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Abstract
Predicting humanmotion based on a sequence of past observations is crucial for various applications in robotics and computer
vision. Currently, this problem is typically addressed by training deep learning models using some of the most well-known 3D
human motion datasets widely used in the community. However, these datasets generally do not consider how humans behave
and move when a robot is nearby, leading to a data distribution different from the real distribution of motion that robots will
encounter when collaborating with humans. Additionally, incorporating contextual information related to the interactive task
between the human and the robot, as well as information on the human willingness to collaborate with the robot, can improve
not only the accuracy of the predicted sequence but also serve as a useful tool for robots to navigate through collaborative tasks
successfully. In this research, we propose a deep learning architecture that predicts both 3D human body motion and human
intention for collaborative tasks. The model employs a multi-head attention mechanism, taking into account human motion
and task context as inputs. The resulting outputs include the predicted motion of the human body and the inferred human
intention. We have validated this architecture in two different tasks: collaborative object handover and collaborative grape
harvesting. While the architecture remains the same for both tasks, the inputs differ. In the handover task, the architecture
considers human motion, robot end effector, and obstacle positions as inputs. Additionally, the model can be conditioned
on the desired intention to tailor the output motion accordingly. To assess the performance of the collaborative handover
task, we conducted a user study to evaluate human perception of the robot’s sociability, naturalness, security, and comfort.
This evaluation was conducted by comparing the robot’s behavior when it utilized the prediction in its planner versus when
it did not. Furthermore, we also applied the model to a collaborative grape harvesting task. By integrating human motion
prediction and human intention inference, our architecture shows promising results in enhancing the capabilities of robots in
collaborative scenarios. The model’s flexibility allows it to handle various tasks with different inputs, making it adaptable to
real-world applications.

Keywords Human–robot collaborative task · Human motion prediction · Human intention prediction · Deep learning
attention architecture

1 Introduction

Our research argues that by integrating task context, human
intention, and motion prediction, robots can significantly
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enhance the quality of interactions in collaborative oper-
ations with humans. 3 In the domain of robotics, precise
humanmotion prediction is of paramount importance for col-
laborative tasks where humans and robots operate in close
proximity. We define motion prediction as the task of pre-
dicting a feasible future human motion given one or more
previous frames of past human poses. In Fig. 1 we can see
how a robot can be using the prediction of the human body
while trying to approach him). In such scenarios, accurate
prediction is crucial for ensuring safe and efficient interac-
tions. Conversely, longer predictions could prove valuable
for tasks like action recognition. However, a significant
challenge in developing effective human motion predictors
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Fig. 1 Visual representation of the prediction being used by the robot.We utilized the SMPL parametric model [1] to provide a realistic visualization
of the 3D human body of the user during a human–robot handover. In the final frame, the user reached a close position with respect to the predicted
pose

that can account for the presence of a robot nearby is the
lack of datasets that encompass human–robot interactions
and incorporate external factors or task-specific information.
This limitation impedes the comprehensive advancement of
human motion prediction models in real-world collaborative
environments. To address this issue, there is an urgent need
for the creation of new datasets that capture the complex-
ities of human–robot interaction and can serve as training
and evaluation resources for deep learning models focused
on human motion prediction in such scenarios.

In this study, we address the challenge of human motion
prediction in human–robot interaction (HRI), where accu-
racy in predictions is of upmost importance to mitigate
collision risks during close interactions. Consequently, we
choose to employ the standard L2 metric for both training
and evaluating our proposed neural network model. How-
ever, our approach extends beyond the sole use of the L2

metric.We incorporate supplementary loss functions to effec-
tively harness contextual insights. The model does not only
account for the contextual information, but also understands
the different intentions humans can display while collabo-
rating with a robot. Thus, we also add a term to the loss
function to be able to classify a human skeleton sequence
according to the underlying intention of the human along
the sequence. We have trained and validated this architecture
using two distinct collaborative tasks. To achieve our objec-
tives, we have meticulously curated two distinct datasets,
showcasing human interactions with collaborative robots in
real environments while performing specific tasks. Some of
these tasks involve active interactions with the robot, while
others involve passive interactions, where the human is in
proximity to a robot. Once these datasets were created, we
extracted context information for each task. Broadly speak-
ing, context information refers to data captured within the
dataset that can provide insights into the human’s goal, aim-
ing to enhance the quality of the prediction models. The type
of data encompassed within this definition varies based on
the specific task at hand. For cooking tasks, contextual infor-
mation might include the positions of ingredients and tools,
thereby enhancing the prediction model’s understanding of
the cooking process. On the other hand, for cleaning tasks,

the geometry and layout of the surfaces to be cleaned could
serve as relevant contextual cues. The nature of the task dic-
tates the specific contextual elements that contribute to amore
accurate andmeaningful humanmotion prediction. For com-
prehensive analysis, the datasetswere labeled to classify each
skeleton pose with an associated human intention behind the
displayed motion. The primary goal of this classification is
to understand whether the human intends to collaborate in
the success of the collaborative task or not.

The two human–robot collaborative tasks that we have
focused on are human–robot handovers and human–robot
grape harvesting in a real field. In the handover task, con-
textual information includes the position of the robot end
effector (REE) and the location of obstacles present in the
scene. On the other hand, for the harvesting task, the contex-
tual information considered involves the position of grape
bunches and the location of the box where the grapes are
stored. By incorporating these contextual details, our aim is
to develop more accurate and effective prediction models for
human motion and intention during collaborative tasks with
robots. Furthermore, we also consider the human intention
during the collaboration with the robot. This human inten-
tion relates to how does the human want to interact with the
robot.

Summarizing, the main contributions proposed in this
work are:

• The creation of two human motion datasets for human–
robot specific tasks.

• The proposal to use contextual information related to
each specific task in order to increase the accuracy of
the prediction model.

• The possibility to classify different human intention dur-
ing the collaboration task and to modify the predicted
sequence based on each specific intention class. We
believe that this feature is a key element for collaborative
robotics since robots should be aware of the different pos-
sible motions humans can do based on their own goals.

In the remainder of this journal, in Sect. 2 we first give a
short review of the related work, in Sect. 3 we explain our 3D
human motion prediction model, in Sect. 4 we describe the
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dataset that we created to do the validation of the model, in
Sect. 5 we explain the experiments, in Sect. 6 we present the
user study and finally in Sect. 7 we present the conclusions.

2 RelatedWork

Given the variety of topics related to this work, this sec-
tion will be structured in three different blocks: Human
Motion Prediction, Human–Robot Handover and Human–
Robot Harvesting.

2.1 HumanMotion Prediction

In this block, we will study pure human motion prediction
in the classical approach, especially in the computer vision
field.Todo so,wepropose a chronological overviewof differ-
ent techniques that have been recently used in the computer
vision community in order to approach the human motion
prediction problem.

One of the first approaches followed by the commu-
nity was using recurrent neural networks (RNN), since they
provided good results in other series-based problems such
as text generation. In [2] by Martinez et al., the human
motion prediction problem is approached as a time series
algorithm, proposing a RNN architecture able to generate
a predicted human motion sequence given a real 3D joint
input sequence. Although the results obtained in this model
are quite interesting, the work raises attention in a particular
case: a non-moving skeleton can often improve results in a
L2 based metric. This phenomenon has been widely used as
simple baseline for many human motion prediction model
proposals, such as [3–7] or [8].

Continuing along the trajectory of RNNs, a work closely
aligned with our research is that of Kratzer et al. [9]. In
this study, a short-term prediction RNN is employed to
forecast human motion, while also considering the spatial
arrangement of various objects in the vicinity of the human.
Notably, objects like tables, chairs, and shelves are taken into
account in the prediction process. Moreover, the work incor-
porates the concept of graspability for these objects, aiming
to enhance the trajectory predictions for human motion. This
approach demonstrates the integration of environmental fac-
tors and object interaction to further refine and optimize
human motion predictions, thereby showcasing a significant
relevance to our own research endeavors.

Moving on from RNNs, the community started explor-
ing techniques leaning more towards the generative side. At
this point, Variational Autoencoders (VAE) where used in
order to model a latent space distribution to draw samples of
sequences from said latent space. Another very interesting
work is the one presented by [10], where they use Trans-
formerVariationalAutoencoder (TVAE), also using attention

to predict the human motion, but they condition their predic-
tion with the action that the human is performing, which
arguably may be considered as context.

Another very popular generative model are Generative
Adversarial Networks (GANs). Contextual information has
been previously used in other works that deal with motion
prediction. The approach from [7] is philosophically very
similar to our work, since the model predictions are condi-
tioned on the objects around the humans, such as tables or
doors. The model uses a GAN architecture to exploit this
added information.

More recently, the use of Graph Convolution Networks
(GCN) arouse among the community, since they flexibility
of the architecture allows the network to learn the dynamic
dependencies of the human body. The most relevant work
for our proposal is Mao et al. [11], where the temporal joint
information is encodedusing a discrete cosine transformation
(DCT). This approachmitigates the problems related to auto-
regressive models, and has yield to very good results in other
works such as [12] by Aksan et al.

Moreover, in the work presented in [13] the same authors
study further the convenience of working in the trajectory
space rather than in the traditional pose space, allowingmod-
els to reason in longer motions rather than just being able to
reason about the anthropomorphic structure of the pose.

In a similar approach, Martínez-Gonzalez et al. [14] use
transformers and take advantage of the DCT conversion to
tackle the prediction problem, but also include a way to allow
the network to detect the activity of the human to improve the
model outputs. This idea looks similar to the one presented in
this work, but we fix the task and try to identify the intention
of the human during said task.

The approach from [15] is also similar to [11], using graph
convolutional networks and DCTs, but in this case a specific
module is built in order to learn the joint relations of the
body, instead of letting the attention mechanism figure out
this relationships.

On a similar note, the work proposed in [16] is also
able to predict the human motion while reasoning with the
scene context. The first detail that looks interesting is the
use of a video-game based synthetic dataset generator to cre-
ate human motion data in daily scenarios (houses, offices,
stairs,...). The model uses as input the RGB image of one
frame and the skeleton pose history in the image 2D frame.
Then, problem is approach in 3 steps, each one solved by a
different network: first, the human goal is estimated to decide
where the human is heading. Then, the future 2D path is
generated by the following network, taking into account the
scene elements that may interfere in this path. Finally, the
3D pose motion is generated along the predicted path using a
transformer based network. Although the use of the scene (or
contextual) information looks very promising, the data used
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in this work still doesn’t account for the presence of robots
in the surrounding of the humans.

In recent times, the development of widely used body
parametric models like SMPL [1] and the establishment of
new 3D human datasets have given rise to a growing trend
of approaching the human motion prediction challenge as a
mesh prediction problem. A notable example can be found
in the research presented by Xu et al. [17], which reflects an
increasing interest in generating human predictions by con-
sidering the potential interactions that humans typically have
with various objects (akin to the “context” concept applied
in our work). Moreover, the suggested architecture employs
a diffusion model to encode the anticipated distribution of
future human-object interactions in order to make these pre-
dictions.

2.2 Motion Prediction in Human–Robot Interaction
Tasks

Thefield of robotics also explores predictive elements, partic-
ularly in human–robot interactions like handovers. Hoffman
et al. in [18] compare anticipatory and reactive agents, high-
lighting the importance of predicting human intentions for
smoother collaboration. Lang et al. [19] utilizeGaussian Pro-
cess clustering with stochastic classification for trajectory
prediction in object handovers. Additional studies on han-
dover tasks in human–human interactions include [20] and
[21]. Nemlekar et al. [22] propose an efficient method for
predicting the Object Transfer Point between a robot and a
human.Moreover, [23] extends the predictive approach from
[11] to jointly forecast the motion of two humans during
interactive tasks, leveraging past motion to learn interdepen-
dencies between their joints.

The study presented by Sung et al. [24] introduces the uti-
lization of Gaussian Process Regression for predicting forth-
coming human motions, encompassing a time frame of up
to one second. Notably, the authors incorporate the concept
of human intention, defined as the specific object the human
intends to reach from a selection of four available positions.
Moreover, this model is extended to facilitate robot planning.
The robotic component of the study features a 7-degree-of-
freedommanipulator, designed to execute collaborative tasks
in close proximity to humans. Importantly, the model takes
into account the inherent unpredictability in human behavior,
underscoring the significance of robust and adaptable robot
planning strategies for cooperative interactions.

2.3 Human–Robot Harvesting

The continuous growth of the human population has height-
ened the importance of ensuring reliable food supplies for

human sustenance. To meet the increasing demands, agricul-
tural efficiency must be maximized. Consequently, the field
of robotics has become a significant area of interest, par-
ticularly in the context of harvesting operations. Harvesting,
despite appearing highly automatable, often involves delicate
handling of the produce, making the study of close human–
robot interactions critical.

However, recent research in the robotic harvesting field,
as highlighted by [25], shows that only 6% of publications
are considering human–robot interaction (HRI) strategies to
tackle the operation. The majority of work has been focused
on developing interfaces for human–robot interactions, with
little emphasis on exploring the intricacies of such interac-
tions.

For example, in [26], the author evaluates three different
interfaces for selecting spraying areas in semi-autonomous
robots, using a mouse, a Wii controller, and a digital pen.
However, in these scenarios, the human user is always con-
sidered to be far away from the robot, which differs from our
work, where close interactions are essential.

One interesting approach is presented in [27], where
the focus is on optimizing logistic operations in the field
involving various robots performing different tasks. The
authors propose utilizing spatio-temporal information of
human activities within a Hidden Markov Model to predict
the whereabouts of human pickers at any given time. Based
on this prediction, a multi-robot logistics model is employed
to schedule the robot fleet, ensuring that the robots can antic-
ipate the human needs. As a result, they achieve an 80%
reduction in unproductive time compared to a fully manual
operation.

In another approach [28], addresses emergency situa-
tions during farmers’ work. Although no robotic systems are
involved in this study, the researchers consider the workers’
poses. The poses are captured using wearable devices on the
workers and are used to train a classifier capable of identify-
ing the farmer’s activity and detecting potential risks.

Our method diverges from all of the aforementioned
approaches in two significant aspects:

• Our model is trained on a custom dataset where interac-
tion occurs between a real robot and humans, resulting in
highly natural and realistic human reactions and move-
ments.

• Ourmodel is trained in such a manner that it can leverage
an understanding of the intentions behind human actions
during interaction by discerning hidden information cues
from body poses. This knowledge is subsequently uti-
lized to enhance the prediction of motion sequences..
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3 Model

We propose a modified deep learning model with attention,
based on Mao et al. [11], which can predict both future 3D
human motion and intention (see Fig. 2).

3.1 Problem Definition

Given a motion history encoding of human motion, X p
1:N =

[x p
1 , x p

2 , x p
3 , . . . , x p

N ] where xi ∈ R
K (3D coordinates

of each joint), the objective is to predict T future poses
X p
N+1:N+T and human intention for each frame.
Additionally, to incorporate context information relevant

to the task, we introduce a general context queue, Xc
1:N , con-

taining temporal or fixed information related to the given
task.

For the handover case, the focus is on the REE as the
objective is to place the object near the end effector. Hence,
we introduce a new queue, Xr

1:N , which encodes the REE’s
3D motion history as [xr1, xr2, xr3, . . . , xrN ], where each xri is
a 3D vector in R3.

Furthermore, the context information for the handover
task includes the 3Dpositions of obstacles in the scenario.We
encode the obstacle positions as Xo

1:N=[xo1 , xo2 , xo3 , . . . , xoN ],

where each xoi contains the 3D coordinates of three obstacles,
represented as the obstacle centroids, and belongs to R

3×3.
On the other hand, for the harvest operation context, we

consider the positions of both the grape bunches and the stor-
age box as goals (eachone is the goal during a certain sub-task
of the operation, the bunches are the goal during the "harvest"
itself, and the box is the goal during the "drop" phase). Thus,
Xg
1:N represents the position of the goals relative to the robot

in each frame, with each xgi belonging to R3.
In both operations, we define a goal intention i with i ∈

[0, c − 1] and i ∈ N, where c is the number of intention
classes (refer to Sect. 4 for further information). This value
determines the intention that the human will express in the
predicted frames îN+1:N+T .

3.2 Architecture

3.2.1 Attention Channels

The first change over the original architecture from [11]
involves the addition of multiple input channels. Unlike the
original model that only considered human 3D skeleton data,
we now aim to include multiple context information. For this

Fig. 2 Model overview for the specific case of the HRI handover. The
model has three inputs, the humanmotion sequence seen in the past, and
the context related to the specific task: REE and obstacle position. In the
case of the harvesting operation, instead of REE and obstacles we only
input the bunches position. This input can be changed depending on the
specific task. The model allows to add as many attention channels as
desired. To finish the encoding process, each attention output is fused in
the fusion module. Additionally, the desired intention can be added in

the fusion module in case that a specific type of output sequence must
be produced. At this point, the decoding process starts, using a graph
convolution network (GCN) to generate the predicted motion of each
joint in the frequency domain. This output is processed in an inverse
discrete cosine transform (IDCT) to obtain the predicted human motion
in cartesian coordinates. Paralelly, the predicted joint motion is also
processed with a one dimensional convolution neural network able to
classify each predicted frame into one of the defined intentions
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purpose, we introduce an attention channel for each context
queue under consideration.

To compute attention scores, we divide each input
sequence X p

1:N , Xr
1:N , Xo

1:N into N − M − T + 1 sub-

sequences X j
i :i+M+T−1

N−M−T+1

i=1
, where i is the time-step

index of the sub-sequence, and j refers to the information
channel (p, r , or o). This division ensures that each sub-
sequence has M+T frames. During training, the aim will be
to predict the T frames based on theM previous ones for each
sub-sequence. N is the number of frames forming the input
sequence, M is a sequence of frames included inside the Nth
long input sequence and T is the sequence of frames follow-
ing the mentioned M long sequence. Following the idea that
every M long sequence has a corresponding T long sequence
of "future" frames, we can train a network able to predict the
future T frames of the N long sequence by looking at the last
M frames of the N long sequence.

By creating this data structure, we can define the classical
attention formulation of keys, values, and query. We con-
sider all possible M-length segments of the sub-sequence
X j
i :i+M−1 as keys (length M). The entire sub-sequence

X j
i :i+M+T−1 is transformed into the frequency domain using

a discrete cosine transform (DCT), which produces the value
(length M+T) for each key. Finally, the last M frames of the
sub-sequence X j

N−M+1:N serve as thequery (lengthM), lead-
ing the network to output the next predicted T frames after
the query.

The keys and query undergo processing by mapping func-
tions f j

k and f j
q , respectively, before computing attention

scores. These functions encode the input data into vectors
of size Rd using neural networks comprising three 1D con-
volution layers, followed by batch normalization and ReLU
activation.

k j
i = f j

k

(
X j
i :i+M−1

)
, q j = f j

q

(
X j
N−M+1:N

)
(1)

Computing attention scores involvesmulti-head attention,
as described in [29]. This entails performing the attention
operation in parallel for each defined head. Each head takes
a distinct embedding, kh, j

i and qh, j , for each head h in the
range [1, H ]. Finally, attention scores for each channel and
head are calculated.

ah, j
i = qh, j kh, j T

i∑N−M−T+1
i=1 qh, j kh, j T

i

(2)

3.2.2 Information Fusion

Each attention channel outputUh, j is calculated bymultiply-
ing its attention scores ah, j

i with the corresponding "value"

V h, j
i of the given "key":

Uh, j =
N−M−T+1∑

i=1

ah, j
i V h, j

i (3)

Each Uh, j is in R
K×(M+T ). The outputs from all heads

are concatenated and then input into a linear function fh .

U j = fh
(
U 1, j ‖U 2, j ‖ · · · ‖UH , j

)
(4)

Having transformed each input sequence into an embed-
ded tensor U j , we proceed to aggregate these tensors into a
unified tensorU through a weighted sum operation. Notably,
the model itself learns these weights through training. This
approach is rooted in the concept of enabling the model to
determine the relative significance of each input sequence,
thus facilitating dynamic consideration of inputs based on
their relevance.

We compute the weighted sum of all attention channel
outputs by multiplying each output by a learned weight α j :

U = α pU p + αrUr + αoUo (5)

3.2.3 Intention Conditioning

The outputU is merged with the desired intention condition-
ing module, using the desired human intention represented
by i . This desired intention represents the intention that we
want to display in the output, allowing us to obtain differ-
ent output motions depending on the selected intention. This
intended intention should not be conflated with the predicted
intention of the human. The intention conditioning offers
an elective capability of the model, enabling it to guide the
forecast sequences in a specific direction. This can prove
valuable, such as generating diverse motions corresponding
to the specified intentions, equipping the robot to anticipate
various potential scenarios. In scenarios where this function-
ality is not utilized and no specific intention is imposed,
it remains advantageous to not solely predict forthcoming
motion but also to classify it into one of the intention cate-
gories, empowering the robot to respond appropriately. That
is the goal of the predicted intention.

A function fi : N → R
K×(M+T ) maps the intention

information. This function consists on a two layered neu-
ral network, each layer consisting on a linear layer with a
ReLU activation function separating between the two layers
and no activation function after the second layer to use the
output directly as an embedding of the intention:

U ′ = U + i ′, i ′ = fi (i) (6)
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3.2.4 Motion and Intention Prediction

Output U ′ is utilized by the Graph Convolutional Net-
work (GCN) to reconstruct the predicted skeleton motion
X̂ N + 1 : N + T in a similar manner as presented in [11].
Additionally, an additional output from the GCN is the
predicted human intention for each frame î N + 1 : N + T ,
which is generated using extra layers at theGCN’s end. These
layers consist of two 1D convolution layerswith aReLU acti-
vation function in-between. Subsequently, a Softmax layer is
applied to solve a multi-class classification problem for each
frame, producing the predicted human intention.

3.2.5 Loss Function

To optimize themodel and generate realistic humanmotions,
several loss terms are employed. The primary component is
the L2 distance between the predicted motion joint positions
and the ground truth, denoted as Lxyz .

Moreover, predicting the human’s intention in each frame
is always a goal. To address this multi-class classification
problem, we utilize a cross-entropy loss term Li . The cross-
entropy loss function allows the model to make accurate
predictions of human intention.

For the handover case, we take specific measures to
enhance the quality of predictions. Firstly, we incorporate
a term LREE . This term involves the L2 distance between
the human’s right hand and the REE. By discouraging pre-
dictions where the human’s hand is too far from the REE
during the handover, we promote more realistic and plausi-
ble predictions.

Furthermore, to ensure that the predictions do not allow
the human to cross any obstacles in the scenario during the
handover, we introduce a loss term called Lo in the over-
all loss calculation. The purpose of this term is to apply a
significant penalty on predictions where the human’s hips
cross any obstacles. This measure helps to maintain safe and
obstacle-free interactions during the handover task.

L = Lxyz + LREE + Lo + Li (7)

In the case of the harvest operation, we add a term Lg

in the loss function. Similar to the REE term in the han-
dover case, Lg also serves as a penalty to discourage output
sequences where the human’s right hand doesn’t reach the
goal (grape bunch or box). The penalty is based on the L2

distance between the human end effector (HEE) and the spe-
cific goal (bunch or box). This measure aims to promote
predictions where the human successfully reaches the des-
ignated goal during the harvest operation, leading to more
accurate and task-compliant predictions.

L = Lxyz + Lg + Li (8)

No weights were used to prioritize one loss over the rest.

4 Datasets

We created two datasets in a similar fashion, the Robot Han-
dover Dataset and the Harvest Dataset. The data collection
of the handover was approved by the ethics committee from
the Polytechnic University from Catalonia, certificate num-
ber 2022.1.

In this study, we have categorized human intentions into
several distinct classes for the purpose of analyzing human–
robot collaborative tasks. Specifically, we have defined
four primary intentions: collaborative, gesture, neutral, and
adversarial. These intentions capture various scenarios and
interactions between humans and robots.

In the context of the handover task, the following inten-
tions are considered: Collaborative intention, where the
human approaches the robot to deliver an object, carries out
the handover, and thenmoves the hand away from the robot’s
hand. Neutral intention, where the human intends to continue
the collaborative task but exhibits a passive behavior, not
raising the hand when the actual handover should take place.
Adversarial intention, where the human avoids the handover
taskbymoving away from the robot.Gesture intention,which
occurs when the human performs any motion not covered by
the previously mentioned intentions, such as checking his
smartphone or waving to the robot.

Similarly, we can decompose the human intentions in
the harvesting operation. The human follows a collabora-
tive intention when it harvests the grapes or approaches the
robot with a cluster of grapes to deliver them in a box car-
ried by the robot. The human follows a adversarial intention,
when for example, it moves away from the robot after col-
lecting the grapes instead of delivering them in the robot
box. Again, the human shows a gesture intention when, at
any given time, the human makes a motion different to the
motions previously described. The neutral intention wasn’t
considered in this specific case because it was hard to define
since the robot was not moving during the data collection for
security reasons.

These intention classifications offer a structured frame-
work for analyzing and understanding human behaviors in
the context of collaborative tasks, enhancing the overall com-
prehension of human–robot interactions.

4.1 Robot Handover Dataset

Ten volunteers, consisting of 5 women and 5 men, with ages
ranging from 25 to 60, participated in the recordings. Each
volunteer recorded all scenarios, resulting in 33 sequences
per volunteer and a total of 330 sequences in the dataset. The
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Fig. 3 Each subfigure illustrates a top perspective of the handover
sequence for the three possible scenarios. In the first scenario (left), the
robot is positioned on the left side, and the human is on the right side,
with no obstacles around. The three lines emanating from the human
indicate the three different paths to the locations where the robot will
receive the object. In the second scenario (middle), there is one obstacle
(represented by a red square) between the robot and the human. In this
case, four different locations were considered as delivery spots. Lastly,

the third scenario (right) involves the handover operation occurringwith
three obstacles present in the scene. Similar to the second scenario, there
are four locations where the robot is expected to receive the object. It is
important to note that in all of these scenarios, the spots where the han-
dover takes place are predetermined. During the recording, the delivery
spot is sent to the robot planner, enabling the robot to navigate to the
destination

duration of each sequence varies between 4 and 15s. The
human and robot start each sequence 6ms apart.

In our previouswork [30], we established a custom dataset
in our laboratory. However, for this study, we wanted to
investigate the impact of obstacles in the environment and
the differences when the human is the one handing over an
object. To achieve this objective, we created a new dataset
with revised conditions.

The dataset was generated by involving the anthropomor-
phic robot, IVO [31], and human volunteers to perform a
handover task. In this scenario, the human served as the
giver, while the robot acted as the receiver (as illustrated
in Fig. 3). The human played the role of leader, and the robot
was the follower, with the robot required to mimic and fol-
low the human’s movements to reach the object. During the
experiment, both the human and the robot navigated around
obstacles and extended their arms to reach each other. At the
end of each sequence, the human passed a 10cm cylindrical
object to the robot’s end effector using their right arm, and
the robot grasped the object.

The robot’s behavior was preprogrammed to navigate
towards distinct predetermined waypoints, strategically cho-
sen to encompass a range of relevant interaction scenarios.
In each sequence, explicit instructions were provided to
the human participant regarding their intended destination.
Meanwhile, the robot was guided using a standard planner to
approach a location in proximity to the human’s designated
goal position. See Fig. 3 for a visual representation of the
used setup.

The Intel RealSense D534i camera located inside the
robot’s head recorded a video of each sequence at 10 frames
per second (fps). The recording stopped when the human
placed an object in the REE. The human’s skeleton was
extracted from each video usingMediapipe [32] to determine

Fig. 4 Sample sequence of the human–robot handover. The human
skeleton is extracted using a pose estimator. Then, the 3D location of
each joint is reconstructed using the depth map of the robot RGBD
camera

2D joint locations in the image. These 2D joint positions,
along with camera depth map data, were then used to calcu-
late the 3D joint coordinates relative to the robot base. Only
the upper body of the human, from the hips to the head, was
utilized to avoid leg occlusions during close proximity to the
robot. In Fig. 4 for an example of the robot point of view.

In three different scenarios, the volunteers delivered a
cylindrical object to the robot. The first scenario had no
obstacles, the second scenario had one obstacle, and the third
scenario featured three obstacles. To capture all the possible
approaches a human could take to reach the robot, differ-
ent approaching paths were defined. For the first scenario,
three pathswere designated, four for the second scenario, and
another four for the third scenario. The goal was to exam-
ine two factors: how the model responds to human lateral
movement (previous work only considered straight trajec-
tories) and how obstacles impact predictions. The obstacles
used were cardboard boxes, measuring 20 × 20 cm at the
base and 50cm in height. The object’s position was deter-
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mined through trial and error to create challenging situations
for both the robot and human. The object’s position was not
tracked by the robot and was assumed to be in a known loca-
tion.

During the data collection, the human volunteers were
asked to repeat each trajectory three times. First, they were
asked to perform the task naturally, following the leader-
follower behavior, as expected. Second, they were asked
to perform a random gesture during the task while still
delivering the object as expected. This approach served two
primary purposes: firstly, to capture poses that deviate from
the typical distributionobservedduring ahandover operation,
and secondly, to accommodate the potential occurrence of
human gestures that are unrelated to the specific task within
a real handover scenario. Finally, the users were asked to
walk towards the robot and then deliberately not deliver the
object (adversarial behavior). These different behaviors were
included to study the impact of human intentions on motion
prediction. After recording all the sequences, a visual inspec-
tion was performed for data validation. Additionally, each
recorded frame was labeled with an intention class: Collab-
oration, Gesture, or No collaboration. This labeling allowed
for further analysis of the human intentions during the han-
dover task.

• Collaboration: the human is willing to deliver the object
to the robot.

• Gesture: the human is performing a gesture (we do not
differentiate between communicative and non-
communicative gestures).

• Neutral: the human does not raise the right hand towards
the robot, but will not make any movement to oppose the
robot.

• Adversarial: the human moves the right hand away from
the robot.

The relation between phases and intention can be seen in
Fig. 5

The REE position and robot odometry were recorded dur-
ing all sequences.

4.2 Harvest Dataset

We created a second dataset to study a more complex task:
grape harvesting. This task involves one or more humans
collecting grapes while a robot supports them in the area.
The grape variety considered in this task is sold as table
fruit, and it is essential to minimize imperfections derived
from the harvesting to ensure the grapes look as good as
possible. Thus, a manual operation is preferred.

The dataset comprises 10 participants, consisting of 9
men and 1 woman, aged between 24 and 60 years old. Each
participant performed the grape harvesting operation three

times. In the first scenario, the participants harvested the
grape bunches and dropped them into the box carried by the
robot, demonstrating a collaborative intention. In the second
scenario, participants performed gestures related to the har-
vesting activity, such as drinking water, wiping sweat from
the forehead, etc., representing a gesture intention. Finally, in
the third scenario, participants harvested the grape bunches
and then moved away from the robot while carrying the
bunches, reflecting an adversarial intention. Consequently,
the dataset consists of 30 sequences in total, ranging from 15
to 40s in duration.

Typically, in a non robotic way, the task can be described
by the following phases:

1. The human, using scissors, grab the grape peduncle with
the thumb and the index fingers. Then, with the other
hand, the human cuts the peduncle.

2. The human leaves gently the peduncle in a box placed
nearby.

3. Steps 1 and 2 are repeated until the surrounding area is
cleared of grape bunches.

4. If the box is full of grape bunches, the human moves the
box to a storage point where other boxes are stored. Oth-
erwise, the human moves the box to the next harvesting
area.

5. The humanmoves to the next harvesting area, and repeats
all the operations until all the grape bunches are collected.

The way phases and intention interact is schematized in
Fig. 7.

We aim to explore the human–robot collaboration aspect
of the task. For this purpose, we utilize a TIAGO robot with
a modified base platform. The robot’s wheels have been
replaced by caterpillar tracks to allow maneuvering in the
field effectively. Additionally, the base has been designed to
accommodate a box, which is essential for the collaborative
task.

The interaction we are studying involves enabling the
robot to follow the human carrying the box and managing
all the box replacement operations.

Given that the robot will be operating in a harvesting field
surrounded by multiple humans, it is crucial for the robot to
predict how people will move to avoid any dangerous move-
ments. Moreover, the robot needs to understand what each
human is doing to provide timely assistance when necessary.
Figure 6 illustrates some samples of the collected data, show-
casing the complexity and diversity of the scenarios in the
harvesting field.

An important factor to consider is that, as mentioned ear-
lier, the robot remained stationary during the data collection
process due to the non-operational navigation tools at the
time. In subsequent data collection efforts, the robot’smotion
will be integrated to allow for a comprehensive analysis of
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Fig. 5 This figure represent the different phases and how the inten-
tion is defined in the handover task. Each node in the graph represents
a phase of the harvest task. The blue arrow path represents the phase
order followed by the user when he/she is collaborating. The orange

arrow represents the path followed when the human is not collaborat-
ing in a neutral way. The red arrow represents the phase order for the
adversarial intention. The green arrow represents all the possible paths
for the gesture intention, which can happen after every single phase

Fig. 6 Sample frames from the dataset. Top-left: The user is in the "harvest" phase. Top-right: The user is in the "gesture" phase. Bottom-left: The
user is in the "approach box" phase. Top-right: The user is in the "move away" phase. All this images are recorded from the robot point of view

Fig. 7 This figure represent the different phases and how the intention
is defined in the harvest task. Each node in the graph represents a phase
of the harvest task. The blue arrow path represents the phase order fol-
lowed by the user when he is collaborating. The red arrow represents

the phase order for the adversarial intention. The green arrow represents
all the possible paths for the gesture intention, which can happen after
every single phase
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its impact on the collaborative interactions. This future data
collection phase will provide valuable insights into how the
robot’s movements influence and shape human–robot collab-
oration dynamics.

5 Experiments

The experiments will be presented in two different sections:
the first describing the experiments with the Robot Handover
Dataset and the second describing the experiments with the
Harvest Dataset.

5.1 Handover Experiments

5.1.1 Training Details

The data split between training and validation was set to 85
during training,weutilized 50 frames as input, corresponding
to 5 s of recording, and produced output of 25 frames, equiv-
alent to 2.5 s of predictions. We kept the number of attention
heads fixed at 10 and employed theAdam optimizer for train-
ing. Additionally, we performed an ablation study to assess
the impact of individual features of the model, such as the
number of attention heads, attention channels, and intention
conditioning.

To ensure fair comparison, we trained and validated the
original non-modified human motion prediction model on
our dataset. However, it is crucial to note that since we eval-
uated this model on our own dataset, the results obtained
might differ from the results reported in the respective paper,
where they typically trained their models on larger datasets
like H3.6M [33] and AMASS [34].

The results presented in Table 1 are obtained from our
validation dataset and offer a comprehensive overview of the
performance of different models on our dataset. Since the
amount of data collected in the dataset is relatively small,
the results were obtained using the leave-one-out technique,
where we trained first the model using the subject one as
the testing data, trained the model with the rest of subjects,
and evaluated it with subject one. Then, subject one was
incorporated into the training dataset, and subject two was
used as the evaluation subject. This process was repeated for
all the subjects, and the evaluation metrics were averaged for
all the subjects.

The technique used to train themodelswas early-stopping,
checking the train and validation loss curves and stopping
the training model once the validation loss was clearly over-
fitting. The number of epochs used was between 700 and
1000 epochs, depending on themodel. The learning rate used
was a decaying learning rate, starting from a 0.001 value. The
optimizer used was the Adam optimizer.

During training and testing, when the intention condition-
ing module was used, we input the intention seen in the
ground truth sequence.

5.1.2 3D HumanMotion Prediction Experiments

In our evaluation process, we determine the accuracy of our
model by computing the L2 distance between our predicted
sequences and the ground truth sequences in Cartesian coor-
dinates for each input sequence. The resulting errors for each
sequence are recorded and can be found in Table 1. These
errors represent the amount of deviation from the actual
human motion.

In addition to computing the L2 error, we also calculate
the number of frames within each sequence that have an error
less than or equal to 0.35 m and 0.40 m. The percentage of
successful frames provides insight into the overall accuracy
of the model.

Another crucial aspect of our evaluation is the focus on
the accuracy of the right hand of the human, referred to as the
HEE. This is particularly important because the right hand is
the primary body part involved in the handover task.

To summarize, the most significant metrics for evaluat-
ing the performance of the model include the full body and
right hand L2 accuracy, as well as the number of frames with
errors below 0.35 m and 0.40 m. These metrics provide a
comprehensive understanding of the model’s accuracy and
allow us to determine the quality of the predictions.

As observed from the results presented inTable 1, incorpo-
rating context into the predictions has a significant positive
impact on the accuracy of the model. The inclusion of the
REE position information leads to a notable reduction in
the error of the right hand, which is critical in the handover
task. Moreover, the addition of REE information improves
the accuracy of the entire upper body, possibly due to the
improved spatial relationship between joints.

Additionally, including the position of obstacles appears
to reduce the number of frameswith errors greater than 35cm
and 40cm. This effect may be attributed to the fact that the
skeleton is less likely to follow impractical paths, resulting
in trajectories that align more closely with the ground truth.

The introduction of intention conditioning into the model
significantly enhances the accuracy of predicted intentions.
However, it is essential to interpret these results cautiously.
By providing the model with information about the intended
intention from the ground truth sequence, the improvement
in accuracy could be misleading.

Thus, although conditioning with the desired intention
does not boost significantly the L2 based metrics, this con-
ditioning allows the model to generate different trajectories
based on the distribution associated to each specific inten-
tion class (as depicted in Fig. 8). Even when presented with
the same input sequence, the model can produce multiple
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Table 1 Results obtained across the handover validation dataset

Model Body L2 (m) ≤ 0.35 m (%) ≤ 0.40 m (%) Right hand L2 (m) Intention accuracy (%)

Seconds 1 1.5 2 2.5 2.5 2.5 1 1.5 2 2.5 2.5

RNN [2] 0.411 0.723 0.745 0.793 3.49 11.62 0.349 0.606 0.847 0.677 –

� REE 0.208 0.361 0.504 0.403 34.13 37.14 0.099 0.171 0.235 0.188 –

� obstacles

� intention

V REE 0.195 0.338 0.476 0.378 41.65 45.78 0.092 0.151 0.164 0.174 56.45

� obstacles

� intention

� REE 0.210 0.398 0.401 0.444 41.31 44.87 0.097 0.169 0.234 0.187 62.02

V obstacles

� intention

� REE 0.237 0.405 0.411 0.453 30.81 36.15 0.088 0.155 0.173 0.173 86.29

� obstacles

V intention

V REE 0.199 0.341 0.476 0.381 41.60 47.38 0.089 0.154 0.215 0.172 74.16

V obstacles

� intention

V REE 0.196 0.331 0.367 0.375 34.84 38.86 0.083 0.143 0.203 0.162 85.44

� obstacles

V intention

� REE 0.199 0.347 0.392 0.387 40.22 43.73 0.084 0.150 0.163 0.170 88.69

V obstacles

V intention

V REE 0.183 0.321 0.444 0.355 32.15 35.73 0.078 0.135 0.139 0.151 88.90

V obstacles

V intention

The table contains the results of testing different models, with each row representing a specific model. Here is a description of each column: Model:
The specific model being tested in each row. Body L2: The mean L2 error between the predicted joint positions and the ground truth for the whole
human body, averaged over the entire sequence, also known as mean per joint position error (MPJPE). This metric has been analyzed in four
different time horizons: one second, one second and a half, two seconds and two seconds and a half. ≤ 0.35 m: The percentage of frames in the
sequence where all the predicted joint errors are below or equal 0.35 meters. This metric hasn’t been analyzed in different horizons because the
0.35 m threshold was selected considering the 2.5 s horizon, hence the metric would be 100% for almost every time windows except for the last
one. ≤ 0.40 m: The percentage of frames in the sequence where all the predicted joint errors are below or equal 0.40 m. The same comment in the
previous metric about the time windows can be made in this case. Right Hand L2: The mean L2 error between the predicted joint positions and the
ground truth just for the right human hand, averaged over the entire sequence. This metric has also been analyzed in four different time horizons:
one second, one second and a half, two seconds and two seconds and a half. Intention Accuracy: The percentage of poses where the intention was
correctly classified by the model. These metrics are used to evaluate the performance of each model in predicting human motion and intentions.
In this case the time windows cannot be applied since the network in charge of the intention estimation looks at the whole predicted sequence by
design. Lower L2 errors and higher percentages of frames with low errors indicate more accurate predictions, while a higher percentage of correctly
classified intentions indicates better intention prediction by the model. The bold numbers mark the best results for each column metric. Note that
the second column, where no checkboxes are checked, corresponds to the backbone model from [11]

predicted motions, each corresponding to a different human
intention. This capability makes the model more adaptable
and capable of understanding and responding to different
intentions, thus potentially contributing to improved human–
robot collaboration in the handover task, even though the joint
use of these different predictions is not explored further in
this work.

5.1.3 Handover Human–Robot Validation

The predictor model was successfully integrated into the
robot’s system. The model was encapsulated as a ROS node,
and the forward calculation was performed on an NVidia Jet-
son Xavier platform located inside the robot. For each new
message received from the skeleton extractor, themodel gen-
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Fig. 8 Last frame of the predicted sequence generating different inten-
tions from the same input sequence.. The blue dot corresponds to the
REE. Top-left: Collaborative. Top-right: Gesture. Bottom-left: Neutral.
Bottom-right: Adversarial

erated 25 frames of future predictions, representing the next
2.5 s. The main goal of this integration was to evaluate the
feasibility of the predictor in real-time use with the robot,
rather than focusing on specific accuracy measurements.

The testing phase with two volunteers who were not part
of the dataset collection yielded encouraging results. For
the intention conditioning, a cooperative approach from the
human was assumed, but future work will explore the uti-
lization of the model’s predicted intention for the next time
step prediction.

To achieve real-time performance, some model parame-
ters had to be adjusted. The REE was used to condition the
predictions, and the scenario assumed no obstacles.

Since the human intention cannot be known in advance,
the intention conditioning was set to “cooperate.” However,
a closed-loop system could be implemented by training an
intention classifier that can read the input data and determine
the human’s current intention. This aspect goes beyond the
scope of our current work.

During the testing, the model was evaluated while the
volunteers approached the robot from different angles. The
results demonstrated that the predictionswere consistentwith
the human’s trajectory, with the human consistently facing
the robot in the final stages of the interaction.

Overall, the real-time implementation of the model on the
robot showcases its potential practicality and effectiveness in
human–robot collaborative scenarios, such as the handover
task.

5.1.4 User Study

The results from the previous section indicate that the robot
can accurately predict and deliver an object to a person. To

assess the impact of the prediction module on the usability
and comfort of the robot from the user’s perspective, a user
study was conducted. The study aimed to test the hypothe-
sis that participants would perceive an improvement in the
robot’s intelligence and usability when using the prediction
module compared to not using it.

Fifteen participants (8 men and 7 women) between the
ages of 19 and 50 were selected for the experiment, repre-
senting various university majors and occupations, including
computer science, mathematics, biology, finance, and chem-
istry. The participants in the study had varying degrees of
experience with robots, ranging from individuals who work
with robots on a daily basis to those who had never seen
a humanoid robot before. Each participant was randomly
assigned to either have the prediction module activated or
not during the delivery of an object. The order of the exper-
iment was randomly assigned at the beginning of the study.
Thismeans that someparticipants started the experimentwith
the robot following their current position, while others began
with the robot following their predicted position. The random
assignment was done to eliminate any potential bias or order
effects that could influence the participants’ responses during
the study. Certainly, during the study, participantswere inten-
tionally kept unaware of whether the robot was utilizing the
motion prediction module. This blind setup ensured that the
participants’ interactions with the robot were unbiased and
unaffected by any prior knowledge of the robot’s capabili-
ties. Also, each participant engaged in approximately 5min
of collaboration with the robot, and the intentionally short
duration prevented participants from becoming accustomed
to the robot’s behavior over an extended period of time. This
approach aimed to maintain the authenticity of participants’
responses and perceptions throughout the study.

To focus solely on the effect of the prediction informa-
tion on the handover task, the model was tested without any
interference from the REE or obstacle positions, and obsta-
cles were not present in the environment. The model was
conditioned with the assumption of a collaborative human
intention, since we instructed the users to always deliver the
object to the robot.

The procedure for the user study was as follows:

1. The human motion prediction network was integrated
into a ROS node and installed on an NVIDIA Jetson
Xavier, which was connected to the robot. The network
used during this study was not conditioned with the REE
or the obstacle’s position.

2. It was randomly determined whether the first run of the
experiment would use the prediction or not.

(a) If the prediction was used, the robot’s navigation goal
was defined as the predicted position of the right
human wrist 2.5 s in the future. The model contin-

123



International Journal of Social Robotics

Fig. 9 Top: Representation of the user study task. The human walks
towards the robot to deliver the object. Bottom: Visualization in ROS of
the future prediction of the human motion (green dots) and the current

position of the human (red dots), together with the robot model. The
robot could follow either the predicted points or the current points

uously recalculated this goal every 125 milliseconds
based on the latest 50 poses captured by the robot
camera.

(b) If the prediction was not used, the robot’s navigation
goal was set to the current position of the right human
wrist observed by the robot camera.

3. The robot and the human start the operation standing 6m
away from each other.

4. As the robot and human approached each other, the robot
would stop and raise the REEwhen it came within 1.5ms
of the human, indicating its readiness to take the object.

5. This experiment would be repeated three times.
6. After the interaction, the user was asked to fill out a poll

rating the quality of the interaction.
7. If the first run of the experiment used the prediction infor-

mation, steps 3, 4, and 5 were repeated without using the
prediction information. Conversely, if the first run did
not use the prediction information, steps 3, 4, and 5 were
repeated using the prediction information.

A representation of the experiment sequence can be seen
in Fig. 9.

After the task, the participants completed a questionnaire
based on [35, 36] that assessed their perceptions of the robot’s
sociability, naturalness, security, and comfort. The question-
naire was designed based on [37]. The independent variables
considered were whether the robot predicted the human’s
intention or not, while the main dependent variables were
the participants’ perceptions of the aforementioned charac-
teristics.

To analyze the results, the survey questions were grouped
into three scales: sociability, naturalness, and comfort. Both
scales had a reliability score above the commonly used 0.7
level, as determined by the Cronbach’s alpha test. The scale
responses were computed by averaging the results of the sur-
vey questions in each scale. ANOVAs were conducted on
each scale to determine anydifferences between the two robot
behaviors. The Shapiro-Wilk test was used to verify that the
dependent variable was normally distributed.

The results of comparing the two behaviors are depicted
in Fig. 10. The pairwise comparison with Bonferroni showed
no significant difference between the two behaviors for socia-
bility, with p = 0.3 and p = 0.17, respectively. However, a
significant difference was observed for both naturalness and
comfort, with p < 0.05 in both cases.

In conclusion, the results suggest that if the robot is able to
predict the human’s intention, the acceptability of the robot
will increase. The participants perceived the robot to bemore
natural and comfortable when it could predict their intentions
during the handover task.

5.2 Harvesting Experiments

5.2.1 Training Details

The split between training and validation data is 85% for
training and 15% for validation.

Training the model with a smaller dataset compared to
widely used human motion datasets like H3.6M [33] and
AMASS [34] presents a challenge in achieving robust predic-
tions. To address this, we adopted two different approaches.
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Fig. 10 Results obtained from the user study. The results show that the use of the prediction increase the feeling of naturalness, security and comfort
during the interaction with the robot

Firstly, we applied data augmentation using noise in the
sequences, which helped to create variations in the dataset
and improve generalization. The noise was introduced in two
ways:

• Random Joint Noise: We added small Gaussian noise
N (0.03, 0) to each human skeleton joint position with a
probability of 0.5 for each joint. This perturbation slightly
modified the sequences without altering the anthropo-
morphic shape of the skeleton.

• Random Translation: We applied a random horizontal
translationN (0, 2) to the entire sequence, except for the
coordinate corresponding to the humanheight. This intro-
duced variability in the dataset, simulating the harvest
sequences occurring at different distances.

The second approach involved adjusting the model archi-
tecture to reduce the number of learnable parameters on each
layer while increasing the number of hidden layers. By doing
so, we aimed to decrease the model’s dependency on large
amounts of data and allow it to capture more complex rela-
tionships.

Despite the smaller dataset, the input and output sequence
lengths remained unchanged, with the input sequence con-
sisting of 50 frames (5 s) and the output sequence consisting
of 25 frames (2.5 s). The number of attention heads was still
set to 10, maintaining consistency with the handover exper-
iments.

By combining data augmentation, architectural adjust-
ments, and the other strategies mentioned earlier, we were
able to improve the model’s performance and achieve accu-
rate predictions on the validation dataset. The final model
demonstrated its potential in human–robot collaboration
tasks, making predictions based on context information and
human intention.

Similarly to the handover operation, during training and
testing of the model, if the intention conditioning module
was used, we input the intention seen in the ground truth
sequence. The training technique, learning rate, optimizer
and other details was the same as the handover experiments,
the only difference being that generally the models started
overfitting earlier, around 500 epochs.

Again, the results in Table 2 follow the leave-one-out
methodology.

5.2.2 3D HumanMotion Prediction Experiments

Given the seasonal nature of the harvesting operation, real-
world testing of the model in an actual scenario has not been
conducted yet. However, the model’s correctness and per-
formance have been extensively evaluated using the training
and validation datasets. To ensure a comprehensive evalua-
tion, approximately 15% of the data is left out of the training
dataset and used for validation purposes. This approach
allows us to assess how well the model generalizes to unseen
data.

The evaluation process follows a similar methodology
as the handover operation, allowing for a fair comparison
between the two tasks. The primary evaluation metric used
is the L2 distance between the model’s predictions and the
ground truth for the entire upper body. Although the model
now predicts the entire human body skeleton, including the
legs, we focus on the upper body difference to facilitate com-
parison with the previous results obtained in the handover
experiments.

By using the validation dataset, we can gauge the model’s
accuracy and how well it generalizes to new scenarios and
variations in human motion. The goal of this evaluation is to
ensure that the model’s predictions are accurate and reliable,
even in scenarios not encounteredduring training.While real-
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Table 2 Results obtained across the harvesting validation dataset. The meaning of the title columns are the same as in Table 1

Model Body L2 (m) ≤ 0.35 m (%) ≤ 0.40 m (%) Right hand L2 (m) Intention accuracy (%)

Seconds 1 1.5 2 2.5 2.5 2.5 1 1.5 2 2.5 2.5

RNN [2] 0.404 0.702 0.81 0.784 4.12 15.09 0.308 0.536 0.745 0.598 –

� REE 0.206 0.352 0.385 0.399 82 96 0.188 0.325 0.452 0.365 –

� Obstacles

� Intention

V REE 0.189 0.343 0.479 0.383 58 66 0.135 0.240 0.335 0.268 –

� Obstacles

� Intention

� REE 0.185 0.321 0.336 0.358 72 72 0.187 0.326 0.403 0.363 –

V obstacles

� Intention

� REE 0.108 0.184 0.260 0.209 100 100 0.074 0.127 0.134 0.142 90.2

� Obstacles

V Intention

V REE 0.105 0.178 0.261 0.208 100 100 0.073 0.122 0.176 0.143 –

V obstacles

� Intention

V REE 0.111 0.183 0.197 0.210 100 100 0.071 0.131 0.176 0.141 83.33

� Obstacles

V intention

� REE 0.106 0.172 0.186 0.208 100 100 0.076 0.129 0.142 0.145 83.33

V Obstacles

V Intention

world testing is essential to validate themodel’s performance
in an authentic environment, the rigorous evaluation on the
validation dataset provides a solid basis for the model’s cor-
rectness and effectiveness in predicting humanmotion during
the harvesting operation.

The results obtained from the harvesting task evaluation,
as shown in Table 2, require further explanation. Firstly, it is
important to note that the analysis of the phase could only be
conducted using the harvesting phase data. Other phases of
the harvesting task did not involve direct collaboration with
the robot (such as Approach cluster, Move Away, Gesture,
and Approach Box), making the accuracy of the predictions
in those phases less meaningful. The only exception is the
Drop Cluster phase. However, the analysis of this phase was
not considered due to the short length of the sequences,which
made it challenging for the predictions to reach at least 25
frames for a fair comparison. Additionally, the close proxim-
ity of the box to the robot camera caused the pose estimator to
fail during the actual drop, further complicating the analysis.

The most significant conclusion drawn from the results
is that creating a specific model for the particular phase
(Harvest phase) yields the most accurate results across all
the mentioned metrics. The body accuracy drops to around
20cm, and all of the predicted skeletons show an error under

35cm with respect to the ground truth. The accuracy for the
human right hand (the one holding the scissors) is around
14cm.

Interestingly, it was observed that for the harvesting
phase, context and intention did not significantly improve
the results. This can be explained by the fact that during
the harvest, the humans do not move very much, except for
their arms while performing the cutting. Therefore, adding
context in this case did not provide substantial additional
value. Context is typically more useful when the human
needs to move around the scene with different goals in mind.
Similarly, the intention prediction did not show significant
improvement because almost all the frames during this phase
correspond to a collaborative intention, except for some of
the last frames when the humanmay start moving away, indi-
cating an “adversarial” intention. However, themodel trained
specifically for the harvesting phase did not have enough data
to learn how to classify the sequences, leading it to classify all
frames as “collaborative” intention to maximize the metric.

Nevertheless, when the model was trained with all the
data, and not just the harvesting phase data, adding context
did improve the accuracy, especially for the human hand.
The addition of context allowed the model to improve the
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Fig. 11 Sequence of the harvest phase during the harvest operation.
The prediction properly follows the ground truth skeleton. The position
of the grape cluster is marked with a purple circle, while the vineyard

trunk is represented just as an aproximation to clarify the plot. In this
sequence, the harvester is backwards and he is walking away from the
robot

Fig. 12 Sequence of the harvest phase during the harvest operation.
Top: Sequence predicted. Bottom: Ground truth sequences. The pre-
dicted sequence doesn’t turn to the left as much as the ground truth, but
the model is able to turn to the same direction than the ground truth.

The position of the grape cluster is marked with a purple circle, while
the vineyard trunk is represented just as an aproximation to clarify the
plot. In this sequence, the harvester is backwards and he is harvesting
the cluster

prediction of the human hand by almost 10cm, reaching an
accuracy of 0.268cm.

Furthermore, incorporating the intention prediction into
the general model slightly improved the accuracy of the
whole body, reducing the error from 39.9 to 35.8cm. More-
over, it provided valuable information about the intention that
the humanmay exhibit in the future, which is a critical output
in human–robot collaboration scenarios.

Some of the output sequences from the model can be seen
in Figs. 11, 12, 13, 14.

6 Conclusion

In this study, we have presented a human motion prediction
model that incorporates contextual information and human
intention to enhance human–robot interactions in handover
and harvesting tasks. The results of our experiments show
that the combination of context and intention significantly

improves the accuracy of the predictions, leading to more
successful and natural interactions between humans and
robots.

In the handover experiments, we conducted real robot
tests to evaluate the impact of the prediction model on
human–robot interactions during handover operations. The
participants’ feedback revealed thatwhen the robotwas capa-
ble of predicting human motion and intentions, the overall
interaction experience was perceived as better. The partici-
pants felt that the robot’s movements were more natural, and
they felt more secure and comfortable during the handover
process.

Regarding the intention conditioning of the model, while
it may not have resulted in a substantial increase in positional
accuracy of the samples, the ability to generate multiple pre-
dicted options holds valuable potential. This feature might
enable the robot to anticipate and adapt to various potential
scenarios during its interaction with humans. We intend to
delve deeper into this aspect in our future research endeavors.
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Fig. 13 Sequence of the drop phase during the harvest operation. The
prediction properly follows the ground truth skeleton. In this sequence,
the harvester is sideways looking at the right side. He is dropping the
collected grapes into the robot’s box. Top row: predicted skeletons, yel-

low color represent the left side of the human, while green represents
the right side. Bottom row: ground truth skeletons, red color represent
the left side of the human, while blue represents the right side. In both
cases, black represents the spine and head of the human

Fig. 14 Sequence of the drop phase during the harvest operation. The
predicted sequence is able to follow the movement of the human at the
beginning of the phase. During the last frames, the ground truth motion
starts raising after dropping the bunches, which the models fails to pre-
dict. In this sequence, the harvester is sideways looking at the right side.

He is dropping the collected grapes into the robot’s box. Top row: pre-
dicted skeletons, yellow color represent the left side of the human, while
green represents the right side. Bottom row: ground truth skeletons, red
color represent the left side of the human, while blue represents the right
side. In both cases, black represents the spine and head of the human

For the harvesting task, we further explored the impact
of context and intention detection on the prediction model’s
performance. The results indicated that using context and
intention detection for specific phases of the task signifi-
cantly improved the accuracy of the model. Additionally, by
detecting the human’s future intention, we gained the abil-
ity to anticipate whether the human would continue with the
interaction or not, which is valuable in complex tasks like
harvesting.

Overall, our findings suggest that enabling the robot to
predict human motion and intentions is highly beneficial for
enhancing collaboration between humans and robots in var-
ious scenarios. The use of context and intention not only
improves the accuracy of the predictions but also leads to
more natural and successful human–robot interactions, ulti-

mately enhancing the usability and acceptability of the robot.
These insights pave the way for further advancements in
human–robot collaboration and contribute to the develop-
ment of more capable and intuitive robots in real-world
applications.
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