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Abstract— This paper presents a fault prognosis approach
using data-driven structurally generated residuals. It assumes
that a set of residuals generated using structural analysis
(SA) and identified using data-driven approach are available.
Residuals are used for fault detection purposes activating
fault signals when residual values reach anomalous values. In
addition, it is possible to predict future faults by means of the
detection of anomalous residual deviations. Once an anomalous
change in the residual trend has been detected, it is proceed
to estimate when this residual deviation will result in a fault
detection and therefore which will be the Remaining Useful
Life (RUL) time of the system. For this purpose, the future
residual evolution is estimated by means of a regressor function.
Nominal and interval parameters of regressor function are
estimated with available residual data providing nominal and
interval values of the RUL of the system. A brushless direct
current (BLDC) motor is used as the application case study to
illustrate the performance of proposed approach.

I. INTRODUCTION

Fault diagnosis (FD) is of vital importance in nearly all dif-
ferent industrial fields already known. It consists in detecting
faults by means of analysing current available information
provided by the available sensors. In last years, FD has been
the subject of investigation among diverse communities, par-
ticularly those in the fields of automatic control and artificial
intelligence.[1]. Both communities have devised their distinct
diagnosis approaches: FDI (Fault Detection and Isolation)
methods rooted in engineering disciplines like control theory
and statistical decision-making, and DX approaches drawing
from fields such as logic, combinatorial optimization, search
algorithms, and complexity analysis. In recent years, there
has been a trend towards the development of fault diagnosis
methodologies that leverage aspects of both FDI and DX
approaches [2]. Both quantitative and qualitative models of
the system are required for both approaches to conduct
fault diagnosis effectively. The fundamental model-based
fault diagnosis approach involves comparing the observed
behavior of the system with its expected behavior predicted
by the model. This comparison typically involves comput-
ing a residual, which represents the difference between a
measured process variable and its estimated value provided
by the model. Ideally, these residuals should be zero to
ensure the system functions correctly. However, factors such
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as external disturbances and modeling inaccuracies can cause
residuals to deviate from zero even in the absence of faults.
Therefore, model uncertainty must be considered during the
fault detection stage. This can be achieved, for instance,
by computing a threshold that accounts for the maximum
possible value of model uncertainties.

While obtaining an accurate mathematical model to de-
scribe the system under monitoring is crucial, it can be
particularly challenging in complex industrial systems. Ad-
dressing this challenge, some innovative methods have been
explored. Instead of relying on exact physical equations
of the system, these methods focus on utilizing structural
Analytical Redundancy Relations (ARRs) obtained through
Structural Analysis (SA) and data, as discussed in [3].
SA plays a pivotal role in assessing the detectability and
isolability of the system. It transforms the mathematical
model of the system into a structural model, facilitating the
diagnostic process by analyzing the system analytical redun-
dancy. Moreover, in [4], a hybrid method has been proposed.
This method employs model decomposition techniques to
analyze the internal relationships between system variables,
leading to the design of reduced grey-box models using data-
driven techniques. Various tools such as Possible Conflicts
(PCs) [5] and state space Neural Networks (ssNN) [6] are
utilized in this approach. Recurrent Neural Networks (RNNs)
are particularly effective in simulating the performance of
complex dynamic systems.

Furthermore, the maintenance is also an essential phase
in all complex industrial systems. The evolution of mainte-
nance has been developed from post-failure repair (corrective
maintenance) to preventive maintenance to Condition-Based
Maintenance (CBM). In recent years, the preventive mainte-
nance and CBM have been increased their influence among
many industrial companies. The preventive maintenance is
an expensive and time-consuming process that consists in
performing maintenance process regularly regardless of its
current health condition of system. In large-scale factories,
with its high reliability requirements, the preventive main-
tenance will be an extremely high-cost process. Therefore,
it leads to the incorporation of CBM because of its cost-
effective strategy of maintenance. As the name implies,
maintenance is applied when it is needed, and it is closely
related to the concept so-called Prognostics and Health
Management (PHM). The basic theory of PHM is to establish
a real-time assessment of health condition of monitored
system, as well as the prediction of future state with its
up-to-date information. While PHM has been originated
from aerospace industry, now it is applied in many fields



including manufacturing, automotive, railway, energy and
heavy industry [7].

Prognosis is the key technology to accomplish CBM
in industrial manufacturing factories, in which the timely
forecasting of potential faults leads to considerable reduction
of economical losses. Additionally, the prediction of future
behaviours of system allow the supervision system to make
important decisions in advance. Beyond the FD mentioned
before, system prognosis tends to predict the future evolution
of behaviours of system. Unlike the FD that has been well-
studied by numerous investigators, it has already established
its own matured benchmark of investigation, the field of
prognosis is remaining many undiscovered ways of study
since it is still a relatively new approach.

This paper introduces a method for prognosis using resid-
uals, merging SA and data-driven algorithms. It determines
ARRs from system structural information given by graphic
(or textual) system description. Thereby, instead of finding
ARRs from physical mathematical model, combining SA
and data-driven modelling approach, a set of data-driven
ARRs can be obtained and used to implement the prognosis
of system. The prognostic approach relies on detecting
anomaly or unusual tendency of deviation that reflexes on
the evolution of residuals by using some sequential analysis
techniques for change detection, in particular the Cumulative
Sum (CUSUM) approach [8]. Once the tendency is detected,
the future evolution of tendency of residuals deviation will
be modeled using least-squares (LS) regression by assuming
some degradation function, such as e.g. a polynomial func-
tion. This function is able to forecast the fault evolution,
as well as the Remaining Useful Life (RUL) of system. Ac-
cording to [9], parametric and additive unknown but bounded
errors are considered in the forecast function providing an
interval in the residual prediction, so that instead of finding
a single RUL, an interval of RUL will be estimated.

The paper has the following structure: Section II presents
the generation of data-driven residuals based on ARR ob-
tained using SA, and it is followed by the Section III where
change detection process is developed. In Section IV, an
explanation of RUL estimation is presented. In Section V,
a case study of a Brushless Direct Current (BLDC) motor is
presented to show the practical application of the proposed
method. Finally, Section VI draws the conclusions of the
present paper and present future research paths.

II. DATA-DRIVEN RESIDUALS

Given a system graph and a set of sensors, using SA
analysis a set of nr ARRs relating a subset of measured
variables can be derived. For each ARR, one of the variables
can be explained from the remaining variables in the ARR
as follows

ŷi(k) =fi(yi(k − 1), ..., yi(k − na), y¬i(k − 1),

..., y¬i(k − na),ui(k − 1), ...,ui(k − na))

i = 1, ..., nr

(1)

where ŷi(k) ∈ ℜ represents the estimation of the i-th
component of y at instant k, fi() is an unknown complex
function of order na with

y¬i(k − j) = y(k − j)\yi(k − j) j = 1, ..., na (2)

ui(k − j) = u(k − j) j = 1, ..., na (3)

and fi() is a function that considers the na previous values
of the measured variables to provide an estimation of the i-th
component of y at instant k denoted by ŷi(k) ∈ ℜ.

Defining

vi(k − j) = (y¬i(k − j) ui(k − j)) j = 1, ..., na

equation (1) can be rewritten as

ŷi(k) =fi(yi(k − 1), ..., yi(k − na), vi(k − 1), ..., vi(k − na))

i = 1, ..., ny

(4)
Model (4) can be obtained by means of the the physical

knowledge of the system or using system identification tools
as the ones proposed in [10] considering linearity or some
kind of non-linearity in function fi() or using other data-
driven estimation techniques as proposed in [11] where an
adaptive network-based fuzzy inference system (ANFIS) and
data is proposed to obtain model (4).

The consistency of model (4) and the actual behaviour
of the system can be assessed by evaluatng the difference
(residual) of the actual output yi(k) and its estimation

ri(k) = yi(k)− ŷi(k) i = 1, ..., nr (5)

Model (4) can be fit considering non-faulty historical data
ri(j) j = 1, ..., Nnf and assuming linearity or some kind of
non-linearity in function fi() using computational tools [10]
or using other parameter estimation techniques.

This non-faulty historical data can also be used to compute
thresholds σ̄i and σi as the maximum and minimum observed
errors as

σ̄i = max
j=1,...,Nnf

βri(j) (6)

with security factor β ≥ 1. The computation of σi will be as
in (6) but substituting ’max’ by ’min’. Then, a fault detection
test considering these thresholds could be defined as{

ri(k) ∈ [σi, σ̄i] ⇒ No Fault
Otherwise ⇒ Fault

(7)

III. CHANGE DETECTION

In order to anticipate the appearance of potential faults
before fault detection test (7) is activated, the trend of
residuals ri(k) i = 1, ..., nr should be analyzed.

In particular, the Cumulative Sum (CUSUM) approach [8]
is a statistical method that tracks cumulative deviations from
a reference value. In a first step, CUSUM algorithm can be
used to detect maximum cumulative residual deviations in
available fault free data as



s+i (j) = ri(j)
s−i (j) = −ri(j)
g+i (j) = max(g+i (j − 1) + s+i (j)− v, 0)
g−i (j) = max(g−i (j − 1) + s−i (j)− v, 0)
j = 1, ..., Nnf

(8)

where v is the drift parameter and g+
i (0) and g−i (0) are

initialized to zero.
Once, g+

i (j) and g−i (j) are computed for j = 1, ..., Nnf ,
CUSUM fault free thresholds δ̄i and δi are computed with
maximum cumulative residual deviations as follows

δ̄i = max
j=1,...,Nnf

αg+i (j)

δi = max
j=1,...,Nnf

αg−i (j)
(9)

with security factor α ≥ 1. Then, on-line CUSUM algorithm
is applied to the residuals ri(k) to compute g+

i (k) and g−i (k)
values. If g+i (k) or g−

i (k) violate fault free thresholds δ̄i or
δi defined in (9) an anomalous change in the residual trend
is detected.

IV. REMAINING USEFUL LIFE (RUL)

Once an anomalous change in the residual trend has been
detected, we can proceed to estimate when this residual
deviation will result in a fault detection. To do this, it will
be necessary to estimate the evolution of the residual in the
future considering the observed deviation. In this section, for
the sake of notation simplicity, it will be considered a generic
residual r(k) with the residual bounds σ and σ̄. In addition,
it will be considered that the results could be applied to the
all particular residuals ri(k) i = 1, ..., nr.

It will be considered that the residual deviation can be
expressed in the following regressor form

r(k) = φ(k)θt (10)

where φ(k) ∈ ℜnθ is the regressor vector and θ ∈ ℜnθ is the
parameter vector. Residual model (10) covers a long range
of possible drifts modelled using an n order polynomial
function

r(k) = a0 + a1k + a2k
2 + ...+ ank

n (11)

that can be expressed as in (10) defining

φ(k) =
(
1 k k2 · · · kn

)
θ =

(
a0 a1 a2 · · · an

) (12)

or considering a exponential function

r(k) = a0 + a1e
k (13)

that can be expressed as in (10) with

φ(k) =
(
1 ek

)
θ =

(
a0 a1

) (14)

Then, parameter vector θ can be estimated from residual
and regressor data as

θ̂(k) = (Φt(k)Φ(k))−1Φt(k)R(k) (15)

with

R(k) =

 r(0)
...

r(k)

Φ(k) =

 φ(0)
...

φ(k)

 (16)

Remark 1: It is supposed that time instant k is big enough
to have enough data to obtain an accurate identification.

In addition, at the same time instant k residual evolution
can be predicted for future time steps. In particular, for a
horizon prediction H this prediction will be computed as

r̂(k +H|k) = φ(k +H)θ̂t(k) (17)

Finally, we can predict the time instant Hf when residual
r(k) will lead to a fault scenario as

min
Hf

Hf

subject to
r̂(k +Hf |k) /∈ [σ, σ̄]

(18)

Remark 2: Hf can be seen as the Remaining Useful Life
(RUL) time. i.e. the time duration that the system is expected
to remain operational and functional before it reaches a fault
scenario.

In case of a linear drift residual deviation r(k) = a0+a1k
leads to the regressor model (10)

φ(k) = (1 k) and θ = (a0 a1) (19)

and the forecast of the residual evolution is given by

r̂(k +H|k) = φ(k +H)θ̂t(k) = a0 + (k +H)a1 (20)

Hence, considering (18) predicted fault time instant Hf

should fulfill{
a0 + (k +Hf )a1 > σ̄, if a1 > 0

a0 + (k +Hf )a1 < σ, if a1 < 0
(21)

For example, considering a1 > 0

Hf >
σ̄ − a0
a1

− k (22)

A. Parameter uncertainty

Considering unknown but bounded parametric and additive
uncertainties in model (10)

r(k) = φ(k)θ̂t(k) + e(k) (23)

where

|e(k)| ≤ ϵ

θ̂(k) ∈ Θ
(24)

with ϵ a suitable constant that considers the additive noise in
measurements and Θ is the set that bounds parameter values.

We will assume that the parameter set is a zonotope



Θ = θ0 ⊕PBn =
{
θ0 +Pz : z ∈ Bn

}
(25)

where θ0 is the nominal parameter vector, P ∈ ℜnθ×n is
a suitable matrix that takes into account the dependence
between parameters if any, Bn is a unitary box composed
by n unitary Bn ∈ [−1, 1] interval vectors and ⊕ denotes
the Minkowski sum.

Residual prediction model (23) considering additive and
parametric uncertainties (24)(25) leads to an interval

r̂(k) ∈ [r̂(k), ¯̂r(k)] (26)

that according to [9]

¯̂r(k) = r̂0 + ∥φ(k)P∥1 + ϵ

r̂(k) = r̂0 − ∥φ(k)P∥1 − ϵ
(27)

where r̂0(k) = φ(k)θ0(k)
On the other hand, the computation of parameter set

Θ consistent with available data can be formulated as the
following optimization problem

min
P

J (Θ)

subject to
r(j) ≤ r̂0 + ∥φ(j)P∥1 + ϵ
r(j) ≥ r̂0 − ∥φ(j)P∥1 − ϵ
j = 1, ..., N

(28)

where J (Θ) is the volume of Θ and N is the data horizon
considered. The resolution of optimization problem (28)
is characterized by significant difficulty in general [12].
However if a predefined shape of matrix P is considered
as proposed in [9]

P = λP0 (29)

Optimization problem (28) leads to the optimal solution
(29) with λ computed as

λ = max
k∈{1,...,N}

(
|r(k)− r̂(k)| − ϵ

∥φ(k)P0∥1
, 0

)
(30)

Once parameter set has been computed, predicted residual
bounds can be obtained:

¯̂r(k +H|k) = r̂0(k +H) + ∥φ(k)P∥1 + ϵ

r̂(k +H|k) = r̂0(k +H)− ∥φ(k)P∥1 − ϵ
(31)

Therefore, an interval for Hf can be found as follows

Hf ∈ [Hf , H̄f ]
such that
r̂0(k +Hf ) ∈ [σ − ∥φ(k)P∥ − ϵ, σ + ∥φ(k)P∥+ ϵ]

(32)
where σ is σ̄ if the residual trend is increasing or σ if the
residual trend is decreasing.

Considering a linear drift residual deviation as in (20), the
intervals of Hf when an increasing drift in residual trend is
detected will be given by

H̄f =
σ + ϵ− a0 +∆a0

a1 −∆a1
− k

Hf =
σ − ϵ− a0 −∆a0

a1 +∆a1
− k

(33)

In the case of having different residuals ri i = 1, ..., nr,
nominal and interval RULs could be computed for every
residual and the minimum one will determine the RUL of
the system.

V. APPLICATION EXAMPLE

The Brushless Direct Current (BLDC) motor presented
in [13] is used as the application example to illustrate the
performance of proposed method. The operation condition
of motor is on 2-phase conduction mode, the dynamic model
of system consists in two parts: electrical equation and
mechanical equation. The model equations can be rewritten
in state-space form as follows

d

dt

[
i
ωr

]
=

[
−Req

Leq
− ke

Leq
kT

J −Br

J

] [
i
ωr

]
+

[ 1
Leq

0

0 − 1
J

] [
Vdc

TL

] (34)

where Req is the equivalent resistance, Vdc is the DC voltage,
Leq is the equivalent inductance, TL is the resisting (or load)
torque, J is the moment of inertia of the rotational system
(BLDC motor and load), Br is the damping (or viscous
friction) coefficient, kT is the torque coefficient and ke is
the coefficient of the back electromotive force (emf), the two
state variables are current i and rotor angular velocity ωr .

As discussed in [14], considering the absence of physical
analytical model for the BLDC motor, the following struc-
tural model of system can be obtained just considering the
input and output variables of each subsystem:

e1 : i′ = f1(i, ωr, vdc)

e2 : ω′
r = f2(i, ωr, TL)

e3 : y1 = i

e4 : y2 = ωr

e5 : i′ =
di

dt

e6 : ω′
r =

dωr

dt

(35)

Considering the structural model of system obtained
above, the following residuals [14] can be generated using
Minimal Structurally Over-determined (MSO) set approach:

r1 = f1(ωr, ω
′
r, i, TL)

r2 = f2(i, i
′, ωr, Vdc)

r3 = f3(ωr, ω
′
r, TL, Vdc)

r4 = f4(i, i
′, TL, Vdc)

(36)

From this structural information of residuals and consid-
ering the faults proposed in [13]

• Sensor faults: position (fθ) and current (fi)



• Parametric faults: resistance (fR), inductance (fL), fric-
tion (fB) and inertia (fJ )

• Systems faults: voltage supply (fV dc), load (fLoad)
the following binary Fault Signature Matrix (FSM) is ob-
tained

TABLE I
THEORETICAL FSM

fR fL fVdc
fB fJ fθ fi fLoad

r1 0 0 0 1 1 1 1 1
r2 1 1 1 0 0 1 1 0
r3 1 1 1 1 1 1 0 1
r4 1 1 1 1 1 0 1 1

The analytical expression of residuals (36) considering
a linear behaviour, first order functions and calibrated by
means of the System Identification Toolbox™ of MATLAB®
[10] as follows

r1(k) =ωr(k)− 0.9952 · ω̂r(k − 1)− 0.1107 · i(k − 1)

− 0.09952 · (ωr(k − 1)− ω̂r(k − 1))

r2(k) =i(k)− 0.5215 · î(k − 1)− 0.01045 · ωr(k − 1)

− 0.06813 · vdc(k − 1)

r3(k) =ωr(k)− 0.9949 · ω̂r(k − 1)− 0.03421 · vdc(k − 1)

− 0.09949 · (ωr(k − 1)− ω̂r(k − 1))

r4(k) =i(k)− 0.7894 · î(k − 1)− 0.06094 · vdc(k − 1)
(37)

where ωr and ω̂r are measured and estimated value of
rotor angular velocity. Similarly, i and î are measured and
estimated value of electric current. Residuals r1 and r2 have
been generated using an observer.

The evolution of residuals ri(k) i = 1, ..., 4 in a fault
free scenario is presented in Figure 1. The thresholds are
calculated using (6) considering security factor β = 1.3
and are also shown in Figure 1 in green color. In addition,
maximum cumulative residual deviations are computing by
means of the CUSUM approach (9) considering security
factor α = 1 and drift parameter v equal to the residual
mean of the first time instants of the residual.

On the other hand, Figure 2 shows the evolution of the
four residuals when a linear drift fault is introduced to the
current sensor (fi = −2mA/s) at instant t = 10s. As it can
be seen in Figure 2, the sensor fault affects to residuals r1,r2
and r4 that is consistent with the FSM of Table I.

The CUSUM approach (8) detects anomalous decreasing
cumulative deviations in residuals r2,r4 and increasing devi-
ation in residual r1. In particular, this anomalous deviation is
detected at t = 14.2s in residual r2 whose detailed evolution
is depicted in Figure 3. Once the anomalous deviations
are detected, nominal and interval residual predictions are
computed as can be seen in Figure 3 for residual r2. In
case of residual r2, nominal and interval predictions are
computed at time t = 19.2s, that is 5 seconds later that
anomalous deviation in this residual has been detected.
Finally, nominal and interval RULs are calculated by means
of (18) and (32), respectively. The minimum, nominal and
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Fig. 1. Evolution of four residuals in fault free scenario
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Fig. 2. Evolution of four residuals with linear fault

maximum computed RULs are Hf = 0.9s Hf = 33, 2s and
Hf = 65.3s. Considering the time when the prediction is
done (t = 19.2s), the fault prediction time is stated from
t = 21.1s to t = 84, 5s as can be seen in Figure 3. This
prediction reasonably conforms to the actual future evolution
of the residual: the residual violates threshold first at instant
23.7s, then fault signal start oscillating and at the end the
faulty signal remains completely activated at instant 75.9s.
In conclusion, the potential fault can be anticipated 3.6s.
This procedure is also carried out for residuals r1 and r4
obtaining similar results.

In addition, the proposed methodology is assessed in the
case of parabolic drifts as the one depicted in Figure 4 with
satisfactory results.

VI. CONCLUSIONS

This paper introduces a fault prognosis methodology em-
ploying data-driven structurally generated residuals. The pro-
posed approach assumes the availability of a set of residuals
derived through structural analysis (SA) and identified via a
data-driven methodology. These residuals serve the purpose
of fault detection, activating fault signals upon reaching
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Fig. 4. Interval prediction of residual r2 with parabolic fault

anomalous values. Furthermore, the prediction of future
faults is facilitated through the identification of anomalous
residual deviations detected by the CUSUM approach. Upon
detection of an anomalous change in the residual trend, the
estimation of when this deviation will culminate in fault
detection is performed, thereby determining the Remaining
Useful Life (RUL) time of the system. To achieve this,
a regressor function is employed to estimate the future
residual evolution. Nominal and interval parameters of the
regressor function are deduced utilizing available residual
data, providing nominal and interval values for the RUL
of the system. The performance of the proposed method

is exemplified through the utilization of a brushless direct
current (BLDC) motor as a case study. As future research,
the extension of the proposed method to deal with prognosing
the fault isolation will be explored.
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