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A B S T R A C T

The field of Human Gait Recognition (HGR) leverages unique walking patterns for non-invasive, discreet
biometric identification. This study highlights the importance of comprehensive datasets in the development,
testing, and validation of HGR algorithms. While current datasets, such as those from Carnegie Mellon
University Motion of Body (CMU MoBo), Southampton (SOTON), Chinese Academic of Science Institute
of Automation (CASIA B), and Osaka University Institute of Scientific Industrial Research (OU-ISIR), have
advanced in scale and complexity, they often lack diversity and comprehensive sample representation. To
address this gap, we introduce the TecNM Gait-DS dataset (Tecnologico Nacional de Mexico), specifically
designed for Latin American populations, featuring 13 viewing angles and five walking variations. Utilizing a
Self-Supervised Vision Transformer DINO (Deeper Into Neural Networks) model for view angle classification,
our evaluation demonstrates significant improvements in classification accuracy. This dataset not only enhances
sample diversity but also supports the development of more robust HGR systems. Our results underscore the
potential for improved accuracy and ethical considerations in HGR, advocating for ongoing refinement of

datasets to achieve optimal performance and societal acceptance.
1. Introduction

Human Gait Recognition (HGR) is a biometric technology that iden-
tifies individuals based on their unique walking patterns or gait (Ga-
urov, 2007). HGR, a burgeoning field in biometrics, has garnered
ubstantial attention due to its non-invasive nature and wide-ranging
pplications in identity verification, surveillance, and forensic analy-
is (Wang and Yan, 2020; Al Kork et al., 2017). The cornerstone of
uccessful HGR systems lies in the availability of comprehensive and
epresentative datasets that facilitate algorithm development, testing,
nd validation.

The main advantage is the difficulty of spoofing due to its roots
n each person’s unique physical structure and biomechanics (Hadid
t al., 2012). In addition, its less intrusive nature and independence
rom external conditions make it applicable to diverse situations (Rani
nd Kumar, 2023). However, HGR also has disadvantages, including
usceptibility to a person’s gait variations due to factors such as injuries,
ging, mood, clothing, or objects carried at the time (Rani and Kumar,
023; Jawed et al., 2018).

∗ Corresponding author.

The most widely used techniques in the field of HGR are based
on deep learning. This is because deep learning has generated a large
number of solutions to classification problems by increasing the accu-
racy (Seng et al., 2024).

Researchers in the field of HGR have classified this recognition
technique into two distinct approaches (image-based). The model-
based approach involves extracting specific behavioral features from
the subject, such as limb flexion angles, torso and head movements, and
combinations of these features (Bouchrika, 2018). On the other hand,
the appearance-based approach captures complete subject silhouettes
and relies on various image processing and recognition strategies based
on these silhouettes. Among these strategies, the most common in
the current state of the art is recognition through GEIs, which con-
solidate all silhouettes into a single image for feature extraction and
classification (Bouchrika, 2018; Han and Bhanu, 2006).

The quality and diversity of datasets are crucial for HGR algo-
rithms (Gong et al., 2023; Mazurek and Wielgosz, 2023). Effective
E-mail address: lamorales@conacyt.mx (L.A. Morales Rosales).
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datasets include varied gait patterns that reflect real-world complex-
ities, thereby aiding the development of robust algorithms. However,
creating such datasets poses challenges, including gathering diverse
subjects, capturing data under varied conditions, and addressing ethical 
onsiderations.

Significant datasets like SOTON (Shutler et al., 2004), CASIA B (Yu
et al., 2006), and OU-ISIR (Iwama et al., 2012; Takemura et al., 
2018) have advanced the field by providing extensive video collections 
and silhouette sequences. Yet, these datasets often lack model-based
extracted features such as key points or body part angles. There is also a
need for datasets that represent a wider range of ethnicities and walking
variants to improve the generalization of HGR systems.

TecNM Gait-DS is introduced as a novel dataset for HGR. It provides 
n alternative to the existing datasets mentioned above for training,
valuating, and validating HGR systems based on indoor scenarios. It 
onsiders subjects with Latin traits and introduces two walking variants
hat were not previously considered in the generalization of the systems 
n conjunction with other datasets. The TecNM Gait-DS contributions
re listed as follows:

• It includes 124 Mexican participants and offers 13 viewing angles,
simulating various surveillance scenarios. TecNM Gait-DS stands
out with its five distinct walking variations. We introduce com-
plexity and realism to gait recognition experiments by including
two new different scenarios: carrying a backpack and a box com-
pared with the state-of-the-art datasets on HGR. TecNM Gait-DS
dataset comprises a total of 22,568 videos, making it a valuable
resource for algorithm development and evaluation.

• TecNM Gait-DS provides a rich set of features extracted from the
videos, including skeletons tracked through 15 key points, 19
angles of body part inclination and flexion, silhouettes extracted
frame by frame, and GEIs derived from silhouettes. These features
are meticulously extracted using state-of-the-art tools such as
Densepose (Güler et al., 2018) for silhouettes and Detectron2 (Wu
et al., 2019) for key points, ensuring precision and accuracy in
feature representation.

• An analysis of how camera angles and extracted characteristics
of the scenarios included in TecNM Gait-DS have improved the
performance of person identification by using Transformer DINO
VIT. The comprehensive evaluation of the Transformer DINO
VIT (Caron et al., 2021) model was conducted with five sets of en-
ergy images corresponding to different walking variations. Each
evaluation used two images per subject for a total of 3224 images
per walking variation. This approach allowed a detailed under-
standing of the impact of variability in walking variation on the
classification of viewing angles. The obtained results comprehen-
sively evaluate the extracted features and the trained model under
various conditions, providing detailed insight into its performance
and robustness.

• Finally, we provide a Github repository1 where all the informa-
tion related to this dataset, a format for requesting videos, silhou-
ettes, energy images, silhouettes, algorithms used for feature ex-
traction, energy image generation, data cleaning, and experiments
can be found.

. Related work

In the landscape of contemporary research, the significance of
atasets as foundational pillars of knowledge acquisition and innova-
ion cannot be overstated. Datasets, serving as repositories of struc-
ured and organized information, underpin many scientific and prac-
ical endeavors across diverse domains. These digital reservoirs of

1 https://github.com/MisaelZazueta/TecNM_Gait-DS.
data facilitate the retrieval, analysis, and interpretation of informa-
tion, driving discoveries and enabling the development of cutting-edge
methodologies.

Gait recognition research hinges on the availability of high-quality
datasets that accurately capture the intricacies of human walking pat-
terns. These datasets play a pivotal role in developing and evaluating
gait recognition algorithms, allowing researchers to explore diverse
scenarios and challenges. In this section, we delve into some of the
prominent gait recognition datasets that have significantly contributed
to the advancement of the field.

Within this section, a comprehensive overview unfolds, featuring
five distinct gait datasets, each contributing to the evolving landscape
of gait recognition research. The chronological journey begins with
the CMU Motion of Body (MoBo) dataset, a pioneering resource that
laid the foundation for gait biometrics. Subsequently, the SOTON Gait
dataset, followed by the CASIA B Gait dataset, is explored, each offering
unique insights and challenges in gait analysis. Then, the OU ISIR
Gait dataset and the OU ISIR Multi-View Large Population (MVLP)
dataset are examined, shedding light on their contributions to the field
and setting the stage for an in-depth analysis of gait-based biometric
methodologies. Finally, two current databases developed in a wild
environment called GREW and Gait3D, the proposed benchmarks are
needed to train and evaluate the gait recognizer in the wild. Table 1
summarizes the state of art comparison; in the following subsection, we
describe each dataset in a detailed manner and present their discussion.

2.1. CMU Motion of Body (MoBo)

The CMU Motion of Body (MoBo) dataset (Gross, 2001) was metic-
ulously curated to address the evolving landscape of biometric identi-
fication. Unlike conventional biometric modalities, such as fingerprint
or facial recognition, the dataset zeroes in on the distinct and nuanced
patterns associated with human gait. Consequently, it offers a unique
platform for investigating the feasibility of using gait as a biometric
identifier.

The dataset comprises 25 subjects who participated in four distinct
walking activities on a treadmill. To capture comprehensive insights
into the nuances of human gait, data from six strategically positioned
cameras were synchronized, ensuring a multifaceted view of the sub-
jects’ movements. This approach enables the examination of gait from
various angles and perspectives, reflecting real-world scenarios.

Noteworthy data characteristics include an 11-second sequence
length for each activity, an image resolution with a pixel height of
500, and a frame rate of 30 frames per second. These specifications
are pivotal in enabling fine-grained analysis of gait patterns.

2.2. SOTON

The authors (Shutler et al., 2004) address the importance of having
comprehensive and diverse dataset for gait analysis and recognition

esearch. They proposed creating a large-scale dataset encompassing
wide range of gait sequences, providing researchers with a valuable

esource for algorithm development and evaluation.
While specific details about the dataset are not mentioned in the

rovided information, it can be inferred that their dataset was designed
o contain extensive sequences of human gait data. These sequences
apture the walking patterns of individuals from different perspectives.

The motivation behind developing this large sequence-based human
ait dataset was to facilitate advancements in gait analysis and recog-
ition algorithms. By providing researchers access to a substantial and
iverse collection of gait sequences, the authors aimed to stimulate
esearch in this field and foster the development of more accurate and
obust gait recognition techniques.

The paper explains the process of creating the dataset, which in-
olved recruiting 115 participants, data collection using specialized
ameras, and data preprocessing steps. The authors also outline the

https://github.com/MisaelZazueta/TecNM_Gait-DS
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Table 1
Summary of work related to the generation of databases for the HGR.

Name # Subjects # Videos per subject # Total videos Environment Views (angles) Walking variations

CMU MoBo 25 24 600 Indoor 6 Three walking speeds, carrying
a ball (all on a treadmill)

SOTON 115 – 2128 Indoor & Outdoor 2 Normal walking on a treadmill

CASIA B 124 110 13 640 Indoor 11 Normal walking, carrying a
bag, wearing a coat

OU-ISIR 4007 – 31 368 Outdoor 4 Normal walking
OU-ISIR-MVLP 10 307 – 259 013 Indoor 14 Normal walking
GREW 26 345 – 128 671 Wild – Undefined
Gait3D 4 000 – 25 309 Wild – Undefined
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protocols and guidelines to ensure consistency and quality across the
dataset. The authors recorded 2128 video sequences with two cameras
(frontal and oblique), indoors and outdoors.

Additionally, the authors presented some experimental results or
findings derived from the dataset to demonstrate its potential appli-
cations.

2.3. CASIA-B

The CASIA-B dataset (Yu et al., 2006) for gait recognition was
developed by the Chinese Academy of Sciences’ Institute of Automation
(CASIA). The dataset was specifically designed to advance research in
gait recognition algorithms and their applications.

The creation of the CASIA-B dataset involved recording gait data
from a group of individuals under controlled conditions. The dataset
creators recruited 124 subjects to participate in the data collection
process. The subjects were carefully selected to represent variations in
age, gender, and body characteristics, ensuring a diverse range of gait
patterns.

The gait data collection process occurred on a specialized walkway
with multiple synchronized cameras. The cameras were positioned at
different angles to capture the subjects’ gait from various viewpoints.
The 11 angles considered for the recordings were 0◦, 18◦, 36◦, 54◦, 72◦,
0◦, 108◦, 126◦, 144◦, 172◦ and 180◦. Each subject performed multiple
alking trials, with each trial capturing a sequence of consecutive video

rames showcasing their gait.
The dataset creators provided specific instructions to the subjects

egarding walking conditions to ensure consistency and accuracy. This
ncluded walking at a natural pace, wearing particular types of clothing,
nd carrying a bag. By introducing these variations, the dataset aimed
o simulate real-world conditions and assess the robustness of gait
ecognition algorithms. They recorded six video batches for normal
alking and two for wearing a coat and carrying a bag. Each subject

egistered 110 videos, so there are 13 640 videos in this dataset.
The recorded gait data was then carefully processed and annotated

o extract relevant information for analysis. Preprocessing steps typi-
ally involved segmenting the gait cycles from the video sequences and
ligning them to a common temporal reference. This alignment helped
o normalize the walking speed and facilitate accurate comparisons
etween different gait patterns.

The CASIA-B dataset offers a substantial collection of gait sequences
or research purposes. Each subject contributes multiple gait cycles,
esulting in a comprehensive dataset with a significant number of
ait samples. The dataset provides a diverse representation of hu-
an walking patterns, considering variations in age, gender, and body

haracteristics.
In addition to the well-known CASIA B, there are also the CASIA-A

Wang et al.) and CASIA-C (Tan et al.) datasets. Dataset A (formerly
LPR Gait Database), created on December 10, 2001, includes 20

ndividuals, each with 12 image sequences in three directions (parallel,
5 degrees, and 90 degrees to the image plane), totaling 19,139 images
nd occupying 2.2 GB. The sequences vary in length, ranging from 37
o 127 images. On the other hand, Dataset C, collected between July
nd August 2005 using an infrared camera, covers 153 subjects and
ontemplates four walking conditions: normal walking, slow walking,
ast walking, and normal walking with a bag. This dataset is character-
zed by being captured at night, which adds a unique dimension to the
nalysis of walking under low light conditions.

Researchers and practitioners have utilized the CASIA-B dataset for
arious purposes, including developing and evaluating gait recogni-
ion algorithms. By training and testing algorithms on this dataset,
esearchers can assess the performance of their models in recognizing
ndividuals based on their unique walking patterns. The dataset’s di-
ersity and size enable comprehensive analysis and evaluation of gait
ecognition systems.

In summary, the CASIA-B dataset for gait recognition was created by
ecording and annotating gait data from 124 subjects. The dataset offers
diverse range of gait patterns, capturing variations in age, gender,

nd body characteristics. Researchers have used this dataset to ad-
ance the development and evaluation of gait recognition algorithms,
ontributing to the progress of gait recognition technology.

.4. OU-ISIR

The dataset aims to address the need for a large-scale and diverse
ollection of gait data for evaluating gait recognition algorithms. It
onsists of a significant number of gait sequences captured from a large
opulation of individuals.

The work of Iwama et al. (2012) provides insights into the creation
nd characteristics of the OU-ISIR gait dataset. It describes the data
ollection process, which involved recording gait sequences using spe-
ialized cameras or sensors. The dataset encompasses gait data from a
iverse range of individuals, including variations in age, gender, and
ther demographic factors.

The dataset includes multiple gait cycles for each subject, enabling a
omprehensive analysis of individual walking patterns. It may also con-
ain annotations or metadata associated with each gait sequence, such
s age, gender, and other relevant information. This dataset contains
1 368 video sequences obtained from 4007 different participants. The
uthors set up four cameras for recording, with an inclination of 55◦,
5◦, 75◦ and 85◦. All videos were recorded outdoors and in normal
alking conditions.

Furthermore, the OU-ISIR evaluation was focused on training and
esting gait recognition models on the dataset and assessing their
erformance in accurately recognizing individuals based on their gait
atterns.

OU-ISIR gait dataset provides a large-scale collection of gait se-
uences from a diverse population. It serves as a valuable resource for
esearchers working in the field of gait recognition, enabling algorithm
evelopment, performance evaluation, and further advancements in
his domain.
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2.5. OU-ISIR MVLP

The primary focus of Takemura et al. (2018) is to address the chal-
lenges of gait recognition across different camera views. The authors
aim to provide a comprehensive dataset that enables the evaluation
and development of gait recognition algorithms capable of handling
variations in camera viewpoints.

The OU-ISIR MVLP dataset introduced by Takemura et al. (2018) is
a large-scale collection of gait sequences captured from multiple camera
views. It includes gait data from a significant population representing
a diverse range of age groups and demographics.

The authors described the data collection process, involving captur-
ing gait sequences using multiple synchronized cameras. These cameras
were positioned to cover different viewpoints and angles, simulating
real-world scenarios where individuals were captured from varying
perspectives. This dataset is the largest ever recorded, with 259 013
video sequences from 10 307 participants. Although they only used a
normal walk, the participants were recorded at 14 angles.

The dataset was created to facilitate the evaluation of gait recogni-
tion algorithms under cross-view scenarios. It enables researchers to
train and test their algorithms on gait data captured from different
camera views, assessing their ability to recognize individuals even
when the viewpoints vary accurately.

The authors presented performance evaluation results, showcasing
the effectiveness of gait recognition algorithms on the multi-view large
population gait dataset. They discuss the recognition accuracy, robust-
ness to viewpoint variations, and potential challenges encountered in
cross-view gait recognition tasks.

Overall, they introduced a multi-view large population gait dataset
and emphasized the importance of evaluating gait recognition algo-
rithms in cross-view scenarios. Their work provided a valuable resource
to researchers for developing and testing algorithms that can handle
variations in camera viewpoints, advancing the field of gait recognition
and its application in real-world scenarios.

2.6. GREW

In recent advancements within the field of gait recognition, the
GREW (Gait REcognition in the Wild) dataset stands out as a significant
contribution (Zhu et al., 2021), addressing the limitations of existing
datasets that are predominantly captured in controlled environments.
Introduced by Zhang et al. GREW is constructed from natural videos
and encompasses a vast collection of 26,000 identities and 128,000
sequences, along with a distractor set of over 233,000 sequences.
This dataset offers diverse and practical view variations, making it
exceptionally suited for real-world applications of gait recognition. The
GREW benchmark is notable for its comprehensive manual annotations
and the inclusion of various challenging factors found in natural set-
tings. The study by Zhang et al. demonstrates that the GREW dataset is
indispensable for training and evaluating high-performance gait recog-
nition systems in the wild, highlighting the potential for significant
improvements in current state-of-the-art methods. Additionally, GREW
can be an effective pretraining resource for controlled gait recognition
tasks, underscoring its utility and relevance in advancing the field.

2.7. Gait3D

Recent advancements in gait recognition have traditionally focused
on 2D representations, such as silhouettes or skeletons, often con-
strained to controlled environments. Addressing the inherent limi-
tations of 2D projections, which lose critical information regarding
viewpoint, shape, and dynamics, a novel approach has been proposed
by Zheng et al. in 2022. This paper introduces SMPLGait, a framework
leveraging dense 3D representations through the 3D Skinned Multi-
Person Linear (SMPL) model for gait recognition in the wild. SMPLGait
4 
integrates two meticulously designed branches: one for extracting ap-
pearance features from silhouettes and another for learning 3D view-
points and shapes from the SMPL model. To support this framework,
the authors present Gait3D, the first large-scale 3D representation-
based gait recognition dataset, comprising 4000 subjects and over
25,000 sequences captured by 39 cameras in an unconstrained indoor
environment. Gait3D provides dense 3D information on body shape,
viewpoint, and dynamics by recovering 3D SMPL models from video
frames. Comprehensive comparisons with existing methods underscore
the superior performance of SMPLGait and highlight the significant po-
tential of 3D representations in advancing gait recognition technology
for real-world applications.

In summary, the generation of gait recognition datasets has evolved
significantly, covering a wide spectrum of environments and capturing
conditions. From controlled indoor settings, such as in the CASIA B
and CMU MoBo datasets, to more varied and expansive environments,
like the outdoor settings of the OU-ISIR dataset and the real-world
scenarios of the GREW and Gait3D datasets, each dataset contributes
unique attributes and challenges to the field of HGR. However, our
work specifically addresses the need for a controlled dataset with
well-defined angles, a fixed quantity of videos per subject, and ex-
plicit subject authorization. This approach ensures consistency and
reliability in data collection, facilitating the development of robust
and reproducible gait recognition algorithms. By maintaining stringent
controls over the experimental setup, our dataset aims to bridge the
gap between controlled and uncontrolled environments, providing a
valuable resource for advancing both theoretical research and practical
applications in gait recognition.

2.8. Related work discussion

To address the research gaps in the related work, it is essential to
highlight how the TecNM Gait-DS dataset advances the field of gait
recognition, especially compared to existing datasets. One significant
gap in previous research is the limited representation of real-world
complexity in the available datasets. Many well-established datasets,
such as CASIA B, SOTON, and OU-ISIR, predominantly focus on con-
trolled indoor or outdoor environments with basic walking conditions.
While they capture multiple angles and some walking variations, they
often lack the inclusion of practical scenarios that mirror real-life
situations, such as carrying objects. The TecNM Gait-DS addresses
this gap by introducing two new scenarios: walking while carrying
a backpack and carrying a box. This enhancement provides a more
realistic challenge for gait recognition algorithms, simulating actual
surveillance environments, which prior datasets did not fully address.

Current datasets often do not comprehensively integrate or leverage
state-of-the-art feature extraction tools. TecNM Gait-DS uses advanced
tools like DensePose and Detectron2 to extract key features such as
skeletons, angles of body part inclinations, and silhouettes. This meticu-
lous feature extraction provides high precision and enables more robust
algorithm evaluation, which is not typically seen in other gait datasets.

Many datasets require a formal process to access, and few provide
open-source tools for replicating experiments or extracting features.
TecNM Gait-DS overcomes this limitation by offering an openly ac-
cessible GitHub repository containing all necessary data, algorithms,
and tools, enabling broader research and encouraging reproducibility,
which is often a challenge in current gait recognition research.

Several studies have contributed significantly to the field of gait
recognition, leveraging both model-based and appearance-based ap-
proaches, along with state-of-the-art datasets. For instance, the CASIA-B
and OU-ISIR datasets have been widely used in appearance-based gait
recognition approaches such as, Liao et al. (2020), Lin et al. (2020) and
Hou et al. (2020), providing large-scale, multi-view video sequences
to improve recognition accuracy under various viewing angles and
occlusions. Model-based approaches, such as those using 3D skeleton

models, have been effectively applied to the CASIA-B and OU-ISIR
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Fig. 1. Workflow methodology.
MVLP datasets, which focus on extracting structural information about
human gait, e.g., An et al. (2020), Li et al. (2020a) and Jun et al.
(2020). Additionally, several hybrid approaches combining both mod-
els and appearance features, such as Li et al. (2020b) and Zhang
et al. (2022, 2019), have been implemented using the CASIA-B dataset,
improving recognition in environments with background noise or low
resolution.

3. Methodology

In this section, we describe the systematic approach to develop
and validate the TecNM Gait-DS dataset along with the experiments
conducted. The methodology encompasses three primary phases: (1)
the creation of the dataset, (2) a detailed description of the TecNM Gait-
DS, and (3) the experimentation process using the collected data. The
workflow, shown in Fig. 1, begins with dataset creation, which includes
recording video sequences of gait from different subjects and processing
these videos to extract meaningful information such as silhouettes,
energy images, and key points for gait recognition. This process ensures
that the data capture a wide range of real-world walking conditions and
variations in subjects’ movements. The resulting dataset is then used
to train and evaluate human gait recognition (HGR) models, ensuring
robustness across diverse scenarios.

Next, the TecNM Gait Dataset subsection explains the dataset’s
structure, including the number of subjects, viewing angles, and specific
walking conditions, like carrying a backpack or a box. This dataset
is enriched by offering comprehensive information on each subject’s
walk, including extracted angles, body points, and gait energy images
(GEIs), enabling both model-based and appearance-based approaches
to be evaluated.

Finally, the Experiments subsection details the process of design-
ing and running experiments to validate the dataset’s utility. We
tested the dataset using advanced deep learning techniques, such as a
transformer-based model and measured the model’s performance across
several metrics. The experimental setup is designed to explore how
well different features (such as angles and silhouettes) can contribute
to accurate person identification, further enriching our understanding
of gait as a biometric identifier. The results from these experiments
offer valuable insights into the advantages and limitations of the TecNM
Gait-DS and guide future research in this area.

3.1. Dataset creation

The recording of the dataset was carried out at the Tecnologico
Nacional de Mexico campus Culiacan in a controlled environment in a
conference room equipped for this activity. The Fig. 1 illustrates the
workflow used to generate the TecNM Gait-DS dataset and how it can
be used for the identification person problem by implementing DINO
VIT algorithm. We begin by preparing the equipment and room with
controlled conditions, as detailed in Section 3.1.1. We obtained consent
5 
from all participants in the study to form the TecNM Gait-DS database.
Then, the collection of the videos of the five different walks began from
this point. The conditions of this stage are detailed in Section 3.1.2.
The verification of the captured data focused on observing that (1)
the participants walk in the middle of the dotted line that is prepared
to guide them in their walk, (2) that all the cameras observed the
participants without delay in their capture, (3) that the lighting was
captured in the same way by all cameras, and (4) that the videos from
all cameras per participant had the same length and frame rate. Once
the process of collecting and storing the videos was completed, see
Section 3.2, the analysis of each scenario was carried out to determine
the performance of identifying a person using the DINO VIT algorithm.
This analysis is detailed in Section 3.3.

3.1.1. Room and equipment
The space used for recording the dataset consists of a room approxi-

mately 20 m long, 15 m wide, and 3 m high, illuminated with artificial
light, and two large windows to allow the entry of natural light. In
this room, an 8-meter-long corridor was defined for the participants’
walk, which was surrounded by seven cameras positioned at 5 m each
from the center of the corridor, each camera separated by 15 degrees
of inclination as shown in Fig. 2.

3.1.2. Data acquisition
The methodology used to acquire the gait dataset is described as

follows.

• Participant Recruitment: Recruit diverse participants willing to
contribute to the dataset. Ensure that participants sign an image
use permission form, providing consent for their data to be used
for research purposes.

• Setup Design: Set up an 8-m walking corridor in a controlled
environment with artificial lighting and no occlusions. Install
seven cameras along the corridor, each positioned at a distance of
5 m from the center of the corridor. Use one CPU and two GPUs to
record the gait sequences simultaneously from all seven cameras.

• Camera Calibration: Calibrate the cameras to ensure accurate
synchronization and alignment. This step is crucial to maintain
consistency and enable seamless integration of the data captured
by different cameras.

• Data Collection: Instruct each participant to perform gait se-
quences in the walking corridor. Capture the gait data from
each participant under different angles and walking variations.
Each participant walked 28 times (twice per batch) through the
corridor to generate 14 batches of videos (𝑣𝑏), six for normal
walking and two for the other four walking variants.

• Angles (𝛼): Conduct two takes for each participants’ walk in 13
different angles. In the first take (from left to right), capture gait
sequences at angles of 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. In the
second take (from right to left), capture gait sequences at angles
of 105◦, 120◦, 135◦, 150◦, 165◦, and 180◦ as shown in Fig. 3.
Adjust the position of the participant accordingly for each angle.
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Fig. 3. Walking views angles in normal walking variation.
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• Walking variations (𝑤𝑣): Instruct participants to walk naturally
for the baseline walking variation. Additionally, capture gait
sequences while participants carry a bag (𝑏𝑔), carry a backpack
(bp), carry a box (𝑐𝑥), and wear a coat (𝑐𝑙) as shown in Fig. 4.
This variation in walking variations adds diversity to the dataset.

• Metadata Collection: Collect additional metadata for each partic-
ipant, including age and height. Ensure that participants provide
this information accurately.

• Data Storage and Organization: Store the recorded gait sequences
along with the associated metadata in a structured manner. Use
appropriate file formats and naming conventions to ensure ease
of access and retrieval.

• Privacy and Ethics: Ensure that all data collection procedures
adhere to privacy and ethical guidelines. Protect the identity and
personal information of participants according to legal require-
ments and ethical standards.

Following the above methodology, a gait dataset can be created
ith an 8-meter walking corridor, a controlled environment with seven

ameras in specific positions to capture 13 angles for each participant,
arious walking variations, and associated participant metadata. This
ataset will be valuable for gait recognition research and algorithm
evelopment.

.2. Tecnm gait dataset

After implementing the above methodology, we organize the TecNM
ait Dataset as follows:

1. Subjects: We included 124 subjects in the dataset. Each subject
is represented by a dedicated folder labeled with a number to
protect their identity.

(a) Walking Variants: Each subject’s folder contains five sub-
folders representing different walking variants.

• Normal walking (nm)
• Carrying a backpack (bp)
• Carrying a bag (𝑏𝑔)
• Carrying a box (𝑐𝑥)
• Wearing a coat (𝑐𝑙)
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Fig. 4. Additional walking variations bg, bp, cx, and cl.

i. Videos: Each walking variant folder contains the
batches videos. In this case 𝛼 is 13, representing
the angles considered.

• In the nm folder, there are 6 * 𝛼 = 78 videos.
• In the other walking variant folders, there are

2 * 𝛼 = 26 videos each.
• Each video corresponds to a combination of

a specific walking variant, walk instance, and
angle.

• The ‘‘Normal walking’’ folder has videos from
6 batches and 13 different angles.

• The other walking variant folders have videos
from 2 batches and 13 different angles.

• The name of each video corresponds with the
following nomenclature: 𝑠𝑢𝑏 − 𝑤𝑣 − 𝑣𝑏 − 𝛼.
Where 𝑠𝑢𝑏 is the subject number (from 001
to 124), 𝑤𝑣 is the walking variant (nm, 𝑏𝑔,
bp, 𝑐𝑙, 𝑐𝑥), 𝑣𝑏 is the video batch number (01
to 06 in nm and 01 to 02 in the other 𝑤𝑣),
and 𝛼 is the corresponding angle.

ii. Extracted Features: Each video has a dedicated
folder (with the same name of the video) inside the
corresponding walking variant folder. Inside these
video folders, there are subfolders for extracted
features. These feature folders are divided into two
main categories: (1) dense and (2) skeletons.

A. dense: The ‘‘dense’’ folder contains two sub-
folders:

• silhouettes: the ‘‘silhouettes’’ folder
contains all the silhouettes extracted
from each frame of the video.

• gei: the ‘‘gei’’ folder contains a GEI
generated from all previously
extracted silhouettes.
B. skeletons: Inside the ‘‘skeletons’’ folder,
there are two subfolders.

• angles: contains CSV files with angle
measurements derived from the skele-
ton data of each video frame.

• keypoints: contains CSV files with key
point coordinates extracted from each
video frame’s skeleton.

This hierarchical structure allows for organized storage and retrieval
f video data, as shown in Fig. 5, along with various types of extracted
eatures for analysis.

.2.1. Subjects data statistics
The global and individual statistics of the dataset by subject are the

ollowing:

• Global statistics:

– 124 registered subjects
– 22 568 video sequences
– 62.67 h of video (10 s average length each video)
– 36 GB of videos
– 44.6% women
– 55.4% men
– 162.45 cm women height average (range from 148 cm to

180 cm)
– 170.64 cm men height average (range from 162 cm to

197 cm)

• Individual statistics:

– 182 video sequences (30 frames per second each)
– 13 angles
– 5 walking variants
– 28 walks

.2.2. Feature extraction
The proposed approach integrates advanced computer vision tech-

iques, including DensePose from Detectron2 (Güler et al., 2018) for
ilhouette extraction and Detectron2 body keypoints detection (Wu
t al., 2019) for obtaining detailed body pose information. The ex-
racted features encompass both spatial and kinematic aspects of hu-
an movement, enhancing the discriminative power of the gait recog-
ition system.

.2.3. Silhouette extraction
The initial step in our feature extraction pipeline involves the

pplication of DensePose from Detectron2 (Güler et al., 2018). This
lgorithm was employed to meticulously extract silhouettes of individ-
als from each walking video within our extensive dataset comprising
2,568 samples. The resulting silhouettes are a foundational repre-
entation capturing the spatial characteristics of the subjects’ walking
atterns. Fig. 6 shows an example of a silhouette extraction process.

In our methodology, we leverage a state-of-the-art model for dense
uman pose estimation to extract robust features from our gait recog-
ition dataset. This model establishes dense correspondences between
n RGB image and a surface-based representation of the human body.
he primary objective of dense human pose estimation is to map each
ixel in an image to a corresponding point on a standardized human
ody model.

The DensePose model was trained using a dataset of 50,000 individ-
als from the COCO dataset, which includes comprehensive annotations
hat map 2D image coordinates to 3D surface points on the human
ody. The annotation pipeline employed for this purpose was highly
fficient, enabling the generation of dense correspondences despite
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Fig. 6. Silhouettes extraction sequence from a video.

challenges such as background noise, occlusions, and variations in
scale.

The architecture of the DensePose model combines
fully-convolutional networks and region-based models. Through exten-
sive experimentation, region-based models were found to outperform
fully-convolutional networks, especially in scenarios with complex
backgrounds and occlusions. To enhance accuracy further, a cascading
approach was adopted, resulting in a highly accurate system capable of
processing multiple frames per second on a single GPU.

A detailed architecture of the DensePose model used for feature
extraction is illustrated in Fig. 7. This figure outlines the various
Fig. 7. DensePose from Detectron2 architecture implemented by Güler et al. (2018).

omponents of the model, including the input RGB image, the dense
orrespondence mapping, and the final feature representation utilized
n our gait recognition framework

.2.4. Gait energy image generation
Building upon the extracted silhouettes, we generated GEIs to en-

ode the temporal dynamics of the walking sequences. This step en-
ances our dataset’s discriminative power by incorporating shape and
otion information. GEIs provide a comprehensive spatial–temporal

epresentation of the gait dynamics essential for subsequent analysis.
ig. 8 shows a GEI example.

• Energy Calculation: For each processed silhouette region 𝑅′
𝑖 , a

binary mask 𝑀𝑖 is created (Eq. (1)):

𝑀𝑖(𝑥, 𝑦) =

{

255, if 𝑅′
𝑖(𝑥, 𝑦) > 0

0, other case
(1)

Here (𝑥, 𝑦) denotes the pixel coordinates, and the condition
𝑅′
𝑖(𝑥, 𝑦) > 0 ensures that any pixel belonging to the subject

(with values greater than zero) is assigned a value of 255 in the
binary mask, representing the foreground. Conversely, all other

pixels are set to zero, representing the background. This binary
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Fig. 8. GEI obtained from silhouettes.

thresholding operation is similar to the process performed by the
cv2.threshold function (Itseez, 2015), ensuring that only the
subject’s silhouette is retained for further processing in the GEI
generation. The resulting binary image highlights the regions of
interest (the walking subject) while discarding the background,
facilitating the construction of a clear and informative GEI for
gait recognition tasks.
The energy of the silhouette 𝐸𝑖 (Eq. (2)) is calculated using the
distance transform:

𝐸𝑖(𝑥, 𝑦) =
√

∑

(𝑥′ ,𝑦′)∈𝑀𝑖

(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 (2)

This equation computes the Euclidean distance between the point
(𝑥, 𝑦) and all points (𝑥′, 𝑦′) on the binary mask 𝑀𝑖. In this con-
text, 𝐸𝑖(𝑥, 𝑦) represents the energy at the specific location (𝑥, 𝑦)
of the silhouette, with the distance between foreground pixels
contributing to the calculation of energy in the region.
To ensure the energy values are manageable and normalized, a
logarithmic transformation is applied to the calculated energy
using Eq. (3):

𝐸𝑖 = log(𝐸𝑖 + 1) (3)

This transformation helps scale the energy values, ensuring that
large distances do not disproportionately influence the energy
image construction.

• Energy Image Construction: An empty energy image 𝐼energy is
initialized with the same dimensions as the processed silhouette
regions. For each processed silhouette region 𝑅′

𝑖 , the energy 𝐸𝑖 is
added to the corresponding region in 𝐼energy as follows (Eq. (4)):

𝐼energy+ = 𝐸𝑖 (4)

This iterative addition of energy values from each silhouette
region accumulates the energy contributions into the final energy
image 𝐼energy, which encodes the temporal dynamics and spatial
features of the subject’s gait. This resulting image serves as a
robust input for further gait analysis tasks.

3.2.5. Body key points extraction
We extracted 15 key points per frame from each walking video

employing Detectron2’s body key points detection (Wu et al., 2019).
These key points detail the subject’s body pose throughout the walking
cycle, offering insights into the articulation of limbs and body segments
as shown in Fig. 9.

The 15 key points are: wrists, elbows, shoulders and mid-shoulder,
head (nose), three (left, right and mid) hip points, knees, and ankles.
 a
Fig. 9. Body key points representation.

3.2.6. Angles computation
From the extracted body key points, we computed 19 inclina-

tion and flexion angles using Pythagorean principles using Eq. (5) for
inclination (floor referenced) and Eq. (6) for flexion.

degrees = arctan
(

𝑦2 − 𝑦1
𝑥2 − 𝑥1

)

× 180
𝜋

(5)

where 𝑦2 and 𝑦1 are the ordinates, and 𝑥2 and 𝑥1 are the abscesses of
the two considered points (head and mid-shoulder to calculate head
inclination for example).

degrees = arctan
(

𝑐2 − 𝑏2
𝑐1 − 𝑏1

)

− arctan
(

𝑎2 − 𝑏2
𝑎1 − 𝑏1

)

× 180
𝜋

(6)

where 𝑎2, 𝑏2, and 𝑐2 are the ordinates, and 𝑎1, 𝑏1, and 𝑐1 are the
bscesses of the three considered points (wrist, ankle, and shoulder to
alculate the ankle flexion for example).

These angles quantify the relative orientations and positions of
ifferent body segments, offering a comprehensive kinematic repre-
entation of the individual’s gait dynamics. The inclination angles
alculated are head, upper arms (shoulder to elbow), lower arms (elbow
o shoulder), torso, upper legs (hip to knee), and lower legs (knee to
nkle). Finally, the flexion angles calculated are neck, armpits, elbows,
ip (left and right), and knees.

.2.7. Dataset enrichment
The resulting feature set was applied to enrich our gait recognition

ataset. Including diverse features contributes to a more comprehensive
nderstanding of individual gait patterns, improving the potential for
ccurate and reliable recognition.

Our feature extraction process, encompassing silhouette extraction,
EI generation, and body key points-based angle computation, offers
holistic approach to gait representation. The effectiveness of our

pproach is validated through its application to a large-scale dataset,
emonstrating its potential for real-world gait recognition applications.

.3. Experiments

In this section, we describe the experiments performed to evaluate
he quality of the extracted features, in this case, silhouettes, using
he Detectron2 DensePose technique (Güler et al., 2018). From these
ilhouettes, GEIs were generated for each video of the TecNM Gait
ataset, comprising 22,568 videos of people walking. This quality

ssessment of the extracted features was performed in a context where
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the videos are divided into 124 subjects, 13 viewing angles, and five 
walking variations. The primary objective of these experiments is to
evaluate the efficacy of the silhouettes and GEIs generated and to
understand how they impact classification accuracy when recognizing 
a person due to viewing angle and walking variation.

The energy images generated were used to train a transformer 
model, specifically, the DINO VIT model developed by Facebook (Caron
t al., 2021). During the training phase, we utilized 13 classes, each 
epresenting a distinct viewing angle. These classes were constructed
y combining four GEIs from each subject, resulting in a total of 6448
EIs. This dataset was divided into 80% for training and 20% for 

esting, ensuring a robust evaluation of the model’s performance.
This data distribution and configuration (train-test-validation) was

lso used to generate experiments concerning the data obtained in the
orm of bending angles and inclination. For these experiments, images 
ere generated from the frame-by-frame angle data matrices (19𝑥𝑛),
here 19 is the number of angles extracted and 𝑛 is the number of 

frames per video. Each pixel of the image corresponds to a normalized 
spectrum from 0 to 255 in grayscale of each angle calculated in each
frame.

The DINO (Distillation with No Labels) model is particularly ef-
fective when combined with Vision Transformers. Unlike conventional 
supervised learning methods, DINO utilizes a self-supervised frame-
work that capitalizes on the inherent capabilities of ViTs to understand
and segment images semantically. This self-supervised approach en-
sures that the ViT features encapsulate explicit information about the
semantic segmentation of an image, which is not as prominent in
supervised ViTs or convnets.

During the training phase, the DINO model was trained on a large
dataset without any labels, effectively learning to distill knowledge
from the data itself. This process is akin to self-distillation, where
the model refines its own predictions iteratively to improve accuracy.
Notably, the DINO model has demonstrated remarkable performance, 
achieving an 80.1% top-1 accuracy on ImageNet in linear evaluation
using a ViT-Base architecture.

The choice of these particular GEIs during training was made to 
capture a comprehensive representation of the variability in viewing
angles and subjects, allowing the model to learn and adapt to different
conditions.

This rigorous and comprehensive approach to training prepared the 
model for the task of viewing angle classification with a large amount
of training data, which increased the likelihood that the model could 
make accurate predictions in various scenarios.

Once the model was trained, we evaluated its performance in five
different evaluations, one for each walking variation, using two GEIs
from each subject. This resulted in a total of 2324 GEIs used in each
evaluation. The choice of two GEIs per subject allowed for a represen-
tative evaluation of the model in each walking variation and its ability
to classify viewing angles.

Each evaluation focused on understanding how walking variation 
affects the model’s ability to make accurate predictions. Subjects’ en-
ergy images, captured during normal walking, were compared with 
those of other styles, providing valuable information on the impact of 
variations in walking variation on classification accuracy.

The five confusion matrices (Figs. 10 to 14) from these evalua-
tions allowed a detailed analysis of the model’s ability to adapt to
different walking variations. They provided valuable information on 
the strengths and limitations of the model considering five scenar-
ios(experiments). These evaluations contributed to a more complete
understanding of the impact of extracted features and training on the
model’s ability to classify viewing angles in diverse walking variations.
 c
Fig. 10. Experiment A. Confusion matrix resulting from the GEI assessment in normal
walking (nm).

4. Results

The results provide a comprehensive analysis of the performance of
the DINO ViT-B/16 Transformer model in classifying walk cycle energy
(GEI) images under various conditions. Each experiment, simulating
different walking scenarios, revealed varied acceptance rates across
different viewing angles. The model demonstrated robustness under
normal walking conditions but showed sensitivity to external factors
such as carrying a bag, wearing a coat, or carrying a box, with angles
015, 150, and 165 consistently exhibiting lower acceptance rates,
suggesting areas for potential improvement. Figs. 10 to 14 present
he classification outcomes for five walking variations: normal walking
nm, Fig. 10), carrying a bag (bg, Fig. 11), wearing a coat (cl, Fig. 12),

carrying a backpack (bp, Fig. 13), and carrying a box (cx, Fig. 14). The
confusion matrices in these figures illustrate the correct classification
rates by comparing predicted classes to actual ones, ideally showing a
diagonal line with values close to 1, indicating high effectiveness in the
evaluation process.

4.1. Model sensitivity

4.1.1. Experiment A
In the normal walking experiment, the model demonstrated a re-

markable ability to correctly classify most viewing angles, as shown
in Fig. 10. However, a significant decrease in acceptance rate was
bserved for angles 015, 150, and 165. Upon closer analysis, it can
e inferred that angle 015, representing a side view, may present an
dditional challenge due to variability in the subjects’ lateral posture.
he decrease in angles 150 and 165 may be due to variations in the
ubject’s frontal posture, indicating a possible sensitivity of the model
o subtle changes in body orientation.

.1.2. Experiment B
The introduction of a bag during the walking negatively affected the

cceptance rate, especially for angles 015, 150, and 165, as shown in
ig. 11. This suggests that the presence of external objects, such as a
ag, can generate significant changes in the subject’s appearance and
ovement, affecting the model’s ability to generalize to these untrained
onditions.



Fig. 11. Experiment B. Confusion matrix resulting from the GEI assessment in carrying
a bag (bg).

Fig. 12. Experiment C. Confusion matrix resulting from the GEI assessment in wearing
a coat (cl).

4.1.3. Experiment C
Similar to experiment B, the acceptance rate decreased for angles

015, 150, and 165; again, the sensitivity of the model is affected due
to wearing a coat, as shown in Fig. 12. This highlights the importance
of considering variations in load and clothing when training models for
walking image classification tasks.

4.1.4. Experiment D
In this case, the loading of a backpack primarily affects angles 150,

165, and 015, indicating a consistency in the model’s sensitivity to
these specific conditions, as shown in Fig. 13. The high acceptance
rate for other angles suggests that the model can adapt to variations
in loading.

4.1.5. Experiment E
In Fig. 13, the acceptance rate decreases considerably for angles

030, 150, and 015, revealing a particular sensitivity to the act of
carrying a box, as shown in Fig. 14. These results indicate that physical

loading may introduce more complex variations in walking, challenging
Fig. 13. Experiment D. Confusion matrix resulting from the GEI assessment in carrying
a backpack (bp).

Fig. 14. Experiment E. Confusion matrix resulting from the GEI assessment in carrying
a box (cx).

the model’s ability to generalize especially in this experiment at an
angle of 30 degrees.

Despite the model’s sensitivity to specific conditions, such as car-
rying a bag, wearing a coat, or carrying a box, the model’s overall
performance in classifying walking images remains robust. The results
highlight the importance of carefully considering specific training con-
ditions to improve model generalization. Although certain angles and
conditions presented challenges, the overall robustness of the model
suggests that it could benefit from specific training strategies and ar-
chitecture adjustments to address these specific variations. This analysis
provides valuable guidelines for future research and improvements in
the model’s ability to adapt to diverse and challenging conditions.

4.2. Cross validation

To evaluate the robustness and generalization of the extracted gait
characteristics, we used the DINO ViT-B/16 model. TecNM Gait-DS
dataset, consisting of 124 subjects, was divided into several subsets
following a consistent strategy. The subset of 25 subjects included

1300 energy images (GEI) divided into 80% for training and 20% for
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Table 2
Cross validation experiments with different subsets sizes of TecNM Gait-DS.

Total subjects Accuracy

nm bg cl bp cx

25 0.979 0.895 0.963 0.92 0.852
50 0.965 0.899 0.924 0.909 0.841
75 0.978 0.928 0.944 0.947 0.878
100 0.966 0.915 0.908 0.897 0.841
124 0.956 0.902 0.883 0.882 0.822

testing, and 650 additional images for validation testing in each gait
variant: normal (nm), carrying a bag (bg), wearing a coat (cl), carrying
a backpack (bp), and carrying a box (cx). The subset of 50 subjects
included 2600 images divided equally, with 1300 images for validation
in each variant. The subset of 75 subjects comprised 3900 images, with
1950 intended for validation in each variant. For the subset of 100
subjects, 5200 images were used for training and testing, and 2600 for
validation in each variant.

The Table 2 shows the accuracies obtained in different data sets and
walking conditions:

• Normal Walking (nm): the accuracy remains high in all sets,
ranging from 0.956 to 0.979. This suggests that the model is ex-
tremely effective in recognizing walking under normal conditions,
regardless of the number of subjects

• Carrying a Bag (bg): Accuracies range between 0.895 and 0.928,
highlighting the model’s ability to handle the variability intro-
duced by carrying a bag. A slight decrease compared to normal
gait is expected due to alterations in the walking pattern. Carrying
a Bag (bg): Accuracies range between 0.895 and 0.928, high-
lighting the model’s ability to handle the variability introduced
by carrying a bag. Compared to normal gait, a slight decrease is
expected due to alterations in the walking pattern.

• Wearing a Coat (cl): Accuracies are in the range of 0.883 to 0.963,
indicating that the model maintains robust performance even
with changes in clothing that may affect the subject’s silhouette.

• Carrying a Backpack (bp): Results range from 0.882 to 0.947,
demonstrating that the model can effectively adapt to variations
in walking caused by carrying a backpack.

• Carrying a Box (cx): The accuracy is slightly lower, with values
between 0.822 and 0.878. This reflects the additional challenge
of walking when carrying a box, although the model still shows
acceptable performance.

5. Discussion

TecNM Gait-DS stands out for including two scenarios for iden-
tifying a person through their way of walking: carrying a backpack
and carrying a box. These scenarios add complexity to the moment
of person recognition when considering the angle of placement of the
cameras. On the other hand, TecNM Gait-DS contains a total of 22,568
videos that allow them to be classified through 13 classes. These videos
and angles (classes) allow for a detailed analysis while maintaining a
controlled capture environment for indoor applications, highlighting
the behaviors that arise when transporting materials in office environ-
ments. From the analysis of the angles made in the different scenarios,
it can be observed that in the vast majority of angles, regardless of
their scenario (carrying a box, wearing a coat), there is an accuracy
above 90%. However, recordings taken at angles 15◦, 30◦, 150◦, and
165◦ show a lower performance regardless of the scenario, whereas the
scenario of carrying a box shows a significantly inferior performance.

Among the observation differences of the individuals, the TecNM
Gait-DS captures 13 different viewing angles, which exceeds the six
angles of CMU MoBo, the two of SOTON, and the 11 of CASIA B.
 t
Table 3
CCR averages from CASIA B and TecNM Gait-DS experiments.

Experiments CCR avg

A (nm) B (bg) C (cl) D (bp) E (cx)

CASIA B 0.997 0.289 0.678 – –
TecNM Gait-DS 0.956 0.902 0.883 0.882 0.822

By capturing the walk from multiple angles, TecNM Gait-DS allows
a more complete and detailed analysis of body movements, which is
crucial for biometric applications and biomechanical research. It also
identifies which angles and conditions (carrying a box, wearing a coat,
etc.) where the patterns or characteristics of the individual obtained
are not favorable for their identification, allowing the exploration of
camera combinations at different angles. This behavior is shown in the
confusion matrices in Figs. 10 to 14.

The TecNM Gait-DS offers 22,568 video clips with an average length
of 10 s per video at 30 frames per second, facilitating a nuanced explo-
ration of individual-level gait variations, considering the two scenarios
that differentiate our database. We remark that the video length was
not specified for CASIA B, SOTON, OU ISIR, and OU ISIR MVLP. The
frame rate for CASIA B, SOTON, and OU ISIR MVLP is 25fps; only OU
ISIR is considered 30fps.

TecNM Gait-DS introduces a broader spectrum of conditions in
a single database compared to the rest of the works [CASIA-B, OU
ISIR, OU ISIR MVLP, MOBO, CMU, GaIt3d, GREW], including carrying
a backpack and a box, common actions in controlled environments.
When analyzing TecNM Gait-DS it was identified that for all scenarios,
cameras with angles 15◦, 30◦, 150◦, and 165◦ decrease the precision
to identify the subject by HGR, so for the placement of the cameras
in real scenarios, it could be favored by considering the angles 0◦,
45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, and 180◦ since the patterns or
haracteristics of the person are better captured. This knowledge of the
alking conditions helps guide research to improve the robustness of

he models and algorithms developed, ensuring that they are applicable
n real-world scenarios where walking conditions can vary significantly
n addition to the placement of the cameras.

The databases (CASIA B, OU ISIR, OU ISIR MVLP, SOTON) are made
p of eastern participants. In the case of TecNM Gait-DS, its focus is on
ollecting Latin American people. This aspect allows for consideration
f racial biases that have sometimes been reported in studies such as
Hill et al., Gonzales et al.). The methodology for capturing people from
ultiple viewing angles allows for generating 182 videos per subject,

onsidering five scenarios from 13 different angles to observe variations
n walking. Thus, these camera arrangements will allow for the future
iomechanical analysis of walking (Mu et al., Alaqtash et al.), biometric
ecurity systems (Arshad et al.) or the detection of problems during a
linical evaluation of walking (Devanne et al.).

CASIA B dataset study conducted in 2006, the evaluation of the
ait recognition algorithm was based on correct classification rates
CCR) using three sets of experiments with normal, carrying a bag, and
earing a coat walking variations (A, B, and C). The CCR averages
btained were 0.977, 0.289, and 0.678 for experiments A, B, and C,
espectively, as shown in Table 3.

TecNM Gait-DS, included feature extraction from silhouettes and en-
rgy image generation (GEI) using a Facebook DINO ViT-B/16 model.
he results obtained indicate a CCR average of 0.956, 0.902 and 0.883
or experiments A, B and C, respectively. In addition, experiments (D
nd E) were introduced with CCR averages of 0.882 and 0.822, related
o walking carrying a backpack and a box, respectively, as shown in
able 3.

The comparison is made directly with the CASIA B dataset, as the
imilarity between the two datasets is closer than the other alternatives
e.g., OU-ISIR-MVLP, which has over 250,000 videos but only one walk
ariant). CASIA B and TecNM Gait-DS share three walk variations, but
he TecNM Gait-DS dataset incorporates two additional variations.
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Table 4
Comparison of the main human gait datasets.

Name # Subjects # Videos per subject # Total videos Environment Views (angles) Walking variations

CMU MoBo 25 24 600 Indoor 6 Three walking speeds, carrying
a ball (all on a treadmill)

SOTON 115 – 2128 Indoor & Outdoor 2 Normal walking on a treadmill

CASIA B 124 110 13 640 Indoor 11 Normal walking, carrying a
bag, wearing a coat

OU-ISIR 4007 – 31 368 Outdoor 4 Normal walking
OU-ISIR-MVLP 10 307 – 259 013 Indoor 14 Normal walking
GREW 26 345 – 128 671 Wild – Undefined
Gait3d 4000 – 25 309 Wild – Undefined

TecNM Gait-DS (Ours) 124 182 22 568 Indoor 13 Normal walking, carrying a
bag, carrying a backpack,
carrying a box, wearing a coat
Including additional walking variation in TecNM Gait-DS expands
he situations evaluated, reflecting a more complete understanding of
he capabilities of the transformer model, especially in more complex
nd varied contexts present in TecNM Gait-DS. Despite the difference
n years between the two studies, this comparison highlights significant
dvances in the field of gait recognition, highlighting the impact of
echnological and methodological evolution over time.

Table 4 presents a comprehensive overview of six prominent gait
ecognition datasets, shedding light on their key characteristics, in-
luding the number of subjects, videos per subject, total videos, envi-
onmental conditions, viewpoints, and walking variations. This discus-
ion analyzes these datasets’ significance and potential impact on gait
ecognition research.

TecNM Gait-DS surpasses CMU MoBo, considering subject count
124 vs. 25) and video quantity per subject (182 vs. 24), presenting
more extensive and diverse dataset. Featuring 22,568 total videos in

ontrast to CMU MoBo’s 600, TecNM Gait-DS provides a significantly
arger collection for detailed analysis. The shared indoor environment
etween both datasets fosters standardization.

With 13 view angles, TecNM Gait-DS stands out, offering a richer
erspective than CMU MoBo’s six angles. Moreover, TecNM Gait-DS
aptures various gait situations, including carrying objects and wearing
coat, enhancing the dataset’s versatility.

TecNM Gait-DS encompasses 124 subjects, slightly surpassing SO-
ON, which comprises 115 subjects—though the disparity is statisti-
ally insignificant. Notably, TecNM Gait-DS exhibits a marginally larger
ubject pool. Each subject in TecNM Gait-DS is associated with 182
ideos, while specific information on the video count per subject in
OTON is unavailable, hindering a precise quantitative comparison.
his lack of detailed data in SOTON complicates the assessment in
his particular aspect. In terms of total videos, TecNM Gait-DS boasts
2,568 videos, significantly exceeding SOTON’s total of 2128 videos.
his substantial difference establishes TecNM Gait-DS as the superior
ataset in total video content.

SOTON’s data collection contains indoor and outdoor environments,
hereas TecNM Gait-DS concentrates solely on indoor settings. The

elevance of this distinction depends on the specific requirements of
he intended application. Notably, TecNM Gait-DS’s provision of 13
iew angles is a detail absent in the SOTON dataset. The more signif-
cant number of view angles in TecNM Gait-DS contributes to a more
omprehensive and detailed perspective.

The TecNM Gait-DS dataset boasts 182 videos per subject, surpass-
ng the CASIA B dataset, which contains 110 videos per subject. This
isparity in video quantity per subject within TecNM Gait-DS facilitates
more nuanced exploration of gait variations at the individual level.

ecNM Gait-DS comprises 22,568 videos, whereas CASIA B includes
3,640 videos. TecNM Gait-DS markedly excels in the overall number
f videos, signifying a substantial resource for comprehensive gait
nalysis.

Moreover, TecNM Gait-DS provides a more extensive array of per-
pectives with 13 view angles compared to CASIA B’s 11 view angles.
This feature of TecNM Gait-DS offers a slightly more comprehensive
view, capturing data from additional angles and enhancing the dataset’s
potential for in-depth analysis.

TecNM Gait-DS encompasses 124 subjects, presenting a notable
contrast to the substantially larger datasets of OU ISIR with 4007
subjects and OU ISIR MVLP boasting 10,307 subjects. In terms of
subject volume, TecNM Gait-DS is markedly smaller compared to both
OU ISIR and OU ISIR MVLP. Analyzing the total video count, TecNM
Gait-DS comprises 22,568 videos, positioning itself in an intermediary
capacity between OU ISIR with 31,368 videos and OU ISIR MVLP with
an extensive 259,013 videos. This intermediate positioning underscores
the dataset’s unique characteristics.

Distinguishing itself, TecNM Gait-DS incorporates diverse gait vari-
ations, including scenarios such as carrying a bag, backpack, box and
wearing coat. This comprehensive representation of gait conditions
within TecNM Gait-DS holds significant utility for applications demand-
ing a broader spectrum of gait diversity. In comparison, OU ISIR MVLP,
with its considerably larger subject and video counts, stands out as an
advantageous resource, especially for tasks requiring substantial data
volumes for training machine learning models.

To evaluate the robustness of our model, we performed a cross-
validation using the full dataset (TecNM Gait-DS) and three subdatasets
(25, 50, 75, 100 subjects).

We note that, in general, model accuracy is high across all data sets
and walking conditions. Slight decreases in accuracy with increasing
number of subjects and variations in gait conditions are expected and
acceptable within the context of gait recognition. These trends suggest
that the model is sufficiently robust and generalizable.

Results with 124 subjects show accuracies that are comparable to
those obtained with smaller sets, reaffirming that the model can handle
a large number of subjects without losing accuracy significantly. This
is crucial, as the diversity and quantity of training data contribute to
the model’s ability to better generalize to new, unseen data.

The cross-validation experiments confirm that the number of 124
subjects is adequate to train a robust and accurate model in various
walking conditions. The high accuracy in different conditions and the
ability of the model to handle a large number of subjects underline the
accuracy and generalizability of the DINO ViT-B/16 model. These re-
sults validate the use of TecNM Gait-DS as a rich and diverse database,
ideal for the development of advanced gait recognition algorithms.

In summary, TecNM Gait-DS’s comprehensive methodology, marked
by increased capture angles, a higher number of subject-specific videos,
and diverse gait variations, yields a rich and varied dataset with po-
tential applications spanning biomechanics research (Mu et al., 2010;
Alaqtash et al., 2011), biometric system development (Arshad et al.,
2022), and clinical gait analysis (Hill et al., 2020; Gonzales et al.,
2020).
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6. Conclusion

The TecNM Gait-DS human gait database significantly contributes
to the field of HGR research with its practical applications. It features
22,568 video sequences captured from 124 subjects and spanning 13
different viewing angles. One of the key merits of TecNM Gait-DS
is its comprehensive data structure, enriched with a broad source of
information, including the location of key body points, bending and
leaning angles during gait, as well as silhouettes and walking energy
derived from the videos. Additionally, the database introduces practical
scenarios such as carrying a backpack and a box, making it highly
relevant for real-world applications. These features make TecNM Gait-
DS a valuable resource for both model-based and appearance-based gait
recognition methods.

Likewise, each video was processed to extract the relevant charac-
teristics of the walk cycle in the two main HGR approaches (model-
based and appearance-based). For the model-based approach, the Dec-
tectron2 (Wu et al., 2019) methodology was used, and for the
appearance-based approach, DensePose (Güler et al., 2018) was used.
From the silhouettes extracted by DensePose, we formed an HGR by
video processing.

While fundamental datasets exist in human gait research, such as
CMU MoBo, SOTON, OU ISIR, OU ISIR MVLP, and the widely used
CASIA B, it is essential to recognize the need for increased diversity
in gait variants, viewing angles, and amount of data. TecNM Gait-
DS addresses this challenge by offering more diverse walking variants
and viewing angles, particularly in scenarios like carrying objects,
which are less explored in other databases. We analyzed how camera
angles and extracted characteristics of the scenarios included in TecNM
Gait-DS have improved the performance of person identification using
DINO ViT-B/16. The results indicated a CCR average of 0.956, 0.902,
and 0.883 for experiments with normal walking, carrying a bag, and
wearing a Coat, respectively. In addition, experiments carrying a back-
pack and carrying a box were introduced with CCR averages of 0.882
and 0.822, respectively. These new scenarios show that for person
identification, there is a need for new algorithms robust to occlusions
or that work with partial information, which is related to the angle of
observations to extract the gait characteristics. Besides, we observe that
the angles with better performance for the five scenarios analyzed are:
0◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, and 180◦.

However, despite these contributions, there are limitations. The
ecNM Gait-DS database primarily focuses on indoor environments,
hich may limit its generalizability to outdoor or uncontrolled settings.
dditionally, while the dataset includes 124 subjects, larger datasets
uch as OU ISIR MVLP contain even more subjects and more diverse
nvironmental conditions; hence, we will focus on expanding the num-
er of subjects and scenarios in future versions of our dataset to address
hese limitations.

In summary, TecNM Gait-DS presents a new set of videos collected
rom Latin American people. This provides new examples for person
dentifications since existing databases such as CASIA B, OU ISIR,
U ISIR MVLP, and SOTON are focused on eastern participants. We
rovide the dataset and the algorithms used in https://github.com/
isaelZazueta/TecNM_Gait-DS.

In future works, we will focus on improving the person identifica-
ion task by using, comparing, and merging the TecNM Gait-DS with
ther datasets. This will allow us to address some of the limitations
entioned and extend the scope of existing research, enhancing the

obustness of algorithms to different conditions and environments.
dditionally, we will focus on developing new algorithms capable of
andling occlusions and partial information, which are critical for real-
orld applications. The potential for future research and development

n this area is vast, leading and motivating us to continue our work in
his field.
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