter values, and they are fine-tuned

based on the minimum deviation to encapsulate the nominal values of the con-215

vex model. This adjustment process is carried out iteratively in the course of

ANFIS learning. During this iterative learning, recursive least squares (RLS)

play a key role in determining the optimal values for the covariance matrix,

which encapsulates parameter uncertainties. The uncertainty in the TS model

parameters is quantified using the error covariance matrix obtained from the220

fuzzy parameter estimation process. The covariance matrix for matrix Ai is

expressed as:

Cov(Ai) =


σ2
p11

0 0

0 σ2
p22

0

0 0 σ2
p33

 , (9)

where σ2
pij

indicates the variance of the parameter estimation for the ij-th

element of matrix Ai. From equation (9), the uncertainty matrix∆Ai is derived,

representing the standard deviations of the fuzzy parameter estimates:225
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∆Ai =


σp11

0 0

0 σp22 0

0 0 σp33

 , (10)

in this formulation, σpij
in equation (10) corresponds to the standard devia-

tion for each fuzzy parameter of matrix A, indicating the inherent uncertainties

within the model parameters and aiding in the assessment of the system’s ro-

bustness and reliability. Additionally, it is presupposed that the uncertainties

adhere to certain limits, outlined as follows:230

∆Ai ≤ ∆Ai ≤ ∆Ai. (11)

The fault detection test relies on generating residuals to assess the consis-

tency of measurements with system data. Nevertheless, parametric uncertainty

prevents obtaining an exact estimate of the state x(k) for direct data compari-

son. However, by taking into account (8), an observer is formulated to furnish

an interval estimate of x(k). This interval estimate encompasses both lower and235

upper bounds of x(k), ensuring that:

x̂(k) ≤ x(k) ≤ x̂(k). (12)

Given the uncertainty inherent in the system, the following fault diagnosis

observer is put forth.

3.2. Design of the interval observer for fault detection

Interval observer-based fault detection is used to diagnose faults in dynamic240

systems, considering the presence of unknown but bounded uncertainty. This

methodology is advantageous when precise information about the system pa-

rameters is unavailable, or the measurements have uncertainties or noise. An

interval observer-based approach establishes an uncertain range for unknown

or system parameters. This range is defined using intervals or sets of possible245
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values instead of point values. Interval observers are designed to estimate both

the system’s current state and the associated uncertainty range.

The major advantage of interval observers is that they provide a method

to deal with uncertainty without knowing its distribution. Instead of requiring

an accurate and complete model system, these observers use the available data250

on the uncertain parameters’ upper and lower limits or bounds. The interval

observer is designed to propagate and contain the unknown but bounded un-

certainty, allowing adaptive thresholds to be obtained for fault detection. This

methodology improves the ability to detect faults under variable operating con-

ditions and increases the system’s robustness against uncertainties and external255

variations. Hence, estimates of the states of the system can be obtained, and

any significant deviations from the expected values can be detected. By consid-

ering the unknown but fixed uncertainty, this technique allows early detection of

anomalies or abnormal behaviors in the system, boosting decision-making and

the corrective actions implementation.260

Then, the following fault diagnosis observer is proposed by considering this

uncertain system:

x̂(k + 1) =

Nv∑
i=1

µ̄i(θ(k))
(
(Ai − LiC)x̂(k) +Biu(k) + hi +∆Ai

+x̂+(k)−

∆Ai
+
x̂−(k)−∆Ai

−x̂+(k) +∆Ai
−
x̂
−
(k) + Liy(k)

)
,

x̂(k + 1) =

Nv∑
i=1

µ̄i(θ(k))
(
(Ai − LiC)x̂(k) +Biu(k) + hi +∆Ai

+
x̂
+
(k)−

∆Ai
+x̂

−
(k)−∆Ai

−
x̂+(k) +∆Ai

−x̂−(k) + Liy(k)
)
, (13)

where Li and Li are the observer gain matrices to be computed. ∆Ai
+

=

max
{
0, x̂

}
, ∆Ai

−
= ∆Ai

+ −∆Ai, ∆Ai
+ = max {0, x̂}, ∆Ai

− = ∆Ai
+ −∆Ai,

x̂
+
= max

{
0, x̂

}
, x̂

−
= x̂

+ − x̂, x̂+ = max {0, x̂}, x̂− = x̂+ − x̂. The upper and265
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lower values of the estimated output are obtained as:

y(k) = C+x̂(k)− C−x̂(k) (14)

y(k) = C+x̂(k)− C−x̂(k) (15)

where C+ = max {0, C} and C− = C+−C, subject to the observer equations

given by (13). The main problem is to compute the gain matrices of the interval

observer (13), such as the estimated states converge asymptotically to (14) and

(15) despite the uncertainties. Under the assumption that:270

x̂(0) ≤ x(0) ≤ x̂(0). (16)

the dynamics of the errors of the interval e(k) = x(k)− x̂(k) and e(k) = x̂(k)−

x(k), are defined as follows:

e(k + 1) = (Ai − LiC)e(k) +∆Aix(k)−∆Ai
+x̂+(k)+

∆Ai
+
x̂−(k) +∆Ai

−x̂+(k)−∆Ai
−
x̂
−
(k) (17)

e(k + 1) = (Ai − LiC)e(k)−∆Ai(k) +∆Ai
+
x̂
+
(k)−

∆Ai
+x̂

−
(k)−∆Ai

−
x̂+(k) +∆Ai

−x̂−(k) (18)

The following sufficient conditions in the linear matrix inequalities (LMI) for-

mulation are considered to solve this problem:

Theorem 3.1. [30] Given an LMI region defined as:275

D = {z ∈: fD(z) < 0} , (19)

where the characteristic function fD(z) is defined as:

fD(z) = α+ zφ+ z∗φT = {αkl + φklz + φlkz
∗}k,l∈[1,m] , (20)

with α = αT ∈ Rmxm and φ ∈ Rmxm, if there exist a diagonal matrix P ∈

R2nxx2nx , a symmetric matrix Q = QT ∈ R2nxx2nx , block diagonal matrices

Wi ∈ R2nxx2nx , i = 1, 2, . . . , N , with the following structure:

Wi =

 Wi ∈ Rnxxnx 0

0 Wi ∈ Rnxxnx

 (21)
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and constants ε1 > 0, ε2 > 0, γ > 0 such that:280

P > 0 (22)

Q > 0 (23)

and, for i=1,2,. . . ,N:
P

1+ε1
PDi −Wiγ

P
1+ε1

(PDi −Wiγ)
T P −Q− γη2I2nx

0

P
1+ε1

0 γI2nx
− εP

 ≥ 0 (24)

P

 Ai 0

0 Ai

−Wiγ ≥ 0 (25)



αklP + φkl


 AT

i 0

0 AT
i

P − γTWT
i


+φkl

P
 Ai 0

0 Ai

−Wiγ


k,l∈[1,m]

< 0

(26)

with:

Di =

 Ai +∆Ai
+ 0

0 Ai +∆Ai
+

 (27)

γ =

 C 0

0 C

 (28)

η = 2 max
i=1,...,N

(
∥∆Ai

+ −∆Ai
+∥2 + ∥∆Ai

−∥2 + ∥∆Ai
−∥2

)
(29)

ε = 1 + ε2 + (1 + ε1)
−1 (30)

then, the TS interval observer (13) with gains calculated as:

Li = P−1W i (31)

Li = P−1W i (32)

ensure the estimation of the interval x(k) given by (12), provided that (13) and

(16) are fulfilled.285
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Proof. The proof of the theorem can be consulted in Appendix A. ■

The overall system of LMIs (22),(23),(24),(25) and (26) can be solved with

software, for example, SeDuMi or Mosek can be used together with the Yalmip

toolbox.

3.3. Residual generation scheme290

By considering the estimated outputs (14–15), the following residuals can

be obtained as:

r(k) = y(k)− y(k); (33)

r(k) = y(k)− y(k); (34)

where r(k) ∈ RNy is the residual. In the ideal case, r(k) ≈ 0 if no faults are

present. However, it may be non-zero in a fault-free scenario due to measure-

ment noise and modeling errors.295

Formulating the fault detection test involves establishing clear criteria based

on the residual limits. If the calculated residual for a system output is outside

the defined interval, the presence of a system fault can be inferred. This ap-

proach not only provides early detection of faults but also allows a quantitative

evaluation of the severity of the fault since the magnitude of the residue indicates300

the deviation of the system from its normal behavior.

The passive approach is characterized by its ability to detect faults without

an additional excitation signal. Rather, it is based on continuously monitoring

system outputs and analyzing generated residuals. The adaptive threshold plays

an essential role in this approach since it allows the dynamic adjustment of the305

acceptability limits of the residue based on the system parameters’ uncertainties.

A passive and robust approach based on an adaptive threshold [31] can improve

fault detection. This approach can limit system parameter uncertainties’ impact

on the residual r(k) associated with each output y(k). In the absence of fault,

said residual should include the zero value within a predefined interval.310

y(k) ∈
[
y(k), y(k)

]
(35)
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where y(k) is the output, and y(k) and y(k) are the limits of the predicted

output given by (14) and (15).

The formation of residuals is based on the estimated variables outlined in

Table 3, and dedicated observers will be devised specifically for monitoring these

dynamic residuals:315

r1(k) = C(k)− Ĉ(k), (36)

r2(k) = T (k)− T̂ (k), (37)

r3(k) = Tc(k)− T̂c(k), (38)

r4(k) = Qc(k)− Q̂c(k), (39)

(40)

In a fault case, the residuals are activated when exceeding the limits of the

interval. If the interval limits are well defined, all false alarms can be avoided

because the analytical relationships between sensors (inputs and outputs) guar-

antee the separability of the effect of each fault on the residuals. These residuals

are stored in a fault incidence matrix, whose elements are constructed by con-320

sidering the following logic:

ψi,j(k) =

 0 if ri(k) ∈
[
ri(k), ri(k)

]
1 if ri(k) /∈

[
ri(k), ri(k)

] , i = 1, 2, . . . , Ny; j = 1, 2, . . . , Nf .

(41)

where Nf is the number of faults. This matrix systematically records the activa-

tion of residuals for different fault scenarios, with columns representing specific

faults and rows indicating individual residuals. Binary values within the ma-

trix—“1” for activation and “0” for non-activation—map the response of the325

system’s residuals to various faults. This structured approach enables fault

isolation by comparing observed residual activation signatures against the pre-

defined matrix, facilitating the identification of specific fault types. The fault

incidence matrix is a tool in the diagnostic framework, ensuring fault detection

and isolation based on distinct signatures of residual responses.330
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4. Results

This section presents the results of fault detection and isolation obtained in

various scenarios described for the bioreactor system, as mentioned in Section 2.

Table 2 summarizes all the evaluated faults. The configuration and data used

in the numerical simulations are as follows:335

• Nutrient flow profile, 100 L/h.

• Simulation time, 1200min.

• Sampling rate, four samples per minute.

• Data vector for each variable, consisting of 4 800 samples.

For effective learning and to avoid overfitting of ANFIS, the datasets from each340

variable were divided into three subsets: 70% as the training subset, 15% as the

testing subset, and 15% as the validation subset.

Table 5 contains the training results for the system identification, the num-

ber of fuzzy rules corresponding to the scheduling parameters obtained during

ANFIS learning, and the Root Mean Square Error (RMSE) used to measure the345

accuracy of ANFIS obtained from the following equation:

RMSE =

√√√√ 1

Nϵ

Nϵ∑
ϵ=1

(yϵ − ŷϵ)2 (42)

where yϵ is the target variable, ŷϵ is the ANFIS output and Nϵ is the number of

data samples. Note that input perturbations change the dynamics of the sys-

tem, such that measurements are distributed and correlated in a non-Gaussian

manner. To train the ANFIS, 40 simulations were made in fault-free conditions.350

The difference between the simulations lies in the inputs with random seeds

and process noise. The concentration variable (Ci) is centered around a mean

of 1, and a random number generator block with a variance of 0.002 and seed

generated by “randi(100000)” is added. For the temperature variables (Ti and

Tci), with a baseline of 350 Kelvin and a random number generator block with355
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a variance of 2 and seed generated by “randi(100000)” is added. These spec-

ified ranges ensure that the simulations reflect the operating input spectrum,

considering various conditions that could affect system performance. Figure 4

shows an example of the inputs.
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352
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350
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Figure 4: Random system inputs for CSTR simulation testing.

Table 4 summarizes the hyperparameters used in training for the ANFIS360

model in this study. The chosen hyperparameters, including the fuzzy struc-

ture, number of inputs and output, fuzzy rules, and specific settings for the

training process, are optimized to enhance the model’s predictive accuracy and

computational efficiency.
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Table 4: Hyperparameters of the ANFIS Model

Hyperparameter Value

Fuzzy Structure Takagi-Sugeno

Inputs/Output 6/1

Number of Fuzzy Rules 64

Membership Function Type Generalized Bell-Shaped

Minimum Improvement 1× 10−4

Number of Epochs 150

Initial Step Size 0.01

Step Size Decrease Rate 0.8

Step Size Increase Rate 1.1

ANFIS training was carried out for each estimated variable in Table 3. The365

identification results of the nonlinear system of the bioreactor are presented in

Table 5, the error metrics are averaged across all scenarios.

Table 5: Training results of each output variable of CSTR.

Related variable Number of scheduling parameters RMSE

Ĉ(k) 64 7.1681x10−4

T̂ (k) 64 4.8035x10−4

T̂c(k) 64 4.9434x10−4

Q̂c(k) 64 6.5689x10−4

The process presented in Sections 3 is executed. Various simulations are

done within the bioreactor system to yield a fault-free dataset and structure

the polytopic TS systems. For instance, Figure 5 shows the plot of the inter-370

val observer corresponding to the concentration of the output product C; and

Figure 6 shows the plot of the interval observer corresponding to the coolant

flow-rate Qc. The blue and yellow lines represent the upper and lower limits,

respectively. These boundaries stand generated by the interval observer cover-
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ing the C and Qc variable in fault-free states. When a fault appears, and if375

it overextends these thresholds, it is a candidate to be considered according to

the FDI method. The interval observers were designed appropriately, where the

limits of the intervals are well defined, as seen in Figures 5 and 6. Consequently,

all false positives can be avoided because the analytical relationships between

the sensors guarantee the separability of the effect of each fault on the residuals380

contained in the fault signal matrix.
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Figure 5: Interval observer of concentration of the output product.

A series of simulations were conducted to validate the proposed fault detec-

tion methodology. These simulations were based on the fault scenarios in Table

2 of Section 2 to assess the effectiveness of the interval observers implemented

within the system. These observers demonstrated a high proficiency in detecting385

incipient faults, underscoring the robustness of this approach.

Specific instances are highlighted to understand the fault impacts and the

observers’ responses. Figure 7 clearly depicts Fault 1 of Catalyst decay affect-

ing the concentration product. This incipient fault becomes detectable when

it surpasses the lower threshold set by the observer, showcasing the sensitiv-390
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Figure 6: Interval observer of coolant flow-rate.

ity of our system to deviations from normal operating parameters. Similarly,

Figure 8 offers an insightful visualization, where Fault 5, categorized as an in-

cipient type, exceeds the upper threshold after 200 minutes of operation. This

delayed response indicates the subtle nature of such faults and the necessity for

sophisticated detection mechanisms like the one that has developed.395

Beyond these individual cases, all other fault scenarios outlined were sub-

jected to evaluation. The results of these assessments were systematically

recorded in a fault incidence matrix, shown in Table 6. This matrix analyzes the

patterns of each fault occurrence within the system. Although, in some cases,

the same residuals are activated for the faults, it can be analyzed by columns400

and verify that a pattern exists for each fault case.

In the analysis of fault diagnosis within the CSTR system, two primary fault

types are considered: multiplicative and additive. Faults categorized as mul-

tiplicative, specifically faults 1 to 3, are detected within 2 Ts or 30 seconds,

considering a sampling time (Ts) of 15 seconds. These faults are indicative of405

progressive changes in process parameters. In contrast, additive faults, num-
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Figure 7: The concentration of the product affected by fault 1 of Catalyst decay.
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Figure 8: Fault 5 due to a bias in the T sensor.
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Table 6: Fault signal matrix for seven of fault scenarios

FSM f1 f2 f3 f4 f5 f6 f7

r1 1 0 1 1 0 0 0

r2 0 1 1 0 1 0 0

r3 1 0 1 0 0 1 0

r4 0 1 1 0 0 0 1

bered 4 to 7, are identified within 3 Ts or 45 seconds. Such faults typically

indicate immediate, linear deviations in system parameters or readings.

Further enhancing this analysis, the percentage change at the time of de-

tection for each fault has been quantified to provide insight into the extent of410

the system’s deviation from normal operating conditions. Table 7 illustrates the

detection times for each fault within the system, along with the calculated per-

centage change, offering a comprehensive view of the fault impact and detection

dynamics.

Table 7: Detection Times for Faults in CSTR with Percentage Change

Fault ID Type Time of Detection (Ts) Percentage Change

1 Multiplicative 2 -0.025%

2 Multiplicative 2 -0.050%

3 Multiplicative 2 -0.075%

4 Additive 3 0.075%

5 Additive 3 0.011%

6 Additive 3 0.011%

7 Additive 3 -0.050%
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5. Conclusions415

This study has successfully demonstrated the ANFIS methodology’s efficacy

in modeling bioreactors’ nonlinear dynamics. The training with ANFIS cap-

tured the complexities inherent in these systems and was also reflected in the

precise prediction of output product concentrations. This highlights ANFIS’s

ability to represent bioreactor behavior accurately.420

The convex Takagi-Sugeno systems derived from ANFIS proved efficient

tools for designing interval observers in fault detection. These observers show-

cased remarkable robustness against uncertainties and measurement noise, com-

mon challenges in real-world industrial applications. The successful detection

and isolation of all proposed fault cases using a fault incidence matrix further425

emphasize the system’s ability to identify specific issues within the bioreactor

process.

Compared to other machine learning approaches, a notable advantage of

this method is its reliance solely on fault-free data. This aspect simplifies data

collection and enhances the system’s adaptability to varying operational condi-430

tions, a significant benefit for practical applications. Furthermore, this approach

does not require knowledge of the system’s dynamic equations. This indepen-

dence from detailed mathematical models is a considerable advantage over other

methods that depend on such information, making the proposed method more

versatile and easier to implement in diverse bioprocess scenarios.435

Lastly, the practical applicability of this method in industrial settings and

types of bioreactors makes it a valuable solution for a wide range of applications

in biotechnology. Dynamic system identification under uncertainty and noise

makes fault detection methods robust, and ANFIS does not require fault data

or detailed knowledge of the system’s dynamic equations.440

This study focuses on applying ANFIS Type 3 with Takagi-Sugeno models,

chosen for their compatibility with the interval observer design. Due to the

potential of ANFIS type 2 to model fuzzy intervals, future exploration is con-

sidered for the identification stage. Future work will address the integration of
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this methodology with other predictive maintenance strategies.445

However, there are some limitations of the current study. Although the

method has shown promising results in simulations, realistic applications can

present additional challenges, such as more complex noise patterns and un-

expected fault types. These factors can significantly distort the fault signals,

affecting the effectiveness of the method. Overcoming these challenges requires450

functional knowledge of the system through available sensor data. Future work

will focus on integrating this methodology with other predictive maintenance

strategies. This integration aims to improve detection effectiveness and con-

tinuous adaptation to new fault conditions, ensuring a dynamic and up-to-date

diagnostic response. Further research is expected to validate these strategies un-455

der real operating conditions to confirm their feasibility and robustness, thereby

expanding the applicability of the method in complex industrial scenarios.
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Appendix A. Proof of Theorem 3.1

Based on the analysis of [30], and considering the dynamics of the interval

errors (17), if (25) is fulfilled, then:

Ai − LiC, Ai − Li ∈ Rn×n
+ (A.1)

where Rn×n
+ denotes the set of real matrices with nonnegative elements.465

Therefore, the dynamics of (17) is cooperative [32], and x(k) is maintained

while the uncertainties are limited, and its elements are positive, following (11).

To demonstrate that x̂ and x̂ remain bounded for all k ≥ 0, the equations
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in (13) are rewritten as:

x̂(k + 1) = [Ai − LiC +∆Ai
+]x̂(k) + wi(x̂(k), x̂(k)) + δi(k) (A.2)

x̂(k + 1) = [Ai − LiC +∆Ai
+
]x̂(k) + wi(x̂(k), x̂(k)) + δi(k) (A.3)

With:470

wi(x̂(k), x̂(k)) = (∆Ai
+ −∆Ai

+
)x̂−(k)−∆Ai

−x̂+(k) +∆Ai
−
x̂
−
(k) (A.4)

wi(x̂(k), x̂(k)) = (∆Ai
+ −∆Ai

+)x̂
−
(k)−∆Ai

−
x̂+(k) +∆Ai

−x̂
−
(k) (A.5)

δi(k) = Liy(k)− |Li| (A.6)

δi(k) = Liy(k)−
∣∣Li

∣∣ (A.7)

Then, the boundedness of x̂ and x̂ is a consequence of the nonnegativity of

Ai−LiC+∆Ai
+ and Ai−LiC+∆Ai

+
, the boundedness of the inputs δi(k) and

δi(k) and the property of the functions wi and wi of being globally Lipschitz

[30], and is proved by introducing the system:

ξ(k + 1) = Giξ(k) + ϕi(ξ(k)) + δi (A.8)

where475

ξ(k) =

 x̂(k)

x̂(k)

ϕi(ξ(k)) =

 wi(ξ(k))

wi(ξ(k))

 δi(k) =

 δi(k)

δi(k)

 (A.9)

Gi = Di −

 Li 0

0 Li

Λ (A.10)

And:

|ϕi(ξ(k))| ≤ η |ξ(k)| (A.11)

with η defined as in (30). In fact, using Schur complement, it can be shown

that if (24) holds, the following is true for the increment ∆V (k) of the Lyapunov

function V (k) + η(k)TPη(k) [30]:
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∆V (k) ≥ −η(k)TQη(k) + (1 + ε−1
1 + ε−1

2 )δi(k)
TPδ1(k) (A.12)

that proves the boundedness of x̂ and x̂.480

Ultimately, it is essential to demonstrate that the closed-loop poles of the

interval observer TS reside within the set D , as defined in [33]. This task can

be approached with relative simplicity, as the closed-loop matrix of the interval

observer TS is expressed as follows:

Acl,i =

 Ai 0

0 Ai

−

 Li 0

0 Li

Λ (A.13)

In this manner, [30] is derived through the direct application of Theorem 2.2485

in [34] to the matrix Acl,i. This step concludes the proof.
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