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Abstract This paper presents a Fault Detection and Isolation (FDI) method that combines
Structural Analysis (SA) and machine learning data-driven techniques. The adaptive network
fuzzy inference system (ANFIS) is used to obtain a model of the real system to be monitored
using historical data from non-faulty scenarios. The structure of the model is given by the SA
by means of graphical or textual description of the system. The obtained model is formulated
as an observer where unknown but bounded process and sensor noises are considered. Then,
LPV observers are used to carry out the fault diagnosis using model residuals. Once observers
detect a residual inconsistency, a fault alarm is raised and the fault isolation triggered. Fault
isolation is carried out through the transformation of residuals using the Kramer function and
the Dempster-Shafer theory. The proposed fault isolation method considers the plausibility of
the activation of each residual and the SA information to provide the most probable fault.
Finally, a well-known four-tanks system illustrates the performance and results of the proposed

method.
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1. INTRODUCTION

Fault Diagnosis (FD) is of vital importance in the context
of complex industrial systems. The appearance of a fault
in an industrial system may result in the interruption
or complete paralysis of the whole process, causing huge
economical loss. In order to avoid the serious consequence
that may influence the performance of these systems, on-
line fault detection and isolation is required. Researchers
from various communities, particularly those in the fields
of automatic control and artificial intelligence, have been
exploring fault diagnosis for an extended period. These two
communities consider FD from their own point of view.
Consequently, there are two families of FD approaches:
the FDI (Fault Detection and Isolation) approaches and
the DX (Diagnosis) approaches (Travé-Massuyes, 2014).
The FDI approach uses techniques from control theory
and statistical decision making. On the other hand, the
DX approach uses techniques derived from the fields of
logic and computer science. The traditional idea of FD is
about using the quantitative model of the system to be
monitored, by defining the key indicator named residual,
which is the difference between the real output of the sys-
tem and the prediction output derived from a quantitative
model. Ideally, the residual should be zero in the case of the
correct system operation, but the presence of modelling
uncertainty and external noises make the residual always
deviate from zero. In order to distinguish a real fault
scenario from residual fluctuations due to modelling error
and noises, residual thresholds which include modeling

uncertainties can be used to guarantee the correct per-
formance of the fault detection.

In order to cope with this problem, Fang, Puig, and Zhang
(2021) introduces a Hybrid FD approach that combines
Model-Based and Data-Driven methods. In particular,
Structural Analysis (SA) allows to obtain the system
model in form of structural graph by-passing the difficulty
of obtaining the exact physical model of system, and only
requires some essential knowledge about the system func-
tioning. And once the structural model has been achieved
and the structural ARRs (Analytical Redundancy Rela-
tions) have been obtained, data-driven techniques can be
applied to obtain models for ARRs(Goupil, Chanthery,
Travé-Massuyes, and Delautier, 2022). Then, the analyti-
cal ARRs can be used to develop the system FD. Another
FD hybrid method is introduced in (Pulido, Zamarrefio,
Merino, and Bregon, 2019), this method uses model de-
composition techniques to find the ARRs so that a reduced
grey-box model can be designed.

Fault isolation aims at identifying the faults affecting
the system. Standard fault isolation methods (Blanke,
Kinnaert, Lunze, Staroswiecki, and Schroder, 2006) are
based on the use of observed binary fault signatures,
generated by the detection module, and their relation with
all the considered faults and their expected effect in the
ARRs. More recent fault isolation approaches are based on
the Bayesian reasoning framework as the ones proposed in
(Pernestal, Nyberg, and Wahlberg, 2006) and (Fernandez-
Canti, Blesa, Tornil-Sin, and Puig, 2015).
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This paper presents a hybrid fault diagnosis method that
combines structural analysis (SA) and machine learning
data-driven algorithms. Given a graphic (or textual) sys-
tem description and the available inputs/outputs measure-
ments, the structure of analytical redundancy relations
(ARRs) between some system inputs and outputs can be
determined with the aid of system SA. Then, applying a
machine learning data-driven approach (adaptive network
fuzzy inference system (ANFIS) (Karaboga and Kaya,
2019)) to historical data in non-faulty scenarios, analyt-
ical expressions between inputs and outputs are obtained.
Thereby, instead of finding ARRs from physical mathe-
matical model, combining SA and ANFIS using historical
data, a set of data-driven ARRs can be obtained and used
to implement a diagnosis system. Once the ANFIS model
for each ARR has been identified, it is reformulated in a
linear parameter varying (LPV) Luenberger observer form.
Then, a fault detection scheme based on LPV Interval
Observers (combining Kalman filter and pole placement
approaches) that take into account unknown but bounded
process and sensor noises is developed.

This paper also proposes a new fault diagnosis method
that combines the Dempster-Shafer evidence theory (Shafer,
1976) and the Bayesian reasoning to assess the residuals
computed considering interval observers in order to deter-
mine the most probable fault.

A well-known case study based on a four-tank system is
used for illustrative purposes.

The paper has the following structure: Section 2 presents
the data-driven model, and it is followed by the Section
3 where interval LPV state estimation for fault detec-
tion is developed. In the Section 4, it is presented the
fault isolation method based on structural analysis and
Dempster-Shafer theory. In Section 5, a case study of four
tanks is introduced to show the practical application of the
proposed method. Finally, Section 6 draws the conclusions
of the present paper.

2. DATA-DRIVEN MODEL

It will be considered a generic system with measured
outputs y € R™ and inputs u € R"™. Then, the
behaviour of the system can be described by the following
mathematical equations

9i(k) =fi(yi(k = 1), .., yi(k — 1), y_;(k = 1),
v Yok —ng),ui(k—1), ..., ui(k —ng))

1=1,..,my

(1)

where
Y-i(k—3) = y(k = j)\wi(k — j) (2)
u(k—j)=ulk—j) j=1..,n, (3)
and f;() is a function that considers the n, previous values

of the measured variables to provide an estimation of the
i-th component of y at instant & denoted by ¢;(k) € .

i=1..,n4

Defining
vi(k —j) = (y~i(k —7) wilk—Jj))
equation (1) can be rewritten as
9i(k) =fi(yi(k — 1), ..., yi(k — na), vi(k = 1), ..., vi(k — ng))
1=1,..,ny
(4)

71=1,...,n,

In (Fang, Blesa, and Puig, 2023), it was proposed to use an
adaptive network-based fuzzy inference system (ANFIS)
and calibration data to obtain model (4). In addition, the
model was formulated as a LPV state-space (SS) model as
follows
il + 1) = Ay(p,(K))a:() + Bi(p,(k))vi (k)
Ji(k) = Cizi(k) + ei(p;(k))

3. INTERVAL LPV STATE ESTIMATION AND
FAULT DETECTION

(5)

Considering that the actual behaviour of the system is
affected by process and sensor noises denoted respectively
as w;(k) and n;(k), model (5) can be expressed as
zi(k+1) = Ai(p;(k))zi(k) + Bi(p;(k))vi(k) + Ewiwi(k)
yi(k) = Cizi(k) + ei(pi(k)) + E

(6)

In order to obtain a suitable output estimation in the
presence of model errors and disturbances, model (5) is
formulated as the Luenberger observer

&i(k+1) = Ai(py(k))Zi(k) + Bi(p;(k))vi(k)

+Li(p; (k) (yi (k) — (k)

9i(k) = Cizi(k) + ei(p;(k))
As in the case of (5) matrix A; depends on p,(k), pro-
portional gain matrix L; will also depend on p,(k) and
L;(p;(k)) can be expressed in polytopic form as

Li(p;(k)) = Z 1l (p; (k)L

vi Th

(7)

(8)

where L7 j =1,..,n, are the vertex of L;(p,(k)).
8.1 Fuault detection strategy

Considering unknown but bounded process and sensor
noises w;(k) € W and n;(k) € V in (6) Vk where sets
W and V are zonotopes. A zonotope is composed by a
center ¢ € R" and a generator matrix R € R"*P and it is
defined as a polytopic set which is the linear image of unit
hypercube:
(c,R) ={c+ Rs,|s]|, <1}

Then, sets W and V can be defined as

W = (cy, Ry)

V= <Cva Rv>
The IOA (Interval Observer Approach) can be applied to
the Luenberger observer defined in (7) by applying zono-

tope properties and the state estimation can be bounded
by the following zonotope

X (k) = (ca(k), Rz (k) (11)
where the center ¢, (k) and the generator matrix R, (k) of
the zonotope can be recursively computed using

ca(k+1) = (Ai(p;(k)) — Li(p;(k)) Ci) ca(k)
+B;(p;(k))vi(k) + Li(p;(k))y; (k)
R (k+1) = (((Ai(p; (k) — Li(p;(k)) C;) Ra (k)
Eyi  — Li(pi(k))Ey)
In the same way, output prediction calculation ¢;(k) can
be also bounded by a zonotope

Gi(k) € (cy(k), Ry(K)) (13)
whose center and matrix generator can be computed as

¢y (k) = Cicy(k
R§<1i> - [Ciéy)(m (14)

(9)

(10)

(12)

Evi]
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The consistency of actual output y;(k) and model (7) can
be assessed by means the residual defined as

ri(k) = yi(k) — ¢y (k) (15)
Then, the fault detection considering the IOA can be
carried out by means of checking

ri(k) ¢ (0, Ry (k)) = Fault (16)
Otherwise = No Fault
where the zonotope
(0, Ry (K)) (17)

contains all the possible fault free residuals (consistent
with the process and sensor noises).

In (Fang et al., 2023), it was proposed to use two different
IOAs to carry out the fault detection: Kalman filter and
Pole placement observers. As in a fault free scenario in the
presence only of modelling errors and sensor noises, the
Kalman filter IOA should provide the optimal estimation,
it is expected that the fault detection test based on this
filter will be the first that will detect a inconsistency when
a fault appears in the system. However, once the fault
is present in the system, Kalman observer will lose the
optimality and the Pole placement observer, designed to
minimise the fault following effect, is expected to have a
better performance to maintain the fault detection signal
active after the fault appearance.

Once observer gains L} j = 1,.., N, are computed fol-
lowing the Kalman filter and Pole placement approaches,
fault detection test defined in equation (16) can be applied
in parallel for the Kalman filter and Pole placement ap-
proach. i.e. two different detection tests will be running at
the same time. When one of the two fault detection tests
will find and inconsistency, it will be consider that a fault
is present in the system.

4. STRUCTURAL ANALYSIS AND FAULT
ISOLATION

Based on knowledge of the system obtained from its
graphic or textual description, analysing the different
system components, the structural model can be obtained,
which is a set of constraints between system inputs and
outputs. The structural model will be the starting point
for structural analysis.

The basic tool for the structural analysis is the concept of
matching in bipartite graphs. In simple terms, a match-
ing is a causal assignment which associates with every
unknown system variable a constraint that can be used
to determine the variable (Blanke et al., 2006). In most
of the cases, the matching is not unique, so that variables
which can be matched in several ways can be determined
in different (redundant) ways. The last situation provides
a means for fault detection and for reconfiguration.

Using matching process approach described in (Blanke
et al., 2006), a set of n,, ARRs as the ones defined in (1) but
that can have less components in y_,(k—j) and in u;(k—j)
defined in (2) and (3) can be obtained. So, the process
of model calibration considering the n, ARRs obtained
in the structural analysis will involve less computational
cost than considering that all input/output variables are
related, as considered in y_;(k — j) and in u;(k — j). In

addition, the structural information can be used for fault
isolation purposes.

Once a fault has been detected, The fault isolation can be
performed by considering the theoretical Fault Signature
Matriz (FSM), denoted as FSM. The elements of matrix
FSM: FSM;; i = 1,...,ny and j = 1,...,ny, where ny
number of different considered faults, are binary values and
indicate the theoretical incidence of the ny faults on the n,
residuals. i.e. FSM;; will be equal to 1 if the fault f; affects
the computation of the residual r; and 0 otherwise. This
binary information is provided by the structural analysis
of the system.

The columns of the FSM are known as theoretical fault
signatures and indicate which residuals are affected by a
given fault f;. Two faults ¢ and j will be isolable if columns
1 and j of FSM are different while the two faults will
be indistinguishable faults if columns ¢ and j of FSM
are identical. The fault isolation consist in checking the
matching between the different theoretical fault signatures
and a diagnostic signal ¢* = (¢1(k), - , Pny(k))

Diagnostic signal can be a binary vector also known
as observed fault signature whose components ¢;(k)

i = 1,...,n, indicate if residual r;(k) is consistent with
historical fault-free data (¢;(k) = 0) or not (¢;(k) = 1).

However, the fault diagnostic signal (or fault signal) for
each residual can be computed in a non-binary way in
order to obtain a more accurate fault diagnosis and avoid
the noise chattering effect. As in (Puig and Blesa, 2013),
where fault signals were calculated using the Kramer
function (Petti, Klein, and Dhurjati, 1990)

(’I‘i(k})/"'i,max(k)yl )
1+(ri (k) /7Ti,max (k))? lf TZ(k) =0

¢i(k) = (18)

ri(k)/7i min(k))* .

15‘(7'(i()]‘3/)/';'i,111i51()’f)))4 if
where 7; min (k) and 7; max (k) are minimum and maximum
values comptuted by IOA observers obtained by means
applying the interval hull to the residual zonotope (17).
The purpose of ¢;(k) is to normalize the residuals in a
range [0,1), i.e. ¢;(k) € [0,1) introducing a grade in the
residual evaluation: ¢;(k) = 0 perfect case, ¢;(k) = 0.5
residual violated, ¢;(k) ~ 1 residual severely violated and
all of the intermediate cases.

’I“Z(k) <0

In addition, a slide window with width T, can be defined
in order to find the maximum values of ¢;(k) defined in
(18) inside the window as follows

¢i,max (k) =

max

19
k€ [k, k—Ty] (19)

(Ipi(k)])
In this way, using ¢£1ax = (¢1,nlax(k)7 to a¢n7',max(k)) in
the fault isolation process the effect of the changes in
the residual values due to noise and fault-following effects
are minimized because only the peaks of fault signal are
stored.

4.1 Dempster-Shafer evidence theory

The Dempster-Shafer Theory (DST) (Shafer, 1976) is the
mathematical framework in order to handle uncertainty
and make decisions in presence of evidence from different
sources or same source at different time instants. These
evidences can be incomplete or conflicting.
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In a given situation, considering all possible hypotheses
which are mutually exclusive and exhaustive, this global
set is called Frame of Discernment, denoted as 6. The
DST defines three key parameters for considered situation:
Mass Function (m), Plausibility Function (Pl), Believe
Function (Bel). Mass Function (m) is pre-assigned to
every possible subset of the frame of discernment based
on available information, e.g. the expert knowledge. m(.A)
represents the degree of believe or evidence in favor of
hypothesis A. The mass function is defined over the
power set of A denoted as 2. The plausibility function
defines the degree to which a hypothesis is plausible with
evidence. It is calculated as the sum of all subsets of 6
which include the hypothesis, i.e. for the hypothesis A,
PI(A) = >  m(B;). The belief function measures the
B;|AeB;

degree of belief for a hypothesis, it can be defined as the
sum of subsets of # that only contain the the hypothesis
A, Bel(A) =5 m;(A).

Considering FSM € {0,1}"**"/ obtained from structural
analysis and the observed fault signal ¢ .y, the main
challenge of carrying out a fault diagnosis procedure is
to cope with the effect of the model uncertainty of the
IOA, i.e. the thickness of residual bounds 7; min(k) and
Timax(k) that can mask the effect of faults in residuals.
The probability mass of faults f; j = 1,...,nf can be
computed as

m(fj)zmgj) j=1,..n (20)

where N
m(53) =[] PGramasl ) 1)

with -
Pl ={ P N T @)

and « is a normalization constant.

On the other hand, other hypotheses as that only one of
the n, residuals has been activated can be defined. The
probability mass of this hypothesis for every residual r;
1 =1,...,ny can be computed as

m(ri)

m(r;) = i=1,..,ny (23)

«
with

Ny

m(Ti) = @i, max H (1 -
Je{L,..., ny H\i
Then, normalization constant a can be computed as

a= mlf;)+3_ mir)

Faults beliefs are directly obtained from faults probability
mass by

(bj}max) (24>

(25)

Bel(f;) = m(f;) (26)
But in the case of fault plausabilities, mass residual
hypothesis (23) that fit with the theoretical FSM have
to be considered

pl(fj) =m(f;) + Zy: m(ri) FSM;

i=1

j = 1,...,nf

(27)

Finally, given a fault signal ¢,.x, the fault likelihoods can
be obtained as
pl(f;)
p(¢maX‘fj) = nfi7
IZ pL(fi)
=1

(28)

4.2 Computation of the posterior probabilities

Given the FSM and the fault signals at time instant k:

L ax (k) = (#1,max(k), ", Pny,max(k)), the isolation of a
particular fault from the F.SM can be performed by means
of the computation of each fault posterior probability by
applying the Bayes rule:

P(f|Pmax (k) = P(Pmax (k)| f1)p(f5)

= OB p () )

where p(f;) is the prior probability assigned to fault
fjs P(fjlémax(k)) is the posterior probability assigned to
fault f;, and p(dmax(k)|f;)p(f;) is the likelihood that
the fault f; is behind the observed fault signal ¢max(k)
computed by (28). Finally, posterior probabilities (29) can
be computed recursively as long as new measurements
become available, since the posterior probabilities (29) can
be used as prior probabilities in successive iterations, i.e.

p(f;) = p(filPmax(k — 1)).

5. APPLICATION EXAMPLE: FOUR-TANKS
SYSTEM

The considered system in this section is the quadruple-
tank (Johansson, 2000), used in (Blesa, Puig, and Saludes,
2012) with the aim of performing fault diagnosis. The
inputs and outputs of the system are related by the
following model derived from physical principles

yi(k) = y1(k = 1) = §-/2gy1(k — 1) + 42 /2gy3(k — 1)
2y (- 1
ya(k) = ya(k — 1) — 4 \/2gya(k — 1) + 4 /2gya(k — 1)
+71247]ZQUQ(1€ — 1)

ys(k) = ys(k — 1) — %2 /2gys(k — 1) + Y3220 (5 — 1)
ya(k) = ya(k — 1) — % \/2gya(k — 1) + S50, (5 - 1)
(30)

where the inputs u; and usy are voltages of two pumps and
the outputs y1, y2, y3 and y, are the levels of four tanks.

Considering the output estimation model (1), the a first
order model f; is considered and only information of input
and output are used. Thus, the model (4) in this particular
case with four outputs and two inputs can be expressed as
follows:

9i(k) = fi(yi(k — 1), v;(k — 1))
where

vi(k—1)=(y_;(k—1)

i=1,..,4 (31

ul(kfl) UQ(kfl))Z:].,,ll

(32)
However, applying structural analysis with the elementary
relations of the different components of the system, as
proposed in Fang et al. (2023), the following set of of

models are obtained
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With the aid of structural analysis, the number of variables
implicated in equations is reduced remarkably comparing
0 (31). In addition, structural analysis can also be used
to study the effect of the faults in residuals obtained
comparing output measurements and estimations (31). In
particular, considering sensors faults fy,, fy.» fys +fus
and actuator faults fi,, fr,. This dependence can be
summarized in the FSM of Table 1. Afterwards, the ANFIS

Table 1. Theoretical FSM

fy1 fy2 fy3 fy4 fkl fk2
T1 1 0 1 0 1 0
T2 0 1 0 1 0 1
T3 0 0 1 0 0 1
T4 0 0 0 1 1 0

data-driven method is applied using some available fault
free historical data, by considering the minimal number of
branches in fuzzification layer (my = 2) and input variable
number (n,, = 2), the following LPV-IO model is obtained

4
ga(k) = = | D_ (uh(pa(k))ah | ys(k 1)
4 4 4
+ Z (3 (R))B3) | ug(k —1) + Z(M?’,(p?,(k))eé
” " (34)
where
ps(k) = (ys(k —1) wua(k—1)). (35)

Thereby, the LPV-IO form shown before can be rewritten
in state-space form as follows

T3(k+1) = As(ps(k))@s(k) + Bs(ps(k))vs(k) (36)
3(k) = Cszs(k) + es(p3(k))
where
As(p3(k)) = —aza(ps(k))
B3(p3(k)) = b3, (p3(k))
Canm1 ’ (37)
z3(k) = ys(k)

As mentioned in Sections 3.1 and 3.2, two observers
(Kalman filter and Pole placement) have been considered.
The thresholds 7; min (k) and 7; max (k) are computed with
the IOA. Analogoulsy, the rest three LPV-1O state space
models (g1(k). 92(k) and g4(k)) can be obtained in the
same way. Figure 1 shows the evolution of the residual
values and bounds using Kalman and Pole Placement
observers in a fault free scenario. As it can be seen, the
thickness of residual thresholds is wider in the case of
the pole placement observers because they are tuned to
mitigate the fault following effect using slow poles.

Figure 2 depicts the evolution of residual values and
bounds using the two IOA in a sensor y, fault scenario
(fya=4cm) at time instant 200s. As it can be seen, in
both approaches residuals r and r4 violate their residual
bounds. That is consistent with the the FSM of Table 1
(the column fy4 whose components corresponding to resid-
uals r5 and r4 are the only ones that are '1’). It can also be
observed that, once the fault is present in the system the
Kalman filter approach presents an inconvenient feature
the“fault following effect”, which shows the tendency of
the estimation model to follow the faulty output leading
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
1 T T T T T T T T T ‘

Q0 ‘

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
— e — {
4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Figure 1. Evolution of residual values (green) and bounds
(black) using Kalman (Up) and Pole Placement
(Down) observers in a fault free scenario

to a non-persistent activation of the inconsistency in resid-
uals. The pole placement observer is much less sensitive to
this undesired effect, as previously discussed. In order to
better combine the performance in a fault free scenario and
after a fault is present in the system of Kalman filter and
Pole Placement approaches respectively, the Kalman filter
is used to detect faults. But, once the fault is detected in
the system, pole placement observer residuals are used to
analyze the evolution of the fault in the system.

Finally, Figure 3 shows the results of the fault isolation
method proposed in this paper in the sensor fault scenario
fy, described before. This figure presents the posterior
probabilities (29) obtained by the fault isolation method
for every fault considered in Table 1. ie. fy,, fy,, fus)
fyar fr, and fi, denoted as Fy, Fy, F3, Iy, F5 and Fj
respectively in the subplots of the figure. As it can be seen,
the posterior probabilities converge quickly to the correct
isolation of fault f,, (i.e Fy).

6. CONCLUSION

This paper has introduced a method combining SA and
data-driven techniques in order to avoid the difficulty
of obtaining a physical model of a real system for FDI
purposes. The proposed method integrates IOA to con-
sider different uncertainties of the real system in order
to develop a more accurate fault detection. In addition,
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Figure 2. Evolution of residual values (green) and thresh-
olds (black) using Kalman (Up) and Pole Placement
(Down) observers in a sensor fault scenario f,
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Figure 3. Fault isolation in the sensor fault scenario f,,

the Dempster-Shafer Theory has been proposed to im-
plement the fault isolation by means the computation of
the plausibility of each residual. Finally, the application
example based on four-tanks system has illustrated the
performance of the proposed method.
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