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Abstract: Given that water distribution networks are complex systems exposed to factors that
induce leaks, it is necessary to implement techniques that allow to locate water leakages as
accurately as possible minimizing the required instrumentation. In this paper we propose a
leak localization technique based on the use of a long short-term memory (LSTM) deep neural
network for classification trained with all possible leak scenarios in the network. As a case study,
a real-world district metered area (DMA) is selected. The DMA is first sectorized considering
the topological proximity of the nodes. Then, a LSTM is trained with pressure and flow rate
data from all the possible leak scenarios in the system obtained from a hydraulic simulator
model of the network. To replicate realistic measurements, uncertainty in the demand pattern,
nominal water consumption and in the sensor readings is considered. Classification results are
presented both for the validation during the training of the LSTM and for measured data of a
real induced leak in the system.
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1. INTRODUCTION

Water is a very valuable natural resource. Its correct
management and transportation is an important issue
both for governments and water agencies around the globe.
Water is mainly transported to the users using pipeline
networks. Because of the size and complexity of these
systems, they are exposed to different factors that induce
leak appearance such as the aging and corrosion of the
pipeline, which can be minimized through maintenance
operations. Other factors, as stated by Carnero and Gémez
(2018), such as the stealing of the fluid through illegal
tappings or the water-hammer effect are more difficult or
even impossible to predict. In Santos-Ruiz et al. (2018),
it was mentioned that 21% of potable water worldwide
is lost due to leaks, whereas in Mexico this percentage
grows to 40%. According to a study conducted by Romano
and Akhmouch (2019) and OECD (2016) about the cities
with the greatest water leakages, the top four cities are
located in Mexico. Tuxtla Gutierrez leads this top with a
loss percentage close to 70%. According to Salehi (2022),
currently the 25% of big cities are experiencing some sort
of hydric stress and it is expected that the percentage
of global water consumption will grow to 55% in coming
years. The aforementioned facts puts into relevance studies
related to water leakage detection and localisation.

1.1 Problem statement

Two tasks are of interest in the study of leakages of
water distribution systems: 1) the localization tasks whose
objective is to accurately provide with the location of the
node water is leaking and 2) the diagnosis task, where
additionally to the location of the leaks their magnitude
is also to be determined. Ideally, leaks should be located
as promptly as possible to perform the corresponding cor-
rective actions. However, according to Santos-Ruiz et al.
(2023), this task is non trivial due to the elevated number
of possible positions where the leaks can be located or
even if it is taken into consideration that the greater part
of pipeline systems are buried underground. This makes
difficult the visual identification of leaks and justfies the
necessity of implementing methods able to localise leaks
relying on the minimum number of sensors as possible.

1.2 Related works

Several different methods have been proposed in the lit-
erature both for leak localization and diagnosis. On the
one hand, there are methods that rely on the use of
specialized hardware. For example Martini et al. (2017)
proposed the use of optic fiber, whereas Huang et al. (2007)
demonstrated an application using acoustic reflectometry.

2405-8963 Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2024.07.197



80 L. Gomez-Coronel, et al. / IFAC PapersOnLine 58-4 (2024) 79-84

However, these methods involve an elevated cost factor
and thus are not the optimal choice for all applications.
On the other hand, methods have been proposed using
various algorithms based on measurements obtained from
the operation of the system. Particularly, it was noted by
Fu et al. (2022) that methods based on the use of deep
learning (particularly different artificial neural networks
architectures) have been gaining importance in recent
years. Mainly two focuses can be identified from the liter-
ature review: classification-based methods and prediction-
based methods. The main difference between the two ap-
proaches is that in the prediction scheme the objective is to
forecast the evolution of the states of the system to stablish
wether or not a faulting condition is found whereas in
the classification-based scheme learning models are trained
with labeled data from normal and abnormal conditions to
distinguish different leak scenarios. The main drawback is
that collecting and labeling such amounts of data is often
difficult. Thus, hydraulic simulation software is regularly
used to create synthetic datasets. This approach is seen
in works such as Javadiha et al. (2019) in the training of
neural networks and Zhou et al. (2019) for application with
self-encoders. The authors in Javadiha et al. (2019) pro-
pose a convolutional neural network (CNN) to classify leak
events in a simplified hydraulic model of the Hanoi district
metered area (DMA). The CNN was trained with pressure
maps of all possible leak locations, obtaining a maximum
accuracy of 94%. An enhanced version of this work was
presented by Romero et al. (2020) in which measurements
from eight pressure head meters are transformed into 8 x 8
figures used to train a CNN with information of all possible
leak scenarios in a test network. Each possible leak position
has an associated signature, where nodes close to each
other are clustered together given that they present similar
signatures. Images are converted using a technique based
on the Gramian Angular Field (GAF). Even if satisfactory
results were found, a significant degradation of the accu-
racy of the method was observed once uncertainty in the
measurements is included. A more recent implementation
was presented by Romero et al. (2022) where uncertainty
of 5% was considered on user demands, the roughness
coefficient of the pipeline and also assumed to be present
in sensor readings. It was reported that even if results
outperform what was previously presented in the state
of the art, work was still pending in the analysis of how
uncertainty affects the accuracy of the method.

Overall, it was noted by Fu et al. (2022) during the review
of the state-of-the-art that CNNs are the predominant
deep learning algorithm in the task of leak detection and
localization. Thus, further attention should be focused
in other deep learning architectures such as long short-
term memory (LSTM) to explore the spatial and tempo-
ral relation between the variables. This paper shows an
implementation of a LSTM deep neural network (DNN)
trained with synthethic data for leak localization in a real-
world water distribution network. The trained network
was tested both with simulated and experimental data
and satisfactory results were found. This paper is struc-
tured as follows: Section 2 introduces theoretical back-
ground regarding the LSTM network architecture. Section
3 presents the description of the case study and explains
the proposed LSTM architecture. Section 4 presents with
both simulation and experimental results. Finally, some

conclusions and future work proposals are mentioned in
Section 5.

2. THEORETICAL BACKGROUND

Artificial Neural Networks (ANNs) are popular machine-
learning algorithms which emalute the learning mechanism
of living beings. The biological mechanism of neurons in
the brain is simulated through these computation units
Aggarwal (2018). As stated by Wang et al. (2021) and
Kong et al. (2018), a kind of ANN architectures widely
used for capturing dynamic behaviors in data time-series
are recurrent neural networks (RNNs). The mathematical
expression a RNN is given by Wang et al. (2021) as:

h' =0 (Wx'+ Uh'"! + by) (1)
y' =0 (Vh'+b,) (2)

Here, x' and y! are the input and output vectors, respec-
tively. h'~! and h' are the hidden states at times t — 1
and t. Both the weight matrices W, U and V and the bias
vectors by, and b, are parameters to be adjusted during the
training of the network. Finally, ¢ is the sigmoid activation
function.

An LSTM network is an architecture of RNN that, as
stated by Sangiorgio et al. (2021), introduces three ad-
ditional gates: 1) A “forget gate” to control whether to
keep the content in previous memory space, 2) an input
gate to control whether the input vector is written into
the internal memory space and 3) an output gate to
control whether the value in the memory space should
be outputted. Thus, according to Wang et al. (2021), the
mathematical expression of a LSTM block is

f' =0 (Wsx'+Ush"™! +by), (3)
it =0 (Wx! + U;h ™!+ by), (4)
m' = tanh (W,,,x" + U,,h'~" + b,), (5)
o' =0 (Wox'+U,h' ' +b,), (6)

where f?, i’ and o' respectively represent the output

vectors for the forget, input and output gates, m' is the
adjustment at the input, W, and U, are weight matrices
with corresponding b, bias vectors, where the subscript
* is either f,i,m or o. Finally, the memory space ¢! and
hidden state h? are computed as ¢t = if om? + ff o ct~!
and y* = h? = of otanh (c'). The architecture of an LSTM
block is presented in Figure 1.

3. METHODOLOGY
8.1 Description of the case study

The case study here proposed is a DMA of the water
distribution network of Madrid, Spain (see Figure 2).

This system is composed of 312 connection nodes (cyan
colored) and one reservoir node that feeds with water the
system. The pipeline system is approximately 14km in
length and the diameter of the pipes vary between the
80mm to 350 mm. Pressure head meters are installed at
10 different nodes in the system (highlighted yellow in
Figure 2a). Outflow demanded from the reservoir is also
monitored. A fire hidrant (highlighted red in Figure 2a) is
used to simulate a leak event with a magnitude Qeax =~
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Fig. 1. The architecture of an LSTM block

1.4L/s. Given the size of the network and to decrease the
complexity of the training, the sectorization in 13 zones
proposed by Rodriguez-Argote et al. (2023) (see Figure
2b) is used where nodes corresponding to the same zone
are located physically close to each other and thus will
have similar leakage-signatures.

For the LSTM to provide a satisfactory response it has
to be trained using sufficient data of both normal (leak-
free) and anomalous (leaky) conditions. Since it is non-
viable to produce such amount of data experimentally, syn-
thetic data is generated using an EPANET® simulation
hydraulic model of the system (see Rossman et al. (2020)).
Using this sectorization scheme, datasets X € R™*™ con-
taining the simulated value for n sensors at m time-steps
are constructed as follows:

e For the leak-free scenario, hydraulics are simulated
under nominal demands for a duration of 24 hours.
Pressure head and flow rate at some selected nodes
are measured at a sampling rate of 1h.

e For the leak scenario, hydraulics are simulated under
nominal demands for a duration of 12 hours. Then,
from hour 13 to 24, a leak with magnitude Qeax =
1.4L/s is induced at some node. Pressure head and
flow rate at some selected nodes are measured at a
sampling rate of 1h.

Two remarks are of importance regarding the construction
of the “leaking” datasets: 1) Nodes with sensors and the
reservoir are excluded, and 2) The reason that leaks are
induced after a duration of 12 hours is that it is expected
that the LSTM learns to recognize patterns in the data
before and after the leaks are induced.

To provide enough realism to the synthetic data, it is
artificially contaminated with uncertainty as follows. First,
before the simulation begins:

e The base outflow at demand nodes are multiplied
with a random uncertainty value.

e The demand multiplier for each time step of the sim-
ulation is also multiplied with a random uncertainty
value.

Then, after the simulation is completed, the raw readings
for each sensor are contaminated with a random uncer-
tainty value. Uncertainty for each case is considered from
+5% to a maximum of £25% of the nominal value. To
increase the sensitivity of the LSTM to detect and learn
patterns associated to leak events, residual measurements
are used for training. First, a nominal dataset X, €
R™*™ is generated simulating leak-free conditions with no
uncertainty. Then, the residual datasets are computed as

X’r =X - Xnom~ (7)
The datasets are labeled into their corresponding category
(zone). Datasets with leaks are categorized into 13 different
zones and for datasets where no leak is found they are
assigned category ’0°. Thus, 14 different categories are
proposed. Figure 3 shows an histogram presenting the

target distribution of the datasets used for the training
of the LSTM.

8.2 Proposed LSTM architecture

In this paper we propose the use of a LSTM neural network
with categorical targets to locate leak events in a real
life water distribution system given that this architecture
is primarily oriented to the processing of time-dependant
data such as the time series measurements obtained from
pressure and flow sensors. The proposed architecture is
presented in Figure 4.

The first layer is a Sequence Input Layer of size 11,
given that 11 measurements are available. Measurements
are fed into the second layer which is a LSTM Layer
with 24 hidden units. The output of the LSTM Layer
is fed into a Fully Connected Layer of size 14 (given
that the inputs will be classified into 1 of 14 different
categories). Then, a Softmax Layer is used to compute
the inputs into the probability of membership to each
category. Finally, a Classification Layer provides the
highest-ranked membership as the corresponding class of
the input. The proposed LSTM was implemented using the
Deep Learning Toolbox® for MATLAB®. The training
was performed using the hardware and software presented
in Table 1.

Table 1. Hardware & software used for the
training of the LSTM network.

oS Windows® 11 Pro 22H2
MATLAB® Version R2022a
CPU AMD Ryzen® 5700 3.8 GHz
GPU NVIDIA® GeForce RTX 3060
RAM 64 GB DDR4 2400 MHz

The Adam optimizer was set to train the LSTM using
a mini batch size of 500, initial learning rate of 0.001
and 15000 training epochs. These hyper-parameters were
selected after different trial-and-error tests given that
they provide the best trade-off between training time,
accuracy and test validation. Traning was performed using
the GPU as execution environment. Given that in real
world implementations one of the most relevant aspects of
uncertainty are related to the variation in user demands,
several tests will be conducted considering that nominal
demand conditions vary between some uncertain value.
Six training tests were performed: the first training test
considers only datasets without uncertainty while the
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remaining five training tests consider datasets with a
maximum uncertainty of £5%, £10%, +15%, +20% and
+25%, respectively.

Softmax Layer

4. RESULTS AND DISCUSSION

Figure 5 presents an example of the results of the training
which results in a training time of 18 minutes for +0%
uncertainty and 77 minutes for +25% uncertainty.

The accuracy of the trained LSTMs was tested by predict-
ing the expected classes of datasets constructed specifically
with this objective. Results can be consulted in Table 2,
obtaining a maximum accuracy of 98.30% in correctly clas-
sifying the leak location when a new dataset is presented
to the trained neural network.

® Zonel ® Zone8
® Zone?2 Zone 9
® Zone3 ® Zonel0
Zone 4 Zone 11
® Zone5 ® Zonel2
Zone6 ® Zone 13
® Zone 7

(b) Sectorization

Table 2. Accuracy results for the trained
LSTM networks (synthetic datasets).

Uncertainty Classification accuracy
+0% 98.30 %
+5% 96.88 %
+10% 97.54 %
+15% 96.95 %
+20% 96.93 %
+25% 97.82 %

4.1 Experimental validation

Experimental validation was performed using measure-
ments from the operation of a Madrid DMA for a period of
three days (july 17, 2019 — july 20, 2019). In this dataset,
a leak of magnitude Qeax =~ 1.4L/s is induced at a node
4 at the third day of the experiment. Figure 6 shows
the measurements for a) Pressure head, b) Demanded
flow rate from the reservoir and c¢) Leaked outflow under
this induced scenario. Measurements are obtained at a
sampling rate of 2 minutes and thus for the period of 3
days, a total of 2160 samples are collected over a period of
4320 minutes.

Given that the LSTM was trained using datasets with
measurements at a sampling rate of 1 hour, a re-sampling
of the plots presented in Figure 6 was performed consider-
ing the mean value of an hour (30 samples) as an unique
re-sampled piece of data. Re-sampled plots are presented
in Figure 7.

Residuals of the plots presented in Figure 7 are computed
as shown in Equation (7) with a dataset X,,om of dimension
11 x 72 under nominal conditions. Residual measurements
for the experimental validation are presented in Figure 8.

Experimental validation was performed using the six
trained networks. Results are summarized in Table 3.

As it can be seen, out of the six tested networks, one
correctly classified the zone where the leak is occurring
and two networks mistakenly classified the leak to occur
in zone 5 which is located right next to the real sector
and can still be considered as solutions with an acceptable
margin of error given the size of the network.
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Fig. 5. Training plots of the LSTM Neural Network.

a) Pressure head
T T

1 I I
0 500 1000 1500 2000 2500
Time (min)
b) flow from reservoir
T

0 500 1000 1500 2000
Time (min)
¢) Leaked outflow
T

2500 3000 3500 4000

Flow rate (L/s)

I
2500

I L L I L
0 500 1000 1500 2000 3500 4000

Time (min)

3000

Fig. 6. Measurements of the hydraulic variables under the
induced leak event.

Table 3. Results of the experimental validation.

LSTM Network Real sector Predicted sector

+0 % 4 0 (No leak)
+5 % 4 5
+10 % 4 4
+15 % 4 8
+20 % 4 9
+25 % 4 5

5. CONCLUSION

This paper presented the implementation of a LSTM Deep
Neural Network for leak localization in a real WDN. The
system used in this study is a DMA in Madrid, Spain.
Given the size of the WDN, the number of nodes where the
leak can be located and to simplify the architecture of the
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Fig. 7. Resampled measurements under the induced leak
event.

~———PIT-05 ——FIT-01
-~ PIT-06

Time (h)

Fig. 8. Residual measurements under the induced leak
event.

required LSTM, a sectorization of the WDN was proposed
clustering together nodes that have similar leak signatures
given their physical proximity. Given that measured data
in leak scenarios for this DMA is scarce, synthetic datasets
were generated using simulation software with an adequate
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and calibrated model of the system. For increased realism,
simulations were artificially contaminated with various
levels of uncertainty both in the model (user demands, con-
sumption pattern) and in the accuracy of the sensors. Both
simulation and experimental results were presented. For
the case of experimental results a maximum accuracy of
98.30% and minimum accuracy of 96.88% were obtained.
For the experimental validation, one of the six trained
networks classified correctly the zone where the leak event
is taking place, whereas two networks mistakenly classified
the leak in the next-closest zone, which are still considered
results with an acceptable margin of error.

Future implementations should include further analysis
in how the granularity of the sectorization affects the
accuracy of the LSTM in the leak localization, as well as
testing more thoroughly the performance of the proposed
method using real measurements. However, this would re-
quire coordination with the water-management organism
for the creation of datasets considering the implementation
of more leak scenarios. It is also proposed that the issue
of multi-leaks should be somehow addressed, as well as
testing the performance of the method using sequential
targets rather than simple categorical targets with the aim
of not only providing the highest ranked leak locations but
also the moment at which the leaks began.
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