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ABSTRACT This paper presents an approach for design a continuous-time interval observer for linear
parameter varying (LPV) systems in the presence of disturbances that are considered unknown but bounded.
The proposed observer is used for the design of a sensor fault detection scheme using the input to state
stability (ISS) approach through a Lyapunov quadratic function. The conditions of stability and positivity
are presented by a set of linear matrix inequalities (LMIs). The performance of the proposed method is shown
in simulation using a case study based on a single-link flexible joint robotic system.

INDEX TERMS Interval observer, fault detection, interval estimation, sensor fault, linear parameter varying

system.

I. INTRODUCTION

Fault detection is the process of discovering in real-time
the presence of a fault in an equipment before it causes a
breakdown using the available sensors. This topic has gained
special interest during the last decades in the industry and
academia because of the growing complexity of equipment
and components in industrial processes making them prone to
the occurrence of faults. A fault in a process can degrade its
performance, reduce component life, generate unscheduled
shutdowns (which can result in economic losses) and can
even lead to human losses. Actually, in the area of automatic
control, one of the most used techniques for the development
of fault detection schemes are the observers, which are used
to obtain a simultaneous estimation of states and faults,
as shown in [1], [2], [3], and [4]. In the same way, these
approaches have also been used to design robust schemes
such as fault tolerant controls as shown in [5]. In model-based
approaches, there always exist modeling uncertainties that
make difficult to estimate a variable when using observers
with a minimum degree of robustness. A possible robust state
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estimation scheme relies on the concept of interval observers,
where an interval of estimated states is obtained under the
assumptions that the uncertainties are unknown but bounded.

Interval observers have received considerable attention in
recent years. Different approaches have been proposed to
deal with different class of continuous-time and discrete-time
systems, such as [6], [7], and [8]. The main limitation of
interval observers is that the trajectories of the system that
start from an internally bounded initial condition will enclose
the stable system trajectory only if the system is positive
that is, the system matrix is Metzler and Hurwitz [9]. The
positivity of the error estimation is one of the most restrictive
assumptions for interval observer design. Recently, the
concept of interval observer has been extended to switched
classes, see ase.g. [10], [11], [12], where the idea is to apply a
combination of time-varying similarity transformations along
with the observer’s gains, which guarantee both positivity and
practical stability of the switched dynamics of the estimation
errors, as proposed in [13], [14], and [15]. There are different
approaches to perform fault detection scheme, in which are
the classical observers, such as [16], [17], and [18] where
they calculate an asymptotic estimation based on the inputs
and outputs of the system. Similarly, the concept of interval
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observers has been applied to fault detection schemes, as it
considers the limits of uncertainties to provide the bounds for
estimating the system state, thus having an interval estimate.
Being thus considered as a natural threshold for detection as
shown in [19], [20], [21], [22], and [23]. The advantage of
these two estimation strategies is that they are usually more
computationally efficient, since they use observers with a
single degree of freedom L. However, due to the simplicity
of the observer, low magnitude of faults may be undetected.
This means that the efficiency of the fault detection scheme
is highly dependent on the observer degrees of freedom. For
this reason, the TNL design strategy is proposed, which is
based on adding additional degrees of freedom 7 and N in
the observer design as described in [24] and [25].

This paper presents a methodology to design a fault
detection scheme preserving the properties of the interval
state estimation for linear parameter varying (LPV) systems.
It outlines a Linear Matrix Inequalities (LMIs) approach to
determine interval observers with positive observer gains
using Metzler system matrix parametric constraints and the
common quadratic function input to state stability (ISS)
Lyapunov function to guarantee the stability to mitigate
the effect of uncertainties on the residual signals. The
performance of the proposed method is shown in simulation
using a case study based on a single-link flexible joint robotic
system.

The structure of the paper is the following: In Section II,
introductory background materials regarding interval matri-
ces and systems is provided. Section III introduces the
problem statement. Section IV presents the interval observer
design procedure. Section V illustrates the method with the
proposed robotic case study and the application to fault
detection. Section VI draws the main conclusions and present
future research paths.

Notation: The symbol I, denotes the identity matrix
of dimension n. The symbol () denotes the transposed
part in a symmetric position. The matrices A7 denotes the
transpose of the matrix A € R"*", AT is the Moore-Penrose
inverse of matrix A. A > 0 denotes a real positive-definite
matrix A (A > 0, semidefinite positive), A < 0 denotes
a real negative-definite matrix A (A =< 0, semidefinite
negative). The Hermitian part of a square matrix A is denoted
by H(A) = A + AT. The Euclidean norm of x(r) is
llx(@®)|]2 = xT (£)x(r) and the Lo norm of x(z) is ||x(t)||co =
sup {[Ix(0)]]2, € Ry ).

Il. PRELIMINARIES
Lemma 1: [26] Consider the following equation of a non
homogeneous system

XA=B ey

where A € R™*P and B € R"*P are constant matrices, and
X € R™"™ s the matrix to be determined.
The equation (1) admits a solution, if and only if

rank(A) = rank |:2,:|
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in this case, the general solution to equation (1) is given by:
X = BAT — vy — a4t

where Y is an arbitrary matrix of appropriate dimension.

A. INTERVAL ANALYSIS
Consider a matrix A that can be decomposed as A = At —A—,
where AT = max{0, A} (the maximum operator is understood
elementwise) and A~ can be computed as A~ = AT — A,
such that AT > 0 and A~ > 0. The above operations can be
extended to any vector x € R".

Lemma 2: [27] Let x(t) € R" be a vector bounded by an
interval X(t), x(t) € R" such that x(t) < x(t) < x(¢).

1) Let A € R™" be a constant matrix, such that A =

At — A~ so then:

Atx(t) — ATX(1) < Ax(t) < ATX(1) — A" x(1)

2) LetA, A, A € R™ " pe matrices such thatA < A < A.
Then:

Atxt AT AT A T <Ax <

ATt —ATY —A xT+A X
Definition 1:  [28] A matrix A = [a;] € R™" is called
Metzler if all its off-diagonal elements are nonnegative, i.e.
ajj > 0, i # j. The Metzler condition prevents the generation
of the wrapping effect within the interval estimates.
Lemma 3: [29] The matrix A is Metzler if there exists an

scalar n > 0 such that A + nl, > 0.

Ill. PROBLEM STATEMENT
A. PROBLEM SET-UP
Consider a continuous-time polytopic LPV system

k
(1) = D il p(O)(Ax(t) + Biu(b) + Ew(1),
i=1
() = Cx(t) + Ff (1), 2)

where x(¢t) € R” is the state vector, u(t) € RY is the vector
of system inputs, y(t) € R? represents the measured output,
w(t) € R is an exogenous input considered as disturbance,
and f(r) € R’ is a sensor fault. p(¢) = {p1(t), ..., pm(?)} is
a vector of varying parameters that embed the nonlinearities
of the system. Furthermore assume that p(¢) is available
(i.e. perfectly measurable) for the observer which will be
proposed. F € RP** is the fault distribution matrix, E € R™"
is the disturbance distribution matrix, A; € R"*", B; € R"*¢
and C € RP*" are known matrices of appropriate dimensions.

wi(p(t)) are the weighting functions of each i vertex
model. This functions must satisfy the following restrictions:

k
0= mwilp®) <1, D wilp(n) = 1 3)
i=1

where k = 2™ is the number linear vertex models, and m are
the number of varying parameters.
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Assumption 1: The disturbance vector w(t) is considered
unknown but with known bounds as follows:

w(t) < w(t) < w(?). “
Assumption 2: The initial state vector x(0) satisfies

x(0) = x(0) = x(0), &)

where x(0), x(0) € R" are constant vectors.
Lemma 4: Let E € R™ be a constant matrix and w(t) €
R’", considering Lemma 2 and Assumption 1, we obtain

ETw(r) — ETw(1) < Ew(t) < E"W(1) — E"w(1).  (6)
For the continuous-time LPV system (2), the following
interval observer proposed is:

. k —_—
C(1) = > wilp(O)(TA; — LiC)R(t) + TBiu(t)+

i=1

Ly + A, @)

(1) = T() + Ny(@), (8)

3(t) = CX(1), ©)
k

£y = wilpO)(TA; — LiO)R(t) + TBu(t)+

i=1

Ly®)+\/. (10)
x(1) = ¢(t) + Ny(2), (11)
() = Cx(), (12)

where ¢(r) € R" and ¢(t) € R" represent auxiliary
interval vectors, the vectors )Tc(t) € R" and x(r) € R"
represent the upper and lower estimates of the state vector
x(t), and y(r) € R” and y(t) € RP are the upper and lower
estimates of the measured output y(¢). L;, T and N are gain
matrices to be designed. Matrices /\ and |/ are defined as
follows:

A = (TE)™w(t) — (TE)”w(v), (13)
\/ = (TEY w(t) — (TE) W(0). (14)
Passive fault detection strategy is a technique that allows the
detection of faults in a system by comparing the measured

output y(r) € RP? and the estimated one y(t) € RP. This
comparison is based on generating a residual signal

r(t) = (1) — y(1). 15)

Assumption 3: The fault detection scheme proposed in this
paper considers f(t) = O for the observer design, such that
the output y(t) of the system (2) is expressed as y(t) = Cx(t).
From Lemma 2, the following expressions can be obtained
for equations (9) and (12), respectively

() = CTR(1) — C™2(1), (16)
5(1) = CTi(t) — CTX(). (17)
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FIGURE 1. Fault detection scheme based on interval observer.

In the bounded disturbance context, it is possible to detect
a fault by constructing the following residual signal bounds
(see Figure 1)

(1) = 3(t) — y(t), (18)
(1) = 3(t) — y(). (19)

So, in case 0 € [7(¢), r(¢)] no fault can be indicated.
Otherwise, if 1 ¢ [7(¢),r(¢)] a fault is detected. This
strategy is efficient to avoid false alarms that occur due
to the presence of disturbances in the system. However,
it is possible that low magnitude faults may not be
detected because of the disturbance bounds described in
Assumption 1.

B. OBSERVER DESIGN
The objective of the interval observer design (7-12) is to
estimate an upper and lower bound of the state vector x(z),
which allows enclosing the set of admissible values of the
system state (2) while ensuring the convergence of the
estimation errors.

From Assumption 3, the dynamics of both estimation error
bounds are given by

a(t) = x(1) — x(1), (20)
e(t) = x(1) — £(1), 1)
by replacing (8) into (20), we obtain
e(t) = (1) — Tx(0), (22)
where
T =NC —1I,, (23)

in a similar manner, it follows from (21)
e(r) = Tx(1) — £(0). (24)
The dynamic evolution of the error (22) is
) = ¢(t) — Ti(), (25)

k
= Z 1i(p(O)TA; — LiC)e(t) + (TE) (1)

i=1

— (TE)" w(r) — TEw(1), (26)
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and from (24)

&) = Ti(t) — £ (1), 27)
k
=D wilpO)TA; — LiC)e(t) + TEw(r)

i=1
— (TE) " w(t) + (TE) " W(1). (28)

According to Lemma 2 and Assumption 1, the following
inequalities are obtained

(TEY"W(t) — (TE)” w(t) — TEw(t) > 0,
TEw(t) — (TE) " w(t) + (TE) " w(t) > 0. (29)

Considering that the stability of the interval LPV
observer results from the stability of the interval error
we get

e(t) = x(1) — x(1), (30)
= &(1) + e(r), 31)

the dynamics of the interval error is obtained as follows

ét) = e(t) + &), (32)
k
= > wilpO)(TA; = LC)e() + Ma(®)].  (33)

i=1

w(r) — w(?)

According to (29), the matrices (TA; — L;C) satisfy
the Metzler condition. Thus, taking into account initial
conditions e(0) = x(0)—x(0),e(0) = )Tc(O)—x(O), the interval
observer will provide a positive estimate, which will ensure
the correct interval state bounds.

Considering the bounded term of the perturbation
o(t) from Assumption 1, the objective of the inter-
val observer is to obtain the intervals for the error
dynamics (33).

From equations (7-12) that define the interval observer, the
estimation errors e(¢) and e(f) must be stable by means of
the ISS function. The ISS function allows to guarantee the
observer stability and attenuate the effect of disturbances on
the interval estimates of x(¢).

where M = [(TEY" —(TE)™ |, w() = [W(t) —m(t)]_

C. PARAMETERIZATION OF THE OBSERVER
Considering that equation (23) can be written as

[T N]Z =1, (34)
where X = |:IC"], and since rank(X) = n the general solution
of (34) is given by

r=xt|"1za,., —ssh|® (35)
0 n+p O )
——
T, T
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N:ET[O} +Z(1n+p_EET)|:Oj|s (36)
I, 1,
N e’
Ny N

where Z € R"™P) js a matrix with arbitrary elements.

From the definition of the matrix 7 in equation (35), the
dynamic of the interval estimation error (33) is represented
as

k
e(t) = > wilp()LAie(t) + Max(0)], (37)
i=1
where M and w(t) are defined in (33), A; =
ZTA; — LiC.

Thus, the design of the observer is reduced to determine
matrix L;, such that (37) is stable. The value of the Z matrix
is a design parameter of the proposed interval observer. For
simplicity, it is considered to be known.

TiA; +

IV. INTERVAL OBSERVER DESIGN PROCEDURE

In this section, a method to design the interval observer (7-12)
is presented. Sufficient ISS conditions are given to guarantee
the stability and positivity of the dynamic error (33) to obtain
matrix L;.

Theorem 1: For the LPV system (2) with f(t) = 0, there
exists a Lyapunov function V (e(t)) = e’ (t)Pe(t), if there exist
a positive diagonal matrix P, matrix R;, scalars B > o > 0,
y > O0foragivene > 1, « > 1 and n > 0, such that the
following LMIs are satisfied

min
P, R,y
al, X P < B, (33)
H(PT1A; + PZTHA; — R,C) + €P (%)
(P(TE)") | 200 (39
(=P(TE))T v
PT1A; + PZT>A; — R;C +nP > 0, (40)

then the system (7-12) can asymptotically estimate the lower
and upper bounds of the state vector x(t).

Proof 1: Consider the following quadratic ordinary ISS-
Lyapunov function

V(e(t)) = e (1)Pe(t) > 0, (41)

where P € R"" is a positive diagonal matrix.
The derivative of (41) along the trajectory of (37) gives

V(e(r)) = e (1)Pe(r) + €' (t)Pe(r), (42)

k
> i) " O(ATP+ PA)e(r)|
i=1
+ e OPMo@) + o (1)MT Pe(t) < 0. (43)

e(t)

Let ¢c(t) = [w(t)

], then we obtain the following inequality
V(e(0) + eV(e)) — yo' (Nw(1) < " (1)Qs(),  (44)
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with
Q- AP+ PA; +€P PM
B mTp —yl,]|’
where € and y are positive scalars. Replacing A; and M

from (37) we obtain
‘H(PT1A; + PZT)A; — R,C) +€P (%)

Q= (P(TEYHT . (45
N\T —vI
(=P(TE)™)
where R; = PL; is an unknown matrix of appropriate
dimensions.

According to [11], the system (37) is ISS if Q < 0 since
ol (Hw(t) < 0o leading to

Vie()) < sT(HQs(t) — eV(e) + yo! (Ha(t),  (46)

so that, the term in the right side of this inequality is negative.
Therefore, the following inequality is satisfied:

Vie(t)) < —€V(e@t)) + yo! (D). 47)

By integrating the two sides of this inequality, we obtain

Vie() < e V() +y /OO e Ilw(s)ll2 ds,  (48)
0

knowing that (41) is satisfied for some scalar B > o > 0, the
following inequality is proposed

alle)|l3 < V(e®) < Blle)]]3, (49)

which allows to deduce
1 et y 1/2
le®ll2 = —= (€ VO + Cllo®llo) G0

Hence, whent — oo the exponential converge to zero, which
implies that

lim |le(0)]]2 = ,/lmaXIIw(t)Iloo- (5D
—>00 oE

Note that using the ISS concept the boundness of the interval
error is guaranteed. Consequently, the design of an interval
observer with a tight interval may be achieved optimally,
if the bound 0’;—6 max ||w(t)||eco is minimized. Therefore, the
problem of minimizing the upper bound of the interval error
is reduced to the minimization of the scalar y for a given
o> 1lande > 1.

In a second step, we need to ensure A; Metzler. From
Lemma 3, A; is Metzler if there exists an scalar n > 0 such
that:

Ai+nl > 0. (52)

Since only the off-diagonal elements of A; must be nonnega-
tive to satify the Metzler property, the term nl is added as
shown in (52). By pre-multiplying the inequality (52) by a
positive diagonal matrix P from (41), the matrix PA; is also
Metzler yielding to

PT)A; + PZT>A; — R;C + nP > 0, (53)
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which proves the positivity of the interval errors for a positive
definite diagonal matrix P. Thus, we conclude that the state
vector is always bounded by the solutions of the interval
observer.

V. APPLICATION TO THE CASE STUDY

To illustrate the performance of the proposed observer (7-12),
the model of a one-link flexible joint robot driven by a DC
motor system is used (see Figure 2).

u(t) . A
Q

Motor"

Mg

FIGURE 2. One-link-flexible joint robot.

The mathematical model of a one-link flexible-joint robot
is given by

X1(t) = x2(1),

byxa(t)  kGxi(t) —x3(t)) ke
- - 7 +7(u(t)),

X(t) =

X3(t) = x4(1),
_ Mglsen(x3(t))  k(x3(t) — x1(1))
1 I ’

X4(t) =

x1(2)
¥ = | x@®) |, (54)
x3(1)

where xi(f) is the angular rotation of the motor (rad),
the angular velocity of the motor is x2(¢) (rad/s), x3(t) is
the angular rotation of the link (rad), x4(¢) is the angular
velocity of the link (rad/s), u(t) is the supply voltage to
the motor (V) and y(#) are the measured outputs of the
system. The parameter descriptions and values are presented
in Table 1.

TABLE 1. Parameter definition and values.

Parameter | Value Definition

g 9.81 m/s? Gravity

M 0.31 Kg Link Mass

! 0.15m Link Mass Center

k 0.18 Nm/rad Elasticity coefficient

by 0.0083 Nms/rad | Coefficient of viscous friction
K 0.08 Nm/V Amplification gain

J 0.0037 Kgm? Motor inertia

1 0.0093 Kgm? Inertia of the link

A. LPV MODEL REPRESENTATION
The model (54) contains a nonlinearity sen(x3(t)). These
equations can be represented by following LPV
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representation
x(t) = A(x(1)x(t) + Bu(t) + Ew(t),
(1) = Cx(1) + Ff (1), (55)

where w(z) represents the distribution of a uniform noise in
an interval [—0.2, 0.2], f (¢) represents sensor faults, matrices
E and F are distribution matrices.

From (55) the matrices of the system are defined as
0 1 0

kK by ok 0 D
DA 0 7
k
70 00 . 0
1 1000]
F=([0]landC = |0100|, where p(¢) represents a
1 0010

grouping of the nonlinear term as
kMgl sen(x3(t))
HN=—>— ———. 56
p(1) 17T w0 (56)

The weighting functions are defined as:

5 -
o) = 2=LD ey =222 57
p—p p—p

where p and p are the known upper and lower limit of p(7),
respectively.
The system (54) can be expressed in the polytopic form as:

2
(1) = D wilp(D)Ax()) + Bu(r) + Ew(),

i=1

() = Cx(t) + Ff (1), (58)
0 1 00
—48.64 —1.25 48.6 0
where A = 0 0 0 1/
1935 0 p 0]
0 1 00 T 0
—48.64 —1.25 48.6 0 21.62
Az = 0 o o 1['2=] o |
1935 0 o 0 L0

the matrices E, F and C were defined in (55).

B. SIMULATION RESULTS

By considering an input u(f) = 1V and a variation of the
noise inside the interval [—0.2, 0.2], the limits of variation of
p(t) are p = =70, p = —66.30.

Consider a constant input u(t) = 1V, noise variation is
presented in Figure 3 which implies that w(z) = w(¢) 4 0.1,
w(t) =w(t) —0.1.

The system is simulated taking into account the following
initial conditions x(0) = [0.5 00.5 O]T, and for the observer
fo=[111]20=[-1-1-1-1]"

The selected parameters are n = 10, e = 1, =1, 8 =
5 and solving the optimization problem of Theorem 1 with
a minimization factor of y = 2.18 using Matlab software
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Magnitude

Time (s)

FIGURE 3. Noise signal.

and the YALMIP-SeDuMi toolbox, we obtain the following
interval observer gains described by

10 —1.1893 —6.3398 x 107107
L — —24.3243 7.1891 24.3243
—6.3251 x 10710 —1.1893 10 ’
19.3548 4.7279 -70 ]
10 —1.1893 —6.3384 x 107107
L= —24.3243 7.1891 24.3243
—6.3236 x 10719 —1.1893 10 ’
19.3548 4.7279 —66.300

—1.1893 O
—1.68930.50 1.1893 0
—1.1893 0 1.1893 0|’
47279 0 —=5.72791

1.1893 0
T=
2.1893 0 -—1.1893
Ne 1.6893 0.50 —1.1893
~] 1.1893 0 —0.1893 |~

—4.7279 0 5.7279

337860 2.3786 0000
33786 0 2.37863 000 0
Z=1_237860 1378 0000]| 4P =1

9.4557 0 —11.45570000

The first scenario considers the outputs without the presence
of fault. Figure 4 shows the estimation of the system outputs
(the black line represents the nonlinear behavior of the state,
the blue and red line represent the lower and upper interval
estimate, respectively). Figure 5 shows that the upper and
lower residuals remain close to zero, this means that no fault
has been detected.

To evaluate the performance of the fault detection
approach, two scenarios are proposed.

The sensor fault signal of the first scenario is

0.1 5<t<10
—-02 25<tr<35 59)

0 otherwise

f)=
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FIGURE 4. Measured output and output estimation without fault.

— 1 —i(t)
g —ri(t)
2o
Q
= |
0 10 20 30 40 50
Time (s)
= 1 —T73(t)
< —1a(t
£ 05 ()
2 "ol
@ -0.5 i i i ‘
0 10 20 30 40 50
Time (s)

1 —T73(t)
fgﬁ 05 —r3(t)
S ot
2 05 | | | |

0 10 20 30 40 50

Time (s)

FIGURE 5. Upper residuals and lower residuals without fault.

which represents a fault due to overheating in the motor
windings, which generates an abrupt increase in the input
magnitude.

The simulation results are shown in Figures 6 - 9. When the
fault described in the equation (59) occurs, there are changes
in the output and residual intervals. So, in case 0 € [7(¢), r(¢)]
no fault can be indicated, otherwise, if 1 ¢ [7(¢), r(¢)] a fault
is detected.

The Figure 6 shows that at + = 5 and + = 10, the
upper y(¢) and lower y(¢) intervals of y(¢) do not generate
an adequate signal envelope, due to the presence of the
fault. The same behavior is presented at time t = 25 and
t =35.

The Figures 7 - 9 shows that the residuals are no longer at
the observer’s natural threshold, this due to the presence of
fault in the output signals. The table 2 shows a fault signature

matrix obtained from the analysis of symptoms.
VOLUME 12, 2024

TABLE 2. Fault signature matrix of the first scenario.

Abrupt fault
Residual | 5<7 <10 | 25<t <35 | otherwise
ri 1 1 0
ro 1 1 0
r3 1 1 0
—7(t)
—u(t)
1 —uy(t
- N ()
£ 05 | A |
0
-0.5 !
0 10 20 30 40 50

—

Time (s)

===

0 10 20 30 40 50

| Time (s) | p—
—us(t)
1 — )
e
£ 05 N
0 | A—————
05 ‘ ‘ ‘ ‘
0 10 20 30 40 50
Time (s)

FIGURE 6. Measured output and output estimation with abrupt fault.
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FIGURE 7. Residual r; upper and lower with abrupt fault.
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FIGURE 8. Residual r, upper and lower with abrupt fault.

A second scenario is proposed, considering the following
time-varying sensor fault

0.01 15<r<20
f@®)=10014+¢r 20<tr<35 (60)
0 otherwise
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FIGURE 9. Residual r; upper and lower with abrupt fault.
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FIGURE 10. Measured output and output estimation with incipient fault.
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FIGURE 11. Residual r; upper and lower with incipient fault.

which represents a bad calibration in the angular position
Sensors.

The simulation results of the second scenario are shown in
Figures 10 - 13. When the fault described in the equation (60)
occurs, there are changes in the output and residual intervals.

The Figure 10 shows that at + = 15 and r = 20, the
upper y(¢) and lower y(¢) intervals of y(¢#) do not perform
an adequate envelopment due to the presence of fault. When
the fault becomes incipient in the time ¢+ = 20 and r = 35,
it can be seen that the output variables present an increasing
behavior until they get away from the interval estimates.

The Figures 11 - 13 shows that the residuals are no longer
at the observer’s natural threshold, this due to the presence of
fault in the output signals.
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FIGURE 12. Residual r, upper and lower with incipient fault.
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FIGURE 13. Residual r; upper and lower with incipient fault.

TABLE 3. Fault signature matrix of the second scenario.

Incipient fault
Residual | 15<: <20 | 20<7 < 35 | otherwise
r 1 1 0
ro 1 1 0
rs 1 1 0

The Table 3 shows a fault signature matrix for comparison
of the classical scheme with respect to the interval scheme.

VI. CONCLUSION

This paper has presented the design of a robust fault detection
scheme for continuous-time LPV systems which are subject
to disturbances which are considered unknown but bounded.
The fault detection scheme is composed of an observer that
perform robust estimation of the system outputs with their
respective intervals. An advantage of this type of interval
schemes is the generation of a natural threshold generated by
the shares of exogenous inputs that affect the system, such
as noise or parametric variations. The results show that the
fault detection scheme enforces robustness when generating
a residual response againts the bounded disturbances that are
present in system (2). The stability criteria based on the ISS
approach is proposed to adjust the observer gains. At the
same time, this approach allows mitigating the effect of the
unknown disturbance. To validate the efficiency of the fault
detection scheme, the model of a flexibly articulated robot has
been used providing satisfactory results. As future research,

the proposed approach will extended to fault isolation and
estimation.
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