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A B S T R A C T

This paper introduces theoretical conditions for the computation of a novel type of state-feedback controller
that makes use of Linear Parameter Varying approaches for synthesis. The novelty of this new State-Feedback
controller lies on the fact that the controller has a fixed structure with constants matrix gains. However, the
controller gains are affine on a parameter dependent basis function, which allows the controller to self-schedule
according to real-time changes of the varying parameters. This type of controller is conceived with a focus
on implementation, as in contrast with most other LPV approaches. The implementation of this Parameter-
Dependent State-Feedback controller does not require any online interpolation or matrix inverse operations,
independently of the number of varying parameters. The performance of the proposed approach is validated
in a Scaled Autonomous Vehicle for steering control in a path tracking application.
1. Introduction

In this paper, we introduce a simple to implement Linear Pa-
rameter Varying (LPV) controller with fixed structure but depending
on some time-varying parameters. In the following subsection, we
describe the most well known LPV methods, e.g Polytopic and Grid
based approaches, to explore their trade-off, both from a robustness
and stability guarantees and from their implementation complexity
perspectives. Then, we define the control problem for this new type of
LPV controllers followed by a description of the paper objectives and
contributions.

1.1. Literature review

The LPV approach (Shamma, 2012) is nowadays a well-established
approach in the literature. Part of the success of the LPV framework
comes from its ability to capture the dynamics of complex non-linear
system as a time-varying linear system thanks to the use of scheduling
parameters. This enables the use of Linear Matrix Inequalities (LMI)
based LTI control techniques (Boyd et al., 1994) as a basis for the
control and analysis solution for non-linear systems, while provid-
ing performance and robustness guarantees. From an implementation
point of view, the practical implementation of LPV controllers depends
on the approach used for synthesis, with the most popular synthesis
approaches being the Polytopic and Grid based approaches. A brief
introduction of each approach is given in the following.

∗ Corresponding author at: Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, Grenoble, 38000, France.

The Polytopic approach assumes a finite family of LTI systems
whose convex combination covers the behavior of the LPV system
(López-Estrada et al., 2019). In this way, defining the synthesis con-
ditions on the vertices of this convex bounding polytope guarantees
stability and performance for all points inside the polytopic region
of the varying parameters. These strong guarantees are achieved by
making use of a common Lyapunov function for all vertices with
shared constant positive definite Lyapunov matrix (Apkarian et al.,
1995). Although theoretically strong, this approach in practice is often
conservative as usually the parameter space is over bounded by the
convex polytopic region, which may lead to vertices with parameter
combination which are not physically feasible. This issue has been
tackled in a number of works on proposed algorithms for polytope
size reduction, e.g. Hoffmann et al. (2012), Kwiatkowski and Werner
(2008), Rizvi et al. (2016), Sanjuan et al. (2022), or on the use of ad-hoc
methods for polytope reduction for some specific systems as in Baldelli
et al. (2008), Kapsalis et al. (2022).

The other distinctive source of conservatism in the Polytopic ap-
proach is the use of a constant positive-definite matrix in the common
Lyapunov function of the LPV system. In the case of Discrete-Time LPV
(DT LPV) systems, this issue has been solved with the introduction of
the Poly-Quadratic Lyapunov Function (Daafouz & Bernussou, 2001a,
2001b). The synthesis conditions introduced in these works make use of
a type of Parameter-Dependent Lyapunov Functions (PDLF) such that
E-mail address: ariel.medero@grenoble-inp.fr (A.M. Borrell).
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a unique positive-definite Lyapunov matrix is defined at each polytope
vertex. In addition, these conditions make use of the additional slack
variable 𝐺 introduced in de Oliveira et al. (1999). This new slack 
variable allows to decouple the Lyapunov matrix from the standard
change of variable associated with the controller gain, which alleviate
the Lyapunov matrix from extra constraints. The use of this new slack
ariable is referred to as 𝐺-shaping paradigm (De Oliveira et al., 
002). Overall, this 𝐺-shaping paradigm in addition to Poly-Quadratic 
yapunov Function offers many advantages in terms of reduction of
onservatism when compared with the standard Polytopic approach.
espite these improvements, there is still another important source of
onservatism that both Poly-Quadratic and traditional Polytopic meth-
ds share. The use of a constant Lyapunov matrix, or a polytopic set of
onstant Lyapunov matrices in the Poly-Quadratic case, represents that
he varying parameter can change in value arbitrarily fast, something
hich is extremely conservative and in fact is not suitable for some

ystems (Wu et al., 1996).
The Grid based approach is the most similar to the traditional ‘‘gain-

cheduling’’ approach for non-linear systems, since the LPV model
s obtained as a set of LTI systems defined alongside the trajectory 
f the scheduling functions evaluated at fixed values of the varying
arameters (Wu et al., 1996). During the synthesis step, it is commonly
onsidered affine Parameter Dependent Lyapunov Matrices (PDLM),
ith the so-called basis functions that form the affine PDLM being
n important decision to be made by the control designer (Apkarian
 Adams, 1998). An important consequence of using such Lyapunov

unctions with parameter dependency is that Grid based methods can
account for limits on the rate of variation for the varying parameters.

By using a set of LTI models over frozen points of the scheduling
variables space, the induced issue of over bounding by the Polytopic
approach is avoided. Together with the use of PDLF and limits on
the rate of variation for the varying parameters means that the Grid-
based approach allows to alleviate much of the conservatism that is
associated with the Polytopic method. However, this is achieved with
the trade-off that there is no strong guarantees outside of the frozen
values on the scheduling space that were considered for synthesis. For
this reason, it is recommended very dense grids of frozen values on the
parameter space. However, this is usually difficult to achieve due to
computational limitations. Moreover, the need for a dense grid for the
synthesis of robust Grid based LPV controllers requires in practice a
large family of pointwise LTI controllers to be implemented, a larger
family of LTI controllers than an equivalent Polytopic design would
require. A common approach to alleviate this implementation issue
is to carry out the synthesis of Grid based LPV controllers on a first
grid, and check if the performance of the closed-loop still holds on a
much tighter grid in a second step (Becker, 1996). Alternatively, recent
stability analysis results introduced in Cox et al. (2018) could be used
as a substitute for this second step.

All these families of modeling and synthesis approaches for LPV sys-
tems, with their advantages and disadvantages, have been successfully
applied in many works including experimental validation in some of 
them (see Atoui et al. (2022), Corno et al. (2021), Hang and Chen
(2021), Hoffmann and Werner (2015), Li et al. (2021), Liu et al.
(2018), Mohammadpour and Scherer (2012) and references therein). 
Notably, in Atoui et al. (2022) LPV approaches are compared in an 
experimental setup for the lateral control of an autonomous vehicle.
The authors of this work concluded that the Polytopic approach can be 
too conservative for some ranges of the parameter space, meanwhile
the Grid based approach showed quite robust performances.

1.2. Motivation

Although successfully validated, and clearly better than pure robust 
LTI approaches (Kajiwara et al., 1999), the LPV approach can suffer 
from practical difficulties during implementation, particularly when the
complexity of the controlled system increases. The Polytopic method
 𝑤
requires 2𝑛 controllers to be computed and implemented, 𝑛 being the
umber of vertices for the convex polytope. Similarly, in the Grid based
pproach the number of point-wise controllers increases exponentially
ith the number of frozen values of the varying parameters (remember

hat it is recommended a quite dense grid in order to obtain robustness
uarantees). It can be easily seen how for the Polytopic and Grid-based
pproaches the amount of point-wise controllers to be implemented and
tored in memory quickly increases in number as the complexity of the
ystem increases.

These issues are in part the main motivation of works in the Poly-
opic approach for vertex reduction, which have been commented
efore. Also it has led to some works that seek explicitly to reduce and
ddress the complexity of implementation of the obtained controller
fter synthesis (Bianchi & Sánchez-Peña, 2022; Hoffmann et al., 2014;

Sato, 2022). Clearly the practical implementation of LPV controllers
s still a subject which deserves great attention in order to enable the
idespread use of LPV techniques.

On the other hand, comparing approaches for LPV synthesis condi-
ions, the least conservative synthesis conditions for LPV systems are
hose introduced for DT LPV systems with the 𝐺-Shaping paradigm,
pecially those introduced in Pandey and de Oliveira (2019). However,
n the LPV literature the 𝐺-Shaping is used exclusively for Polytopic
PV systems, which induce conservatism due to over bounding of the
arameter space and the assumption on an infinitely fast rate of varying
arameter change. To the best of the author knowledge no work has
xtrapolated the use of 𝐺-Shaping like conditions for DT LPV Grid based
pproaches.

For these reasons, the main motivation of this work is to propose
new LPV approach that can be easily implementable, and whose

ynthesis makes use of the less conservative 𝐺-Shaping conditions in
DT Grid based approach. The control problem formulation for this

ew type of controllers is given in the following subsection.

.3. Notation

The vector and matrix notation is standard. ‖ ⋅ ‖2 represents the
2-norm. 𝑥𝑇 represents the transpose of 𝑥. 𝑋−1 represents the inverse
f 𝑋, matrix 𝑋 > 0 represents that 𝑋 is symmetric positive-definite,
= 𝑘𝑒𝑟(𝑋) represents that  is a base of the null space of 𝑋, the

otation He(𝑋)= 𝑋 + 𝑋𝑇 and ⋆ in an LMI represents a symmetric
lement transposed. In LMI given during theorems or propositions, bold
etters 𝐗 are used to identify the matrix 𝑋 as an optimization variables
n the LMI problem.

The following notation is used in the description of DT-LPV systems.
or simplification, the time dependency on the varying parameter
ector 𝜌(𝑘) will be dropped, e.g. 𝜌 ∶= 𝜌(𝑘), unless it is required

for clarification. Subscript 𝑖 indicates that it is being referred to an
individual element 𝜌𝑖 of a varying parameter vector 𝜌. Superscript +
indicates that a time dependent vector 𝑥(𝑘) or parameter dependent

atrix 𝑋(𝜌(𝑘)) is being evaluated at time instance 𝑘 + 1, e.g. 𝑥+ ∶=
𝑥(𝑘 + 1) and 𝑋+ ∶= 𝑋(𝜌(𝑘 + 1)). Subscript 𝑝 will represent that a
parameter dependent vector 𝑥(𝜌) or matrix 𝑋(𝜌) is evaluated at a frozen
rid-point 𝑔𝑝, e.g. 𝑥𝑝 ∶= 𝑥(𝑔𝑝). When considering a polytope around a
rozen grid-point 𝑔𝑝, the superscript 𝑣 indicates that a parameter vector
(𝜌) or a parameter dependent matrix 𝑋(𝜌) is evaluated at a vertex 𝑔𝑣𝑝
f such polytope, e.g. 𝑥𝑣𝑝 ∶= 𝑥(𝑔𝑣𝑝 ) and 𝑋𝑣

𝑝 ∶= 𝑋(𝑔𝑣𝑝 ).

1.4. Control problem definition

This paper is concerned with DT-LPV systems of the form:

𝛯(𝜌) ∶=

{

𝑥+ = 𝐴(𝜌)𝑥 + 𝐵𝑢(𝜌)𝑢 + 𝐵𝑤(𝜌)𝑤

𝑧 = 𝐶𝑧(𝜌)𝑥 +𝐷𝑢(𝜌)𝑢 +𝐷𝑤(𝜌)𝑤
(1)

here 𝑥 ∈ R𝑛𝑥 is the state vector, 𝑢 ∈ R𝑛𝑢 are the control inputs,
∈ R𝑛𝑤 are the exogenous inputs with bounded energy such that

𝑛𝑧 are the exogenous outputs.
∈ 𝐿2 and 𝑧 ∈ R
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𝜌 ∶= (𝜌1,… , 𝜌𝑚)𝑇 is a vector with 𝑚 varying parameters, 𝜌𝑖 ∈ R. The
range of values of each individual varying parameter 𝜌𝑖 and its rate of
variation 𝜈𝑖 are satisfying the following assumptions:

• Each varying parameter 𝜌𝑖 is measured online, e.g. at a time
instant 𝑘 the value of 𝜌(𝑘) is known, and bounded by extremal
values 𝜌

𝑖
and 𝜌𝑖 such that 𝜌

𝑖
≤ 𝜌𝑖(𝑘) ≤ 𝜌𝑖. These bounds on 𝜌 then

form the varying parameter admissible space 𝛺 ∈ R𝑚, such that
∀𝑘 then 𝜌(𝑘) ∈ 𝛺.

• The rate of variation 𝜈𝑖 of each varying parameter 𝜌𝑖 between two
consecutive sampling times 𝑘 and 𝑘+1 is not necessarily available
online, however, the maximum variation rates are known and
bounded by 𝜈𝑖 and 𝜈𝑖 such that ∀𝑘 then 𝜈𝑖 ≤ 𝜈𝑖(𝑘) ≤ 𝜈𝑖.

The parameter dependency for each of the state space matrix of 𝛯(𝜌)
is assumed to be given by an affine relation with a scheduling signal
𝜃(𝜌) as Apkarian and Adams (1998), Cox et al. (2018):

(𝜌) = 𝐴0 +
𝑁
∑

𝑛=1
𝜃𝑛(𝜌)𝐴𝑛, (2)

where

𝜃(𝜌) ∶= (1, 𝜃1(𝜌),… , 𝜃𝑁 (𝜌)), (3)

forms the so-called basis functions, and 𝜃𝑛(𝜌) ∈ R is a linear or
nonlinear function.

The control problem introduced in this paper is given in the frame-
work of ∞∕𝐿𝑃𝑉 control making use of the Induced 𝐿2-norm, which
is defined as follows:

Definition 1 (Induced 𝐿2-Norm (Boyd et al., 1994)). The induced
𝐿2-norm of a system is the quantity

sup
‖𝑤‖2≠0

‖𝑧‖2
‖𝑤‖2

, (4)

where the 𝐿2-norm of 𝑢 is ‖𝑢‖22 = ∫ ∞
0 𝑢𝑇 𝑢𝑑𝑡.

Within the ∞∕𝐿𝑃𝑉 framework, our objective is to find a
Parameter-Dependent State-Feedback (PDSF) controller with a fixed
structure, which is defined as follows:

Definition 2 (Parameter-Dependent State-Feedback Controller). The
tructure of the PDSF Controller is defined as follows:

(𝜌) = 𝐾0 +
𝑁
∑

𝑛=1
𝜃𝑛(𝜌)𝐾𝑛 , (5)

here the controller gains 𝐾0,… , 𝐾𝑁 are constant matrices, 𝜃(𝜌) is the
cheduling function defined in (3).

The PDSF synthesis problem is then posed as the minimization of the
nduced 𝐿2-norm of a closed-loop LPV system. Such control problem is
iven in the following definition.

efinition 3 (PDSF Induced 𝐿2-Norm Control Problem). Given an LPV
ystem 𝛯(𝜌) and considering an State-Feedback control law 𝑢 = 𝐾(𝜌)𝑥,
he resulting LPV closed-loop system is:

𝐶𝐿(𝜌) ∶=

{

𝑥+ = (𝐴(𝜌) + 𝐵𝑢(𝜌)𝐾(𝜌))𝑥 + 𝐵𝑤(𝜌)𝑤

𝑧 = (𝐶𝑧(𝜌) +𝐷𝑢(𝜌)𝐾(𝜌))𝑥 +𝐷𝑤(𝜌)𝑤
(6)

onsidering the induced 𝐿2-norm of a system, given in Definition 1,
he control problem is then to find a PDSF controller 𝐾(𝜌) according
o Definition 2 that renders the LPV closed-loop system 𝛯𝐶𝐿 robustly
table and minimizes its 𝐿2-norm as:

min 𝛾∞ s.t.
‖𝑧‖2 ≤ 𝛾∞ (7)
(𝝆),𝜸∞ ‖𝑤‖2
1.5. Paper objectives and contributions

Keeping in mind the implementability issues of LPV controllers,
this paper introduces a new approach to design Linear Parameter
Varying (LPV) State-Feedback (SF) controllers. The novelty of this new
approach lies on the fact that the controller structure results directly
from a chosen parametric dependency, similar as in the case of the
basis function for PDLM (Apkarian & Adams, 1998; Wu et al., 1996).

he fact that the controller gain matrices are constant for the whole
PV parameter space, makes this type of LPV controllers an extension
f the robust control approach (de Oliveira et al., 1999; Rodrigues
t al., 2018). Nonetheless, despite having fixed controller gains, the
verall controller 𝐾(𝜌) is parameter dependent and can adapt online
o the measured varying parameter values, which drastically reduces
he conservatism associated with this solution.

To find an LPV controller whose structure is independent of the
umber parameter space grid points, the solution of the control syn-
hesis problem is performed by solving two sequential LMI optimization
roblems. Similar as proposed for LFT LPV synthesis in Apkarian and
ahinet (1995), a first LMI problem is proposed as a feasibility LMI
roblem for the existence of general ∞ controllers for a given control
esign, considering state-feedback controllers in this work. A second
MI problem then enables to reconstruct the controller gains. The key
f this second step is that the controller gains 𝐾0,… , 𝐾𝑛 from 𝐾(𝜌) in
q. (5) are the only decision variables.

As a result, the controller dimensions (in terms of the number of
controller gains to be found and implemented) only depends on the
size 𝑁 of the scheduling basis function 𝜃(𝜌) and not on the number
of frozen grid points values for the parameter space. This translates
to an LPV state-feedback controller design which is straightforward to
implement thanks to a reduced number of controller gains and as it
does not requires any online interpolation.

Finally, in order to test the performance of the PDSF control method,
it has been implemented into an Scaled Autonomous Vehicle (SAV)
platform for the lateral control problem. Note that LPV approaches
have been successfully applied for vehicle lateral dynamics control
applications in the literature: in Kapsalis et al. (2022) the authors
implemented a Polytopic LPV controller in a test autonomous vehicle
for steering control, the same vehicle platform was used in Atoui
et al. (2022) for a comparison of the LPV Polytopic, Gridding and
Linear Fraction Transformation approaches, in Li et al. (2022) the issue
of actuator saturation in autonomous steering control is dealt using
parameter dependent Lyapunov approaches, and, finally, Alcalá et al.
(2020) uses optimal control approaches in the LPV-MPC framework
for the control problem in autonomous driving. In our application, the
objective is to achieve robust path-tracking of a desired trajectory. In
order to achieve this goal, the PDSF controller will act on the front
servo motor of the SAV to autonomously steer the vehicle through a
given track.

The contributions of this work can then be summarized as follows:

• Extension of the DT 𝐺-shaping paradigm conditions from the
Polytopic approach (De Oliveira et al., 2002) to a DT Grid based
approach.

• Introduction of the PDSF controller synthesis conditions for DT
LPV systems.

• The PDSF synthesis leads to a simple to implement controller
thanks to a reduced number of controller gains and does not
requires online interpolation.

• Experimental validation of the PDSF controller for a path tracking
application on an Scaled Autonomous Vehicle.

1.6. Paper structure

The structure of the rest of the paper is the following. In Section 2,

some preliminaries on the analysis of DT-LPV systems through LMI is
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given. In Section 3, new LMI conditions are introduced and used to 
prove the existence of the controller for a given system and numerical
proposition for the computation of the PDSF controller gains. Section 4
describes the Scaled Autonomous Vehicle platform utilized for valida-
ion of the PDSF controller. Section 5 describes the synthesis approach
or the path tracking application on the SAV while Section 6 presents 
he results. Finally, in Section 7, conclusions are drawn.

2. Preliminaries on the analysis of grid based DT-LPV systems

In this section, we introduce the framework employed to analyze
through LMI the Grid based DT-LPV systems with the aid of Parameter
Dependent Lyapunov Functions (PDLF). This framework and LPV re-
lated notation introduced in this section is employed for the derivation
of results presented in following sections.

To discuss the stability concepts, it is considered here the au-
tonomous DT-LPV system (obtained from (1)) and given by:

𝑥+ = 𝐴(𝜌)𝑥, (8)

The parameter dependent state matrix 𝐴(𝜌) is represented by an
affine relation on the scheduling function 𝜃(𝜌) (Apkarian & Adams,
998; Cox et al., 2018):

(𝜌) = 𝐴0 +
𝑁
∑

𝑛=1
𝜃𝑛(𝜌)𝐴𝑛, (9)

where 𝜃(𝜌) ∶= (1, 𝜃1(𝜌),… , 𝜃𝑁 (𝜌)) forms the so-called basis functions,
𝜃𝑛(𝜌) ∈ R is a linear or nonlinear function.

In this work we consider quadratic PDLF of the type:

𝑉 (𝑥, 𝜌) = 𝑥𝑇𝑋(𝜌)𝑥, (10)

where the Parameter-Dependent Lyapunov Matrix (PDLM) has the
following structure:

𝑋(𝜌) = 𝑋0 +
𝑁
∑

𝑛=1
𝜃𝑛(𝜌)𝑋𝑛 (11)

Considering a PDLF 𝑉 (𝑥, 𝜌), it follows that the stability of the DT-LPV
system (8) can be proved if the following condition is satisfied (Daafouz
& Bernussou, 2001a):

𝑉 (𝑥+, 𝜌+) − 𝑉 (𝑥, 𝜌) ≤ 0, (12)

Note that the structure of the PDLM copies that of the system
matrix (2). Although this is not strictly required, this simple strategy
has been proved effective (Apkarian & Adams, 1998; Wu et al., 1996).

Using a quadratic PDLF of the form (10) in condition (12) leads to
the inequality

𝐴𝑇 (𝜌)𝑋(𝜌+)𝐴(𝜌) −𝑋(𝜌) ≤ 0. (13)

However, there exist two important issues with this condition. Firstly,
condition (13) is an infinitely constrained LMI due to the infinite
possible values 𝜌 can take within its bound. Moreover, it involves both
𝜌(𝑘) and 𝜌(𝑘+1) and only 𝜌(𝑘) is known, with 𝜌(𝑘+1) generally unknown.

A common solution to the first issue is to consider a dense grid
 ∈ 𝛺 at fixed 𝜌 values and evaluate the stability condition at each
grid-point 𝑔𝑝 ∈  (Wu et al., 1996). Despite considering a frozen
grid of values for the varying vector 𝜌, it still remains an issue the
fact that 𝜌+ appearing in the stability condition (13) is unknown.
However, knowing the information on the bounded variation rates 𝜈𝑖,
the parameter values at the new sample 𝜌+𝑖 is limited within the range

𝜌+𝑖 ∈
[

𝜌𝑖 − 𝜈𝑖, 𝜌𝑖 + 𝜈𝑖
]

(14)

his allows us to build, for each grid point 𝑔𝑝 ∈ , a polytope which
ounds the parameter variations at the next sample. This is specified
or each varying parameter 𝜌𝑖 (𝑔𝑝,𝑖 being the frozen value of 𝜌𝑖 at the
rid point 𝑔𝑝), with the min/max values :

, 𝑔 + 𝜈
]

, ∀𝑖 = 1,… , 𝑚. (15)
𝑔𝑝,𝑖 − 𝜈𝑖 𝑝,𝑖 𝑖
Fig. 1. Vertices of the polytope 𝑝 bounding 𝑔+𝑝 .

Overall this defines the bounding polytope 𝑝 ∈ 𝛺 at each grid point
𝑝 ∈ , where all the 2𝑚 min/max combinations form the vertices of 𝑝.

The vertices of this polytope 𝑝 are denoted 𝑔𝑣𝑝 ∈ 𝑝, with 𝑣 = 1,… , 2𝑚,
n the remaining parts of the paper.

To better visualize this approach Fig. 1 is introduced. In this figure
t is represented a 2D gridded varying parameter space  ∈ R2, and
e will focus on a single grid point 𝑔𝑝 ∈ . Knowing the parameter
ariation limits on 𝜌1 and 𝜌2, namely (𝜈1, 𝜈1) and (𝜈2, 𝜈2) respectively,

then it is possible to build a local bounding polytope 𝑝 of 4 vertices
such that 𝑔+𝑝 ∈ 𝑝. Notice that the order of the vertices 𝑔𝑣𝑝 , 𝑣 = 1,… , 4,
f 𝑝 is not representative of any strict ordering requirement.

Applying this parameter grid and local variation bounds framework,
t is then possible to recast condition (13) as a finite number of LMI
ndependent of 𝑋(𝜌+), but which bounds it locally at each 𝑔𝑝 ∈ . Each

LMI of the finite set of conditions is given ∀(𝑔𝑝, 𝑔𝑣𝑝 ) as:

𝐴𝑇𝑝𝑋
𝑣
𝑝𝐴𝑝 −𝑋𝑝 ≤ 0, ∀𝑣 = 1,… , 2𝑚. (16)

Remark 1. As 𝑋(𝜌+) enters linearly on LMI (13), there is only need
to check the vertices of 𝑝 ∈ 𝛺 to bound 𝑋(𝜌+) around a fixed grid
𝑔𝑝 (Apkarian & Adams, 1998). Thus, it suffice to replace 𝑋(𝜌+) in LMI
16) by 𝑋𝑣

𝑝 for all (𝑔𝑝, 𝑔𝑣𝑝 ) pairs.

. Synthesis conditions for parameter-dependent state-feedback
ontrollers with fixed structure

In this section the steps and conditions for the synthesis of PDSF
ontrollers are given. In order to achieve the synthesis for this type
f controllers, it is required a two-steps sequential LMI optimization
roblem procedure. The inspiration for this approach comes from the
ork of Apkarian and Gahinet (1995), in which a similar two-steps
rocess was proposed for the computation of LFT LPV ∞ controllers.

In a first step, we make use of the Projection Lemma over the Ex-
ended DT Bounded Real Lemma (BRL), see Lemma 2 in Appendix A.2,
n order to obtain an LMI independent of the controller 𝐾(𝜌). At this
irst step, a feasible PDLM 𝑋(𝜌) and slack variable 𝐺(𝜌) are found as the
ecision variables on the LMI optimization Problem. In Section 3.1 and
ection 3.2, general conditions and numerical propositions are given,
espectively, to solve this first step LMI problem.

Using the numerical values for the PDLM 𝑋(𝜌) and 𝐺(𝜌), then
he Extended DT BRL gives an LMI optimization problem where the
nly decision variable are the gains of 𝐾(𝜌), which has the structure
onsidered in Eq. (5). In Section 3.3, we give numerical conditions to
olve this problem and compute the gains for 𝐾(𝜌).
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3.1. ∞ State-feedback existence conditions for DT-LPV systems

It is considered here the DT-LPV system given previously in (1).
The objective is to prove the existence of a SF LPV controller 𝐾(𝜌), 
such that the closed loop form of 𝛯(𝜌) with feedback law 𝑢 = 𝐾(𝜌)𝑥 is 
exponentially stable and with induced 𝐿2-norm bounded by a scalar 𝛾∞ 
such that

sup
(𝑘)≠0

‖𝑧(𝑘)‖2
‖𝑤(𝑘)‖2

≤ 𝛾∞ (17)

The existence of such a controller, independent of its dependency on 𝜌,
can be proved if the following theorem holds true.

Theorem 1. Consider a DT-LPV system 𝛯(𝜌) and scalar 𝛾∞ > 0. If,
𝜌 ∈ 𝛺, there exist a symmetric positive-definite PDLM 𝑋(𝜌) ∈ R𝑛𝑥×𝑛𝑥 , with
ixed structure as in Eq. (11), and a general slack matrix 𝐆(𝜌) ∈ R𝑛𝑥×𝑛𝑥
uch that the following condition holds:

 𝑇
𝑀 (𝜌)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐆𝑇 (𝜌) +𝐆(𝜌) −𝑋(𝜌+) ⋆ ⋆ ⋆

𝐴(𝜌)𝐺(𝜌) 𝑋(𝜌) ⋆ ⋆

𝐶𝑧(𝜌)𝐺(𝜌) 0 𝛾∞𝐼 ⋆

0 𝐵𝑇𝑤(𝜌) 𝐷𝑇
𝑤(𝜌) 𝛾∞𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑀 (𝜌) > 0

(18)

with

𝑋(𝜌) = 𝐗𝟎 +
𝑁
∑

𝑛=1
𝜃(𝜌)𝐗𝐧, (19)

𝑋(𝜌+) = 𝐗𝟎 +
𝑁
∑

𝑛=1
𝜃(𝜌+)𝐗𝐧, (20)

𝑀 (𝜌) = ker(
[

0 𝐵𝑇𝑢 (𝜌) 𝐷𝑇
𝑢 (𝜌) 0

]

), (21)

then, there exists a SF control gain 𝐾(𝜌) such that the closed-loop form
f 𝛯(𝜌) is exponentially stable and 𝛾∞ is an upper bound on its induced
2-norm, with control law given by 𝑢 = 𝐾(𝜌)𝑥.

roof. Consider a given positive scalar 𝛾∞ and given SF control law
= 𝐾(𝜌)𝑥, the closed-loop dynamics of 𝛯(𝜌) are as follows:

𝛯𝐶𝐿(𝜌) =

{

𝑥+ = (𝐴(𝜌) + 𝐵𝑢(𝜌)𝐾(𝜌))𝑥 + 𝐵𝑤(𝜌)𝑤

𝑧 = (𝐶𝑧(𝜌) +𝐷𝑢(𝜌)𝐾(𝜌))𝑥 +𝐷𝑤(𝜌)𝑤

=

{

𝑥+ = (𝜌)𝑥 + (𝜌)𝑤

𝑧 = (𝜌)𝑥 +(𝜌)𝑤

(22)

here the following relations are used:

(𝜌) = 𝐴(𝜌) + 𝐵𝑢(𝜌)𝐾(𝜌) (𝜌) = 𝐵𝑤(𝜌)

(𝜌) = 𝐶𝑧(𝜌) +𝐷𝑢(𝜌)𝐾(𝜌) (𝜌) = 𝐷𝑤(𝜌)
(23)

𝐶𝐿(𝜌) is exponentially stable with induced 𝐿2-norm less than 𝛾∞,
f, according to Lemma 2 from Appendix A.2 the following sufficient
ondition is true:

(𝜌, 𝜌+) + He

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

𝐵𝑢(𝜌)

𝐷𝑢(𝜌)

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐾(𝜌)
[

𝐺(𝜌) 0 0 0
]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

> 0 (24)

here

(𝜌, 𝜌+) =
⎡

⎢

⎢

⎢

⎢

⎢

𝐺𝑇 (𝜌) + 𝐺(𝜌) −𝑋(𝜌+) ⋆ ⋆ ⋆

𝐴(𝜌)𝐺(𝜌) 𝑋(𝜌) ⋆ ⋆

𝐶𝑧(𝜌)𝐺(𝜌) 0 𝛾∞𝐼 ⋆
𝑇 𝑇

⎤

⎥

⎥

⎥

⎥

⎥

(25)
⎣
0 𝐵𝑤(𝜌) 𝐷𝑤(𝜌) 𝛾∞𝐼 ⎦
ote that this condition is the same condition as Eq. (A.5), from
emma 2, when , ,  and  are given as in Eq. (22). Applying the
rojection Lemma over condition (24) to eliminate the matrix block
(𝜌), Eq. (18) is then recovered as an equivalent condition to Eq. (24).
his proves that Eq. (18) is a sufficient condition to demonstrate the
xistence of a State-Feedback control gain 𝐾(𝜌) such that 𝛯𝐶𝐿(𝜌) is
xponentially stable with induced 𝐿2-norm less than 𝛾∞. ■

Notice that when applying the projection lemma on (24), it imposes
ondition (18) and additionally
𝑇
𝑁 (𝜌)𝛹 (𝜌)𝑁 (𝜌) > 0, (26)

ith

𝑁 (𝜌) = ker(
[

𝐺(𝜌) 0 0 0
]

). (27)

ow Eq. (27) can be rewritten as Gahinet and Apkarian (1994)

𝑁 (𝜌) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐺(𝜌)−1 ⋆ ⋆ ⋆

0 𝐼 ⋆ ⋆

0 0 𝐼 ⋆

0 0 0 𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

ker(
[

𝐼 0 0 0
]

)

∶=𝐺̂(𝜌)−1̂𝑁 (𝜌)

(28)

eplacing (28) in condition (26) leads to:

̂ 𝑇
𝑁 (𝜌)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐺(𝜌)−𝑇 ⋆ ⋆ ⋆

0 𝐼 ⋆ ⋆

0 0 𝐼 ⋆

0 0 0 𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝛹 (𝜌)

×

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐺(𝜌)−1 ⋆ ⋆ ⋆

0 𝐼 ⋆ ⋆

0 0 𝐼 ⋆

0 0 0 𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

̂𝑁 (𝜌) > 0 (29)

sing Eq. (25), this condition leads to the already known constraint
(𝜌) > 0. As a result, condition (26) can then be discarded to prove

he equivalency between conditions in Eq. (18) and (24) due to the
Projection Lemma, for the case of the SF control problem. This fact
is similar to the one seen in Corollary 1 of Lu and Wu (2004), when
applying the Projection Lemma over the BRL for the SF case, only the
condition involving the null space of [𝐵𝑇𝑢 , 𝐷𝑇

𝑢 ] is considered.

3.2. Reduction to a finite-dimensional LMI problem

Theorem 1 provides general conditions to prove the existence of
some controller 𝐾(𝜌) for the control of the DT LPV system 𝛯(𝜌).
However, it is numerically very hard to implement, since it is infinitely
constrained as it must hold true ∀𝜌 ∈ 𝛺. Moreover, Eq. (18) requires
the knowledge of 𝜌+, which again, can take on infinite possible values
and imposes an infinite number of constraints. Nonetheless, Theorem 1
can be recasted to a finite number of LMI using the parameter grid and
local variation bounds approach explored in Section 2.

Note that it is also possible to recast the conditions from Theo-
rem 1 into a numerical solvable LMI problem by using the well known
Polyquadratic Polytopic approach (Daafouz & Bernussou, 2001a) for
discrete-time systems. However, this approach would imply that the
input matrices 𝐵𝑢, 𝐷𝑢 of the DT-LPV system in Eq. (1) should be
constant or pre-filtered to comply with the parameter space convex-
ity requirement of the Polytopic approach (Apkarian et al., 1995).
Moreover, a Polytopic solution is known to be more conservative due
the over-bounding issues that come from requiring a convex hull that
encloses the parameter space and the assumption of an infinite rate of
variation of the varying parameters, as detailed in Sections 1.1 and 1.2

or as illustrated in Kapsalis et al. (2022), Li et al. (2021). For these
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reasons and in the spirit of reducing conservatism, it has been decided 
to use the Gridding approach in this paper.

The following proposition gives a numerically tractable implemen-
tation of Theorem 1 that can be efficiently solved with available SDP
olvers.

roposition 1. Consider a DT-LPV system 𝛯(𝜌), with parameter space 
 ∈ R𝑚 gridded by a grid space  ∈ 𝛺 and assuming bounded parameter 

rate of variation 𝜈 ∈ R𝑚 such that ∀𝑔𝑝 ∈  there exists a bounding polytope
𝑝 for 𝑔𝑝+ with 2𝑚 vertices 𝑔𝑝𝑣 ∈ 𝑝, and scalar 𝛾∞ > 0. If there exists a 
symmetric positive-definite PDLM 𝑋(𝜌) ∈ R𝑛𝑥×𝑛𝑥 , with fixed structure as in
Eq. (11), and a set of matrices 𝐆𝐩 ∈ R𝑛𝑥×𝑛𝑥 such that ∀(𝑔𝑝, 𝑔𝑣𝑝 ) pairs the
following condition holds

 𝑇
𝑀 (𝜃𝑝)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐆𝑇
𝐩 +𝐆𝐩 −𝑋(𝜃𝑣𝑝 ) ⋆ ⋆ ⋆

𝐴(𝜃𝑝)𝐺(𝜃𝑝) 𝑋(𝜃𝑝) ⋆ ⋆

𝐶𝑧(𝜃𝑝)𝐺(𝜃𝑝) 0 𝛾∞𝐼 ⋆

0 𝐵𝑇𝑤(𝜃𝑝) 𝐷𝑇
𝑤(𝜃𝑝) 𝛾∞𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑀 (𝜃𝑝) > 0 (30)

with

𝑋(𝜃𝑝) = 𝐗𝟎 +
𝑁
∑

𝑛=1
𝜃𝑝𝐗𝐧, (31)

𝑋(𝜃𝑣𝑝 ) = 𝐗𝟎 +
𝑁
∑

𝑛=1
𝜃𝑣𝑝𝐗𝐧, (32)

𝑀 (𝜃𝑝) = ker(
[

0 𝐵𝑇𝑢 (𝜃𝑝) 𝐷𝑇
𝑢 (𝜃𝑝) 0

]

), (33)

then, there exists a SF control gain 𝐾(𝜌) such that the closed-loop form
f 𝛯(𝜌) is exponentially stable and 𝛾∞ is an upper bound on its induced
2-norm.

roof. Proposition 1 is a direct application of Theorem 1 using the pa-
rameter grid and local variation bounds approach detailed in Section 2.
The varying parameter vector 𝜌 is gridded at fixed points 𝑔𝑝 alongside
the varying parameter space 𝛺. At each fix grid point 𝑔𝑝 the LPV system
𝛯(𝜌), with affine dependency on some scheduling signal 𝜃(𝜌), is then
frozen as an LTI representation 𝛯(𝜃𝑝). Meanwhile, using the maximum
rates of parameter variation 𝜈, 𝜌+ is bounded at each fixed grid point
𝑔𝑝 by a polytope 𝑝, each vertex of this polytope around 𝑔𝑝 defined as
𝑔𝑣𝑝 . This concludes the proof. ■

Remark 2. According to Definition 3, the control problem objective
is the minimization of the induced 𝐿2-norm upper bound 𝛾∞ of the
closed-loop form of 𝛯(𝜌). However, Theorem 1 and Proposition 1 are
iven with an arbitrary upper bound 𝛾∞ for the purpose of generaliza-
ion. Nonetheless, once Proposition 1 has been implemented, the LMI
ptimization problem can be solved as the minimization of the induced
2-norm upper bound 𝛾∗∞ as follows:
∗
∞ = min

𝐗𝟎 ,…,𝐗𝐍 ,𝐆𝐩 ,𝜸∞
𝛾∞ s.t. (30) ∀(𝑔𝑝, 𝑔𝑣𝑝 ) (34)

ue to numerical issues, once an optimal upper bound 𝛾∗∞ is found
ccording to Eq. (34), it is convenient to recompute the values of
0,… , 𝑋𝑁 , 𝐺𝑝 employing Proposition 1 with fixed 𝛾∞ = 𝛾∗∞(1 + ℎ),
here ℎ is a percentage (Poussot-Vassal, 2008).

Remark 3. It is hard to determine exactly how dense needs to be the
grid space  ∈ 𝛺. An ad-hoc solution is to solve the design LMI problem
from Proposition 1, then check if stability and performances holds in a
much denser grid (Becker, 1996).

Remark 4. Note that in Theorem 1 the slack matrix 𝐺(𝜌) is assumed
to be parameter dependent but its structure is not given. One option is
to assume an affine dependency on the scheduling function

𝐺(𝜌) = 𝐺0 +
𝑁
∑

𝜃𝑛(𝜌)𝐺𝑛, (35)

𝑛=1

a

as the PDLM 𝑋(𝜌) in Eq. (11). However, given that 𝐺(𝜌) does not play 
an important role on the proof of system stability as 𝑋(𝜌) does, forcing a 
parametric dependency could lead to a conservative solution. To avoid
this conservatism, the slack matrix 𝐺(𝜌) in Proposition 1 is expressed
a set of matrices. This solution assumes a parameter dependency such
that

𝐺(𝜌) =
𝑃
∑

𝑝=1
𝜁𝑝(𝜌)𝐺𝑝 (36)

with

𝜁𝑝(𝜌) =

{

1, if 𝜌 = 𝑔𝑝
0, otherwise

(37)

here 𝑃 is the total number of grid-points in . This parameter depen-
ency means that for each grid point 𝑔𝑝 there exists a unique constant

slack matrix 𝐺𝑝.

3.3. Computation of the PDSF controller 𝐾(𝜌)

If a valid solution to the LMI problem from Proposition 1 exists,
then we obtain numerical candidate values for the PDLM 𝑋(𝜌) and
the slack variable 𝐺(𝜌). Note that with an existing candidate solution
for 𝑋(𝜌) and 𝐺(𝜌), applying the Extended DT BRL from Lemma 2 in
Appendix A.2 over 𝛯𝐶𝐿(𝜌) in (22), the BRL now results in an LMI with
(𝜌) as the only decision variable.

Let us assume a PDSF controller 𝐾(𝜌), according to Definition 2,
ith affine dependency on the scheduling functions 𝜃𝑛 and such that

(𝜌) = 𝐾0 +
𝑁
∑

𝑛=1
𝜃𝑛(𝜌)𝐾𝑛 (38)

The following proposition provides an LMI optimization problem
hat allows to compute the constant gains 𝐾0,… , 𝐾𝑁 for the PDSF
ontroller 𝐾(𝜌).

roposition 2. Consider a DT-LPV system 𝛯(𝜌), with parameter space
∈ R𝑚 gridded by a grid space  ∈ 𝛺 and assuming bounded parameter

ate of variation 𝜈 ∈ R𝑚 such that ∀𝑔𝑝 ∈  there exists a bounding polytope
𝑝 for 𝑔+𝑝 with 2𝑚 vertices 𝑔𝑣𝑝 ∈ 𝑝, and scalar 𝛾∞. Moreover, consider a
iven symmetric positive-definite PDLM 𝑋(𝜌) ∈ R𝑛𝑥×𝑛𝑥 , with fixed structure
s in Eq. (11), and a set of matrices 𝐺𝑝 ∈ R𝑛𝑥×𝑛𝑥 , both computed as the
olutions to Proposition 1. If there exists a PDSF controller 𝐾(𝜌) ∈ R𝑛𝑢×𝑛𝑥
iven by Eq. (38) such that ∀(𝑔𝑝, 𝑔𝑣𝑝 ) pairs the following condition holds

𝛹 (𝜃𝑝, 𝜃𝑣𝑝 ) + He

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

0
𝐵𝑢(𝜃𝑝)
𝐷𝑢(𝜃𝑝)

0

⎤

⎥

⎥

⎥

⎥

⎦

𝐾(𝜃𝑝)
[

𝐺(𝜃𝑝) 0 0 0
]

⎞

⎟

⎟

⎟

⎟

⎠

> 0 (39)

where

𝐾(𝜃𝑝) = 𝐊𝟎 +
𝑁
∑

𝑛=1
𝜃𝑝𝐊𝐧, (40)

(𝜃𝑝, 𝜃𝑣𝑝 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐺𝑇 (𝜃𝑝) + 𝐺(𝜃𝑝) −𝑋(𝜃𝑣𝑝 ) ⋆ ⋆ ⋆

𝐴(𝜃𝑝)𝐺(𝜃𝑝) 𝑋(𝜃𝑝) ⋆ ⋆

𝐶𝑧(𝜃𝑝)𝐺(𝜃𝑝) 0 𝛾∞𝐼 ⋆

0 𝐵𝑇𝑤(𝜃𝑝) 𝐷𝑇
𝑤(𝜃𝑝) 𝛾∞𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(41)

hen the closed-loop form of 𝛯(𝜌) is exponentially stable and 𝛾∞ is an upper
ound on its induced 𝐿2-norm, with control law given by 𝑢 = 𝐾(𝜌)𝑥.

roof. Proposition 2 is a direct application of Lemma 2, with gridding
elaxations as seen in Section 2 and with the SF control gains of 𝐾(𝜌)
s the only unknown variables on the LMI problem.



Fig. 2. Scaled Autonomous Vehicle Test Platform.

Consider the closed-loop dynamics 𝛯𝐶𝐿(𝜌) as in (22). Applying the
Extended DT BRL over 𝛯𝐶𝐿(𝜌) condition (24) is recovered. With a given
symmetric positive-definite matrix 𝑋(𝜌) and given slack variable 𝐺(𝜌),
assume that there exists a SF control gain 𝐾(𝜌) such that (24) holds true
according to Lemma 2. Applying the parameter grid and local variation
bounds approach for relaxations on 𝜌 and 𝜌+ in (24), results ∀(𝑔𝑝, 𝑔𝑣𝑝 )
pairs in condition (39). This concludes the proof. ■

Remark 5. It should be noted that there is no strict requirement for
𝑋(𝜌) and 𝐾(𝜌) to share the same parameter dependent structure, al-
though this represents the most straightforward solution. One possible
structure for the SF controller could simply be 𝐾 = 𝐾0. This represents
computing a constant robust SF controller gain 𝐾0 for the whole
parameter space 𝛺 which is obviously very conservative. Nonetheless,
this highlights that the PDSF controller (38) is in fact a parameter
dependent robust controller as the controller gains 𝐾0,… , 𝐾𝑁 are fixed
∀𝜌 ∈ 𝛺. For this reason, the choice of the parametric dependent basis
function 𝜃(𝜌) in Eq. (38) is a very important degree of freedom in the
synthesis process to achieve non conservative solutions.

4. Description and modeling of the scaled autonomous vehicle test
platform

4.1. Platform architecture

The Scaled Autonomous Vehicle (SAV) Test Platform at GIPSA-
Lab is a 1:20 scaled vehicle running in a Motion Capture room, see
Fig. 2, designed to test control and planning algorithms for autonomous
vehicles. The main components of the platform are the Motion Capture
System, a remote desktop PC and the SAV RC Car. The Motion Capture
system is an infrared Vicon Tracker system, capturing at a 100 Hz
frequency the position and orientation of the SAV on the track. The
SAV is a modified RC Car, equipped with two brushless DC motors for
longitudinal traction and a Servo Motor as the steering front wheels
actuator. Finally, the remote desktop PC runs the ROS2 software (Ma-
censki et al., 2022) to capture and process all the information from
the Vicon Tracker system and car sensors. It also executes the control
algorithms that are sent to the car via WiFi.

More details on the platform architecture and communications can
be seen on Fig. 3. The SAV is controlled by an Arduino RP2040
microcontroller board. The RP2040 board runs microROS, which is
used to both receive and send information with the remote PC. The
information sent to the remote PC are the IMU measurements, angular
speed readings from a dedicated hall-effect encoder for each BLDC
motors and the voltage and current measurements from the battery.
Fig. 3. SAV Platform Architecture and Communications.

On the other hand, it receives the set-points commands for the BLDC
motors angular speed and Servo Motor steering angle. It should be
noted that the RP2040 board acts only as communication transmitter
between the onboard sensors/actuators and the remote PC. Specifically,
within the scope of this work, the lateral control law is processed
remotely and only the communication with the Servo Motor is handled
onboard the SAV.

It is the task of the remote PC to handle and process all the data
and information coming from the multiple sensors on the platform. The
communication layer with the other platform components is handled by
the ROS2 software tool by means of subscriptions to the multiple nodes
and topics on the software. Importantly, there exist ROS2 libraries
that allow to directly access the information from the Vicon mocap
system. Whereas the WiFi communication protocol with the SAV is
handled automatically by ROS2, the engineering task in this case
reduces to subscribing and publishing the information on the ROS2
topics environment. The planning and control algorithm for the SAV
are also programmed on the ROS2 environment at the remote PC using
Python as the programming language. This is important as it means
that the complexity of the algorithms will not be affected by the limited
onboard memory and computing power on the SAV.

The Vicon Tracker connects to an interface PC, shown in Fig. 2 as
Vicon Interface, which is itself connected with the remote ROS2 PC.
The Vicon mocap system works by emitting infrared light, which is
reflected by small balls made of infrared reflecting material and which
are attached to the SAV. By using multiple infrared cameras, the Vicon
system can then detect the position and orientation within the track of
the SAV. The position detection by the Vicon system is done with a sub-
millimeter accuracy at a frequency of 100𝐻𝑧. The precision and low
noise from the position and orientation measurement obtained from the
mocap system enables smooth and accurate derivation of these signals.
As a result, the main signals used for vehicle control, e.g. yaw rate and
longitudinal and lateral velocities, are obtained from the derivative of
the orientation and position signals from the Vicon system. Note that
the signal processing is done remotely on the ROS2 PC.

4.2. Scaled autonomous vehicle dynamical modeling

In order to design model based control laws to be tested on the
SAV, a dynamical model is required. Within the scope of this work, the
main interest relies only on the SAV’s lateral behavior. A well-known
model to describe the vehicle lateral dynamics is the Bicycle Model (Ra-
jamani, 2011), denoted here 𝐵𝑀(𝑣𝑥) and given by the state-space
representation:

[

𝑣̇𝑦
𝜓̈

]

=

⎡

⎢

⎢

⎢

⎣
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𝑚

𝐶𝛼𝑓 𝑙𝑓
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⎤

⎥

⎥

⎦

𝛿 (42)

The states of the model are the vehicle lateral velocity 𝑣𝑦 and vehicle
yaw rate 𝜓̇ , both of which are measured on the SAV Platform. The
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Fig. 4. State Measurements and Identified Model Outputs (𝑣̂𝑦, ̂̇𝜓) for the First
Validation Dataset.

Table 1
SAV bicycle model parameters.

Parameter Value Units Description

𝑚 1.1937 kg Vehicle mass
𝑙𝑓 0.0691 m COG to Bicycle Model

Parameterfront wheels
distance

𝑙𝑟 0.1049 m COG to rear wheels distance
𝐶𝛼𝑓 8.8302 N∕rad Front wheel cornering stiffness
𝐶𝛼𝑟 9.7367 N∕rad Rear wheel cornering stiffness
𝐼𝑧 0.0094 kg∕m2 𝑧 Axis Inertia
𝜏 0.1784 s Pure input time delay

control input of the system is the steering angle at the front wheels
𝛿, which on the SAV is actuated by the front Servo Motor. However, in
practice the control input 𝛿 is affected by an input delay due to the WiFi
ommunication delays between the SAV and the Remote PC as well as
he processing time to interpret the command signal by the Arduino on
oard the SAV. For this reason, a better representation for the steering
nput in Eq. (42) would be 𝛿(𝑡 − 𝜏), with 𝜏 representing a pure input
ime delay. In the design of the PDSF controller, this input delay will be
gnored, in order to evaluate its performance in face of some important
nmodeled dynamics.

Note that the model state-space matrices depend on the longitudinal
elocity 𝑣𝑥 of the vehicle. If the longitudinal velocity is not assumed
o be constant, then the Bicycle Model becomes a pure LPV system
ith 𝑣𝑥 as its varying parameter, see Atoui et al. (2022). As in the

ase of the 𝐵𝑀(𝑣𝑥) states, the longitudinal velocity measurement is
lso available on the SAV platform. The rest of the model parameters
re either measured or identified, with values and description given in
able 1.

To identify the non measurable parameters given in Table 1, a non-
linear identification was carried. The identification method consists on

a Prediction-Error Identification one solving the following non-linear
Fig. 5. Model input (Up) and Varying Parameter (Bottom) for the First Validation
Dataset.

optimization problem (Tóth et al., 2012)

min
𝜔

‖𝑦 − 𝑦̂(𝛿, 𝑣𝑥)‖2, (43)

where 𝑦 is the stored vector of measurements, in this case both states of
the Bicycle Model. 𝑦̂(𝛿, 𝑣𝑥) is the computed open-loop output of the LPV
model (42) with stored input 𝛿 and varying parameter 𝑣𝑥. The vector
𝜔 = [𝐶𝛼𝑓 , 𝐶𝛼𝑟, 𝐼𝑧, 𝜏] ∈ R4 consist of the parameters to identify, which
represent the optimization decision variables.

The non-linear identification of the LPV model (42) for the SAV
is outside the scope and objectives of this work. However, in order
to illustrate the accuracy of the model which will later be used for
LPV control design, data from two validations datasets are shown in
the following. Figs. 4 and 5 show identification results from a first
validation dataset. On the other hand, Figs. 6 and 7 show identification
results from the second validation dataset.

The first dataset consists of data taken while the SAV was perform-
ing smooth maneuvers at high speeds 𝑣𝑥 ∈ (1, 1.8) m∕s, as can be
seen from the information on the steering angle input and longitudinal
velocity in Fig. 5. On the other hand, the second dataset was taken
while the SAV doing aggressive maneuvers at slow and moderate
velocity 𝑣𝑥 ∈ (0.4, 1.4) m∕s, with information on the abrupt changes
on steering angle and the longitudinal velocity in Fig. 7. Both of
these datasets are intended to push the limits of the SAV in terms of
remaining within the linear range of tire forces, where the assumptions
to obtain the LPV model (42) hold (Rajamani, 2011). This can be caused
by either aggressive lateral maneuvers or by high longitudinal speed
during cornering.

Nonetheless, as can be seen in Figs. 4 and 6, the output predictions
of the identified model captures very well the measured behavior
from the vehicle states. The identified model is specially accurate in
predicting the response of the SAV yaw rate measurement, which, as
will be seen in the next section, is the signal employed to achieve path

tracking of a desired reference trajectory.
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Fig. 6. State Measurements and Identified Model Outputs for the Second Validation
ataset.

. Lateral control of the scaled autonomous vehicle using a PDSF
ontroller

.1. Reference generation for path tracking

The objective of the control task is to achieve robust path track-
ng performance of a given trajectory. The trajectory that has been
onsidered for this work is the circuit shown in Fig. 8. The 𝑋 and 𝑌
oordinates that make the circuit have been sampled at 0.01 m intervals
nd all the coordinates data points stored as vectors on the Remote PC.

In order to generate the yaw rate reference signal 𝜓̇𝑟𝑒𝑓 that will
drive the low-level PDSF controller to track the given trajectory, the
Pure Pursuit Algorithm is used. This reference generation algorithm has
been selected for its simplicity of implementation, good performance
and simple tuning with only one parameter to modify (Coulter, 1992;
Paden et al., 2016). A brief description of the algorithm is given in the
following.

Consider a given configuration of the vehicle (𝑥, 𝑦, 𝜓)𝑇 , where 𝑥 and
𝑦 are the coordinates of the vehicle on the track and 𝜓 is the heading
angle in the inertial frame. Note that all of these variables are available
on the SAV platform provided by the Vicon Tracker system. Given a
look-ahead distance

𝐿 = 𝑡𝑝𝑣𝑥, (44)

where 𝑡𝑝 is the look-ahead time and 𝑣𝑥 the vehicle longitudinal ve-
locity, find a point (𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 ) on the reference trajectory such that
‖(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 ) − (𝑥, 𝑦)‖ = 𝐿. Compute the angle 𝛼 according to

𝛼 = arctan
( 𝑦𝑟𝑒𝑓 − 𝑦
𝑥𝑟𝑒𝑓 − 𝑥

)

− 𝜓 (45)

Then, the reference yaw rate signal to achieve path tracking is given
by

̇ =
2𝑣𝑥 sin 𝛼 (46)
𝑟𝑒𝑓 𝐿
Fig. 7. Model input (Up) and Varying Parameter (Bottom) for the Second Validation
Dataset.

Fig. 8. Reference Trajectory.

Note that the only tuning parameter on the algorithm is the look-
ahead time 𝑡𝑝 as seen in (44). For this work it has been considered a
look-ahead time value of 𝑡𝑝 = 1 s.

5.2. PDSF control problem formulation for path tracking on the SAV

In the PDSF controller design process, the first step is to grid the
varying parameter, in this case the longitudinal velocity 𝑣𝑥. For control
design purpose, it is assumed the following bounds 𝑣𝑥 ∈ [0.5, 2] m∕s
for the parameter range and |𝜈| ≤ 0.02 = 𝑎𝑚𝑎𝑥𝑇𝑠 for the maximum
rate of parameter variation between consecutive sampling instances,
where 𝑎𝑚𝑎𝑥 = 1 m∕s2 is the assumed maximum vehicle acceleration
and 𝑇𝑠 = 0.02 s is the sampling time at which the controller will
be implemented. For the gridding space , the varying parameter 𝑣𝑥
has been uniformly gridded at a constant interval of 0.01 m∕s. This
represents 151 grid-points on the parameter range from 0.5 m∕s to

2 m∕s.
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Fig. 9. Generalized Plant Scheme at grid-point 𝑣𝑥,𝑝.

From the chosen grid  of fixed grid-points, at each 𝑣𝑥,𝑝 we define
the reference tracking control problem on the ∞ framework by build-
ing a generalized plant 𝑃 (𝑣𝑥,𝑝) that includes the weighted performances
for tracking and actuator behavior (Zhou & Doyle, 1998). The chosen
scheme for the generalized plant at each grid-point 𝑣𝑥,𝑝 is given in
Fig. 9.

The exogenous inputs of the generalized plant 𝑃 (𝑣𝑥) are 𝑤 =
(𝜓̇𝑟𝑒𝑓 , 𝑑, 𝑛)𝑇 . 𝜓̇𝑟𝑒𝑓 is the yaw rate reference signal to be followed, 𝑑
represents an input disturbance and 𝑛 represents sensor noises in the
measurements from the signal 𝜓̇ . Note that the input disturbance 𝑑
at each grid-point is multiplied by the squared value of 𝑣𝑥, e.g. 𝑣2𝑥,𝑝.
This term is introduced to account for observed disturbance effects
on the SAV due to interactions between the lateral dynamics with the
longitudinal behavior, to which the vehicle is more sensitive at higher
speeds.

The vector of control performances is 𝑧 = (𝑧𝑒, 𝑧𝑢)𝑇 , with 𝑧𝑒 being
the tracking error performance and 𝑧𝑢 the actuator performance signal
respectively. The used weight 𝑊𝑒 to set the tracking specification is the
following:

𝑊𝑒 = 
(

𝑠∕𝑀𝑠 + 𝑓𝑏
𝑠 + 𝑓𝑏𝜖

)

(47)

Considering 𝑀𝑠 = 2, 𝑓𝑏 = 2𝜋0.3 rad/s and 𝜖 = 0.01. Meanwhile, the
weight 𝑊𝑢 used to specify the constraints on the control signal 𝛿 is:

𝑊𝑢 = 
(

𝑠 + 𝑓𝑏𝑐∕𝑀𝑢
𝜖𝑢𝑠 + 𝑓𝑏𝑐

)

(48)

Considering 𝑀𝑢 = 0.4, 𝑓𝑏𝑐 = 2𝜋10 rad/s and 𝜖𝑢 = 0.001. For both
weights 𝑊𝑒 (47) and 𝑊𝑢 (48) the discretization operator  has been
executed using the Tustin transform.

It is worth noticing the discretized Bicycle Model 𝐵𝑀𝑑 (𝑣𝑥,𝑝), as seen
in Fig. 9, is computed at each of the grid-point 𝑣𝑥,𝑝 as 𝐵𝑀𝑑 (𝑣𝑥,𝑝) =
(𝐵𝑀(𝑣𝑥,𝑝)), where in this case the  operator is executed using a
zero-order hold discretization.

Putting all these elements together the generalized plant can be
computed for a fixed speed grid point 𝑣𝑥,𝑝 according to the scheme in
Fig. 9 with the representation frozen LTI representation of 𝑃 (𝑣𝑥,𝑝) given
by

𝑃 (𝑣𝑥,𝑝) ∶=

{

𝑥+ = 𝐴(𝑣𝑥,𝑝)𝑥 + 𝐵𝑢(𝑣𝑥,𝑝)𝑢 + 𝐵𝑤(𝑣𝑥,𝑝)𝑤

𝑧 = 𝐶𝑧(𝑣𝑥,𝑝)𝑥 +𝐷𝑢(𝑣𝑥,𝑝)𝑢 +𝐷𝑤(𝑣𝑥,𝑝)𝑤
(49)

5.3. PDSF controller synthesis

With the generalized plant defined at each the grid-point 𝑣𝑥,𝑝 by
Eq. (49), then, the control problem is to find a PDSF controller 𝐾(𝑣𝑥)
such that the control law 𝛿 = 𝐾(𝑣𝑥)𝑥minimizes the induced 𝐿2-norm 𝛾∞
over the generalized plant 𝑃 (𝑣𝑥) and controller 𝐾(𝑣𝑥) interconnection,
as shown in Fig. 10, such that ∀𝑣𝑥,𝑝 ∈ 

‖𝑧‖2 ≤ 𝛾∞ (50)

‖𝑤‖2
Fig. 10. Generalized Plant and controller interconnection.

here 𝑥 = (𝑣𝑦, 𝜓̇ , 𝑥𝑒, 𝑥𝑢)𝑇 are the states of the generalized plant 𝑃 (𝑣𝑥),
ith 𝑣𝑦 and 𝜓̇ the states of the Bicycle Model (42) and 𝑥𝑒 and 𝑥𝑢 are

he states of the weights 𝑊𝑒 and 𝑊𝑢, respectively.
The existence of such a PDSF controller 𝐾(𝑣𝑥) can then be tested by

olving the LMI problem presented in Proposition 1 as a minimization
ver the scalar 𝛾∞. The parameter dependent structure that has been
ssigned for the PDLM 𝑋(𝜌) for this LMI problem is as follows:

(𝑣𝑥) = 𝑋0 +
1
𝑣𝑥
𝑋1 + 𝑣𝑥𝑋2 + 𝑣2𝑥𝑋3 (51)

his structure is chosen as it mimics all the ways in which the vary-
ng parameter 𝑣𝑥 appear in both the generalized plant 𝑃 (𝑣𝑥) and
orrespondingly the Bicycle Model 𝐵𝑀(𝑣𝑥). On the other hand, the
arameter dependent slack variable 𝐺(𝑣𝑥) has been chosen such that
or each grid-point 𝑣𝑥,𝑝 there exists a unique slack variable 𝐺𝑝 value, as
xplained in Remark 4.

Using the parser Yalmip (Löfberg, 2004) and the SDPT3 solver (Toh
t al., 2004), Proposition 1 can be efficiently solved. It is proved to be
easible with an optimal induced 𝐿2-norm found to be 𝛾∞ = 10.0184.

From the solution to Proposition 1, we now have numerical values
or the PDLM 𝑋(𝑣𝑥) and the slack matrix 𝐺(𝑣𝑥). Using these values,
e can solve Proposition 2 in order to compute the gains of a PDSF

controller as seen in Definition 2. With this aim, we select a PDSF
controller with the following fixed structure

𝐾(𝑣𝑥) = 𝐾0 +
1
𝑣𝑥
𝐾1 + 𝑣𝑥𝐾2 + 𝑣2𝑥𝐾3. (52)

Employing this choice of structure for the PDSF controller 𝐾(𝑣𝑥), Propo-
sition 2 can be solved with 𝐾0,… , 𝐾3 as the only decision variables to
be found.

Note that despite having a grid space  consisting of 151 grid-points,
the controller gains in (52) reduces to the four vectors 𝐾0,… , 𝐾3, with
each 𝐾𝑛 ∈ R4. In comparison, the usual grid-based LPV approach would
require an individual controller gain for each grid-point. Thus, the PDSF
controller solution allows to greatly save the memory space that will
be required for real-time controller implementation. Moreover, the fact
that the number of controller gains is chosen by the control designer
through the basis function that forms 𝐾(𝜌) and not by the number of
grid-points, allows one to grid the varying parameter space with a den-
sity that simply would not be feasible otherwise for controller synthesis.
At the same time, the real-time implementation of the controller 𝐾(𝑣𝑥)
is carried by directly implementing Eq. (52) in the software, without
requiring any interpolation of point-wise controllers.

5.4. Frequency analysis of the PDSF control design

A first validation of the controller design is carried out on the
frequency domain. With this purpose, we consider the closed-loop
interconnection between the generalized plant 𝑃 (𝑣𝑥) and the PDSF
controller 𝐾(𝑣𝑥), as illustrated in Fig. 10, evaluated at some frozen
values of the varying parameter 𝑣𝑥,𝑝 = (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) m∕s.
Note that this is just small sample of the 151 grid-points used for the
synthesis of the PDSF controller. However, it is enough to illustrate
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Fig. 11. Sensitivity Transfer Function 𝑆 = 𝜓̇𝑒
𝜓̇𝑟𝑒𝑓

versus tracking performance template 𝑊 −1
𝑒 (left) and Controller Sensitivity Transfer Function 𝐾𝑆 = 𝛿

𝜓̇𝑟𝑒𝑓
versus actuator performance

emplate 𝑊 −1
𝑢 (right) at frozen values of the varying parameter 𝑣𝑥.
he frequency domain response of the closed-loop alongside the whole
ange of the varying parameter.

In order to validate the yaw rate tracking error 𝜓̇𝑒 = 𝜓̇𝑟𝑒𝑓 − 𝜓̇
esponse to changes in the yaw rate reference 𝜓̇𝑟𝑒𝑓 , we compare the sen-
itivity transfer function 𝑆 = 𝜓̇𝑒

𝜓̇𝑟𝑒𝑓
with respect the employed tracking

rror template 1∕𝑊𝑒, with weight 𝑊𝑒 given in Eq. (47). Meanwhile, the
alidation of the constraints of control signal 𝛿 response to changes in
he yaw rate reference signal 𝜓̇𝑟𝑒𝑓 is done by comparing the controller
ensitivity transfer function 𝐾𝑆 = 𝛿

𝜓̇𝑟𝑒𝑓
with respect the control action

template 1∕𝑊𝑢, with weight 𝑊𝑢 given by Eq. (48). From the frequency
response results shown in Fig. 11, it can be seen that both design
requirements for the controller 𝐾(𝑣𝑥) are satisfactorily fulfilled for the
whole range of values that was consider of the varying parameter 𝑣𝑥 in
the PDSF design.

6. Experimental results

The real-time implementation of the PDSF controller is realized in
the remote PC from the SAV test platform. As mentioned previously in
Section 4, the system states, e.g. 𝑣𝑦 and 𝜓̇ , as well as the value of the
varying parameter 𝑣𝑥 are available online from the data measured by
the Vicon Tracker. Then, with the gains of the PDSF controller 𝐾(𝑣𝑥) de-
signed and computed as described in Section 5.2 and in Section 5.3, the
control law 𝛿 = 𝐾(𝑣𝑥)𝑥 for the SAV steering can be easily implemented
n the ROS2 environment of the SAV platform, with 𝐾(𝑣𝑥) given by
52).

The test scenario to demonstrate the path tracking performance
f the SAV with PDSF steering controller consists in driving the SAV
utonomously on the circuit from Fig. 8 at varying speeds. The speed
rofile used during the test can be seen in Fig. 12. Recall that the 𝑣𝑥
peed profile, shown in Fig. 12, also acts as the varying parameter for
he controller 𝐾(𝑣𝑥). Figs. 13 and 14 present the tracking performance

for the reference yaw rate and the control signal, respectively.
Fig. 13 shows in black the yaw rate reference 𝜓̇𝑟𝑒𝑓 generated by the

Pure Pursuit algorithm, see Section 5.1, as the SAV moves through the
track, in blue it is given the measured yaw rate by the Vicon Tracker
system for the SAV during the test. In Fig. 14, the commanded steering
angle 𝛿 computed by the PDSF controller 𝐾(𝑣𝑥) is presented.

In order to better visualize the path tracking performance of SAV
when using the PDSF controller, Fig. 15 presents information regarding
the followed trajectory by the SAV during the test on the 𝑋 and 𝑌
coordinates of the track. On the left of this figure, the reference circuit
in black and the trajectory followed by the SAV during the complete test
is represented. Note that in order to better identify the multiple laps
the SAV has done around the circuit, the followed trajectory is color
mapped with the instantaneous longitudinal velocity, corresponding
with the information given in Fig. 12. On the right side of this figure,
it is given in black the reference trajectory and with blue triangles the
orientation and position of the SAV, with the orientation and position
taken from a time window of the test from 𝑡 ∈ [40, 50] s. Note from
Fig. 12 that this time window coincides with a lap made by the SAV at
high speeds.

From the results of the test, we can conclude that with the PDSF
controller 𝐾(𝑣𝑥) (52) the SAV achieves very satisfactory path tracking
performances. From Fig. 13, it can be seen that the controller is able to
track the given reference signal while providing a control signal that is
smooth for all the range of speeds seen during the test, as demonstrated
by the steering command in Fig. 14. In can be noticed in Fig. 13
the effect of the pure input delay that was ignored during synthesis
of the controller. It is well known that unaccounted system delays
can lead the closed loop to produce unstable behaviors, despite that,
the PDSF controller 𝐾(𝑣𝑥) is able to maintain the vehicle stable and
with acceptable reference tracking performance, proving the controller
stability in face of critical unmodeled dynamics.

However, it should be noted that at higher speeds, for 𝑡 ∈ [40,55] s,
it can be seen in Fig. 13 that some oscillations appear in the yaw rate
signal 𝜓̇ after fast changes on the reference. This is a known issue on
the platform, caused by the interaction with the longitudinal dynamics
of the vehicle due to the behavior of the dual BLDC motors, which
can cause a disturbance torque on the lateral dynamics if their speeds
diverge from each other. To attenuate this disturbance effect, higher at
larger speeds, it was introduced during the controller design the term
𝑣2𝑥,𝑝 on the input disturbance, see Fig. 9.

The tracking performance can specially be verified in Fig. 15 (left).
It can be seen how the trajectory of the SAV during multiple laps
overlap with each other almost perfectly, even though there exist an im-
portant variation in speed during the complete test. This demonstrates
that while being very simple to implement, the PDSF controller allows
for a consistent performance throughout the considered parameter
space for 𝑣𝑥. Moreover on Fig. 15 (right), during the evolution of the
SAV position and orientation there is no noticeable evidence of sliding
during trajectory even at high speed, meaning that the PDSF controller
can cope with demanding situations while keeping the stability of the
system.

7. Conclusions

This paper has proposed LMI conditions for the computation of
PDSF controllers. Although imposing a parameter dependent structure
with fixed gains on the controller could lead to a conservative solution,
it has been seen throughout the paper the advantages of the PDSF
control approach. First of all, the resulting controller is straightforward



v

Fig. 12. Longitudinal Velocity of the SAV during the test.
Fig. 13. Yaw rate reference (black) and SAV yaw rate (blue) during the test. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
Fig. 14. Steering command computed by the PDSF controller.
Fig. 15. Reference trajectory and actual vehicle trajectory color coded with the instantaneous longitudinal velocity (left). Reference Trajectory and position and orientation of the
SAV during a lap done at high speed at 𝑡 ∈ [40, 50] s (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
to implement as it is self-scheduled based on the imposed parametric
basis function (no online interpolation is required) and lightweight on
the required memory space. On the other hand, the Parametric LPV syn-
thesis approach allows to use very dense grids on the parameter space
without increasing the number of controller gains to be implemented,
something which is desirable when using grid-based LPV approaches in
order to obtain better stability and performances guarantees.

The performance of this control strategy has been tested on an
Scaled Autonomous Vehicle for the task of trajectory tracking showing
good path following performances. This has been achieved with a PDSF
controller that only required four controller gains to be implemented,
despite using 151 grid points for the synthesis step. The found con-
troller provided a satisfactory tracking of the desired reference signal
for the whole range of the parameter space of varying parameter.
This was achieved in spite of unaccounted model uncertainties as the
presence of actuator input delays. Future works could be carried with
an emphasis on the SAV application example. These studies can further
improve the results for the path following problem use case for which

the PDSF controller has been shown here. Moreover, these studies
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could be used to provide a deep comparison of the PDSF framework 
introduced in this work with other LPV and control approaches.
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Appendix. Useful literature results

In this section we collect some existing results and lemmas on the
literature which are used for the development of the results presented
on this work.

A.1. Projection lemma

The following lemma, known as the Projection Lemma or Elim-
ination Lemma in the literature, is the key lemma that allows the
computation of Parametric LPV controllers.

Lemma 1 (Projection Lemma). Given a symmetric matrix 𝛹 ∈ R𝑚×𝑚 and
two matrices 𝑁 ,𝑀 of column dimension 𝑚, consider the problem of finding
some matrix 𝛩 of compatible dimensions such that

𝛹 +𝑁𝑇𝛩𝑇𝑀 +𝑀𝑇𝛩𝑁 > 0. (A.1)

Denote𝑀 ,𝑁 any matrices whose columns form bases of the null spaces
of 𝑀 and 𝑁 respectively. Then (A.1) is solvable for 𝛩 if and only if
{

 𝑇
𝑀𝛹𝑀 > 0

 𝑇
𝑁𝛹𝑁 > 0

(A.2)

A.2. Induced 𝐿2-norm performance

Consider a LPV system:

𝛯(𝜌) =

{

𝑥+ = (𝜌)𝑥 + (𝜌)𝑤

𝑧 = (𝜌)𝑥 +(𝜌)𝑤
(A.3)

where 𝑥 ∈ R𝑛𝑥 is the state vector, 𝑢 ∈ R𝑛𝑢 are the control inputs,
∈ R𝑛𝑤 are the exogenous inputs with bounded energy such that
∈ 𝐿2 and 𝑧 ∈ R𝑛𝑧 are the exogenous outputs. The induced 𝐿2-norm

or 𝛯(𝜌) is defined as

sup
(𝑘)≠0

‖𝑧(𝑘)‖2
‖𝑤(𝑘)‖2

(A.4)

An upper bound 𝛾∞ on the induced 𝐿2-norm of 𝛯(𝜌) can be com-
puted according to the following Extended Discrete-Time Bounded
Real Lemma (DT BRL). Note that extended versions of the DT BRL
for time varying systems have been well studied in the literature,
see Daafouz and Bernussou (2001b), De Caigny et al. (2010), Pandey
nd de Oliveira (2019) and references therein.
emma 2 (Extended DT Bounded Real Lemma). If there exists bounded
atrices 𝐺(𝜌) ∈ R𝑛𝑥×𝑛𝑥 and 𝑋(𝜌) = 𝑋𝑇 (𝜌) > 0 such that

𝐺𝑇 (𝜌) + 𝐺(𝜌) −𝑋(𝜌+) ⋆ ⋆ ⋆

(𝜌)𝐺(𝜌) 𝑋(𝜌) ⋆ ⋆

(𝜌)𝐺(𝜌) 0 𝛾∞𝐼 ⋆

0 𝑇 (𝜌) 𝑇 (𝜌) 𝛾∞𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

> 0 (A.5)

hen 𝛯(𝜌) is exponentially stable and ‖𝑧(𝑘)‖2
‖𝑤(𝑘)‖2

≤ 𝛾∞.
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