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Abstract

Cyber Physical Systems (CPSs) refer to control systems which are composed
of sensors, actuators, computers and network components. These systems are
vulnerable to unforeseen failures and external malicious attacks. In this paper,
we analyze the stability of CPSs under stochastic deception attacks. To this
end: i) we propose a statistical framework for detection of deception attacks in
CPSs; ii) identify the place of such attacks by taking advantage of a novel cryp-
tographic adversarial model; iii) as an extra effort, put together an intelligent
deception attack; and finally, iv) based on the real-time data and characteriz-
ing the imposed deception attacks by an Intrusion Detection System (IDS), we
analyze the effect of both intelligent and blind/random deception attacks on
the stability of CPSs. We do this through a Markov chain modeling and subse-
quently extract the sufficient stability conditions. We validate our findings by
illustrative examples at the end of the paper. Our results show that proposed
IDS can detect deception attacks with low false positive and negative rates in
real time. The results also confirm the validity of the theoretically-predicted
stability conditions.

Keywords: Cyber-Physical Systems, Deception Attack, Markov Jump Model,
Stability Analysis, Intrusion Detection System, Switching System.

1. Introduction

Cyber-physical systems (CPS) consist of both computational/control centers
and physical processes, connected by communication networks such as Internet.
Using the communication networks, make these systems suffer from specific vul-
nerabilities which do not affect classical control systems. Therefore, the security
of such real-time systems requires a comprehensive perception of network secu-
rity [I], control theory, and system dynamics [2] which in turn necessitates the
development of appropriate information security and control system analysis
techniques. Recently, the cyber attacks on CPSs, especially those employed in
critical infrastructures, have drawn the attention of researchers to the risks in
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this area [3H6]. In many cases, classical information security services such as
confidentiality and data integrity are used for the protection of CPSs in critical
infrastructure [7), [8]. Data confidentiality can be achieved by encryption algo-
rithms and a key shared between sender and receiver. Data integrity service
can also be provided by using keys and one-way hash functions which produce
fixed-size hash codes. Although these security services boost the security of
CPSs, they are ineffective against some types of cyber attacks.

Control data and sensory data are sometimes transmitted over networks. By
finding the encryption key, an attacker can compromise the forward or back-
ward link [9] (the data stream from controller to physical system or vice versa)
and change the content of them through deception attacks [10]. Deception at-
tacks consist of malicious interventions that are done in control loop to reduce
the efficiency of physical process or destabilize the system by violating data
integrity. In a more complex attack, that is introduced in [II], as controlled
data injection, the attacker drops the original data and sends bogus data to
the destination. In order to have more destructive effect, the attacker might
inject data stochastically. This randomness causes many switchings between
attack and non-attack modes which deprives the chance of compensation from
the controller and potentially makes the system unstable. In this taxonomy,
sometimes the bogus data injection in the closed-loop is done without having
prior knowledge about the CPS, and sometimes, in order to achieve a desired
behavior on the physical system, they are generated intelligently by gathering
information about the system behavior and design. Study of deception attacks
in CPSs has received increasing attention in the last few years. For instance,
a covert deception attack for service degradation is proposed in [I1], which is
designed based on the intelligence information gathered by system identifica-
tion attack. The authors of [12] study three kinds of stealthy deception attacks
based on the attackers’ ability in compromising the sensors and/or actuators of
the system. Furthermore, [I3] [14] focus on analyzing system’s response during
false data injection attacks on CPSs.

In order to promote the security of CPSs, using another safeguarding ap-
proach (i.e. intrusion detection system (IDS)) is essential. IDSs are a comple-
ment to security services including confidentiality and message integrity. Em-
ployment of IDS for CPSs has gained considerable attention since attacks can
cause CPS failures [IBHI7]. The authors of [I8] propose a specification-based
anomaly detection framework using the information provided by some compo-
nents in power systems. In [I9] and [20], rule-based intrusion detection algo-
rithms are developed, and [21] proposes an artificial intelligence approach for de-
tection, estimation and compensation of attacks in nonlinear CPSs. In contrast
to these model-based methods, some works introduce real time threshold-based
approaches that have less computational complexity. For instance, in [22], a x>
failure detector is used for intrusion detection. The detector is instructed to
trigger an alarm when a quadratic distance measure exceeds from a pre-defined
threshold. It is assumed that this distance measure has the x? distribution.
In the same fashion, the authors of [23] use a dynamic procedure for change
detection. They introduce the cumulative sum method, which employs the dis-
tance measure history. The alarm is triggered for the sample times in which
the cumulative sum goes beyond the threshold. Another threshold-based detec-
tion framework is proposed in [24]. This is done by monitoring the expected
alarm rate associated with consecutive changes to deal with hidden sensor at-
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tacks. This method uses a pseudo-window to monitor the estimated alarm rate
at run-time. In addition to these, paper [25] and its multi-sensor version [3]
utilize a secure data transmission module using the pseudo-random number as
a watermarking in the backward link, so that it can help the x? detector to rec-
ognize undetected linear deception attacks. The advantage of these two works
compared to the above-mentioned threshold-based ones is that they work well
in recovering attacked data, but the disadvantage of all the mentioned methods
is that they can not bring us the correct statistics of the stochastic attacks.

Cyber attacks that stochastically exploit the system vulnerability, will turn
the closed loop control system into a stochastically switched one that has both
normal and attacked modes. Sometimes switching between some modes makes
the system unstable. Hence, stability analysis of CPSs under switching attacks
is one of the popular subjects in the security analysis of CPSs. The authors
of [26] are concerned with the secure and stable control problem for a class of
discrete-time stochastic nonlinear systems under deception attacks. Stability
of CPSs under DoS attacks is investigated in [27]. In this work, necessary and
sufficient conditions for the stability of closedloop systems that are under attack
are provided. In [28], by introducing a time-variant Lyapunov-Krasovskii func-
tion, a sufficient condition is derived to design controllers so that exponential
stability is guaranteed under cyber attacks. Moreover, reference [29] shows that
linear stochastic systems are exponentially almost surely stable (EAS-stable) if
and only if their transition matrix is averagely contractive over a finite time
interval.

To simulate mode mutation in a system with random changing, Markov
Jump Systems (MJS) are commonly used for modelling [30H32], since MJSs can
represent physical systems with abrupt changes in both structure and parame-
ters [33, B4]. A sliding mode control problem for a class of CPSs is investigated
in [35]. This study models system as a Markovian jump CPS. It is assumed that
the control input data are transmitted via a communication network in which
adversaries may inject false data into the control signals in a stochastic manner.
In [36], an event-triggered control problem for the networked Markovian jump
systems subject to deception attacks is studied. In this paper, it is believed that
deception attacks cause asynchronous switching. Based on the variations be-
tween two consecutive states, a switching-like event-triggered scheme is formed
and sufficient conditions are derived to ensure the mean-square exponential sta-
bility for such systems.

Although there are many studies focusing on attack analysis in CPSs [37-
39, there are not many works that identify attacks in real time and predict their
effect on system stability. In an intrusion case, only detecting the abnormality
is not enough and determining whether the attack needs a reaction or compen-
sation is also important. A prominent security issue that requires response in
CPSs is instability. Stochastic deception attacks are complex, and further re-
search in this area is needed. Determining the rate and the place of attack are
helpful in analyzing the effect of attack on system stability. Motivated by the
above, this study tends to use classical network security and control theories to
identify stochastic cyber attacks and analyze their effects on a dynamic real-
time CPS. In this paper, we first propose an anomaly-based IDS which tries to
model the process or plant normal behavior locally, and compare the model and
original plant outputs (by residual error and applying detection thresholds). It
also determines the location of attack by using an adversarial model based on
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cryptographic tools such as hash functions and message authentication codes.
The purpose of this IDS is to detect as many intrusions as possible with mini-
mum number of false alarms and to spot their locations in the shortest possible
time. The proposed IDS provides information about the attacks probabilities
(or the stationary distributions) and the place of them, that are useful in an-
alyzing attack effects on CPSs. We assume that the attacker, on the forward
or backward communication channel, stochastically changes the original data
and sends fake data towards the destination instead. In fact, a specific share of
received data at the destination is the attacker’s data that are either generated
by knowing the state of the system or without knowing that. In the former
case, the false data injected by attacker are generated without prior knowledge
of the CPS model/state and they are practically random. In the latter one, the
forged data are generated intelligently in an optimal way by gathering informa-
tion about the system. In this case, the attacker uses a control law that acts
against the CPS controller and tries to maximize a quadratic cost function.

To study the effect of attacks on system stability, we suggest modeling the
system under attack as a Markov jump linear system whose stationary distribu-
tion is provided by the proposed IDS. Afterwards, we find sufficient stability con-
ditions in order to determine the boundaries for the probabilities of attacks (or
the volume of attacks) under which the attacked system remains stable. To this
end we consider the evolution of system states over many transitions. To eval-
uate the proposed scheme, we conduct a set of simulations in Matlab/Simulink
for some examples. The simulation results approve the validity of the theoretical
analyses. The paper contributions can be summarized as follows:

1) First, we describe and model CPSs under stochastic attacks. In the
context of CPSs and attack scenarios, our system is modelled using a Markov
jump system representation, and for the prototypical deception attacks as a
special case. Additionally, in this section we describe the network transmission
mechanism.

2) Then, an intrusion detection algorithm with a method to identify the
attack location is proposed. This algorithm is capable of detecting deception
attacks in real time with low false positive and negative rates.

3) Next, we find two sufficient stability conditions in the process of analyzing
the effect of detected attack on system stability. These conditions depend on
the attack information obtained by the intrusion detection algorithm (i.e. the
probability and location of attack) and check whether attack will make the
system unstable or not. As an additional effort, an intelligent attack is designed
whose objective is to find an optimal control law that aims at destabilizing the
system in a short period.

The rest of the paper is organized as follows. The model description and
problem setup are given in Section 2. In Section 3, the proposed intrusion
detection and identification method is discussed. Sufficient conditions for system
stability are derived in Section 4. In order to check the validity of the theoretical
developments, an application with a DC motor as the plant is studied in Section
5 . Finally, some concluding remarks are made in Section 6.

2. Problem Setup

In this section, we present a mathematical model to describe the dynam-
ics of a CPS subject to cyber attacks and explain network data transmission
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Figure 1: A simple form of closed loop CPS.

mechanism. We consider a discrete-time linear CPS under deception attacks.
Deception attacks on CPSs may take place on the controller and/or on its com-
munication channel. Assuming the controller is secure, these attacks affect the
forward and/or the backward data channels.

2.1. Normal system dynamics

In this study, we use a linear time-invariant (LTI) discrete control system
model. Such a simplified model is useful for studying fault and attack detection
as well as stability analysis. Model of a sample linear discrete time system in
benign mode with state-feedback controller is presented in Fig. [T} is given as,
z(k+1) = Az(k) + Bu(k) (1)
y(k) = Ca(k)

where z(k), u(k) and y(k) are the system state, control signal and measured
output for the kth sample, respectively. The matrices A, B and C are the state,
input and output matrices. Since in our scenarios only the measured outputs
are sent to the controller, an observer is included in the loop together with the
controller such that using the measured outputs, it can estimate the system
state. This information is required for the state feedback controller to generate
the control actions.

u(k) = (i (k)) (2)

In the above, u is the mapping function of the state feedback controller, and
Z(k) is the state estimated by the observer. In our case, an observer with
Luenberger structure is used [40]. It can make the estimated error approach
zero asymptotically.

e(k) = w(k) — &(k) 3)

By considering that the error converges to zero, we will have &(k) ~ z(k).
Hence, equations and can be rewritten as:

{x(k +1) = Az(k) + Bu(k)
u(k) = p(z(k))
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2.2. System dynamics under cyber attack

Stochastic cyber attacks make a CPS behave as a switching system. A
switching system is a dynamic system consisting of a number of modes as well
as a switching signal r(k) that determines which mode is activated at any time.
In our system, one of the modes is related to the normal state, and the other
is created by an attack on the communication channel. Even if both modes or
subsystems are stable, switching between them could still cause instability. It
means that the stability of subsystems does not necessarily reflect the stability
of the whole system. Consider the attack occurs along the forward channel. If
the adversary discards the original packets and sends new ones, then, the system
equation will be:

x(k+1) = Az(k) + Bu'(k)

iy = [0 =tk if (k)
walk)=8(k) if r(k)

0 (5)
1

In the above, u(k) is the control signal sent by the controller. In this paper,
a state feedback controller is employed (as function p(.) to calculate the control
signal. u/(k) is the control signal received by the physical system and (k)
denotes an alternative data generation function used by the attacker to generate
the new control data to be sent to the plant. r(k) € {0,1} is the switching
signal and indicates the status of the packet/signal delivery. In case r(k) = 0,
the system is normal and the plant receives the data sent by the controller,
otherwise the received data are generated by the attacker.

Since Markov jump systems can effectively model physical systems with
abrupt mutations, our above switching system can be described as a discrete-
time Markov jump linear system (MJLS).

z(k+1) = Agyx(k) (6)

where the process r(k) is a finite-state Markov stochastic jump taking values
from a finite set S = {0, ..., d}. Transition probabilities of that is Pr{r(k+1) =
Jjlr(k) =i} = ¢;j, where ¢;; is the transition rate from mode ¢ at sample time k
to mode j at sample time k+1. Let ¢;; = — Z;lzo,j#i ¢i; and Q = [g;;], by an ini-
tial probability distribution o = |7, To1, ..., T0a]* , Where mo; = Pr{r(0) = i},
then, the probability distribution m = [Pr{r(k) = 0}, ..., Pr{r(k) = d}]* sat-
isfies the differential equation 1 = Q7 m,. Assuming that the Markov chain
r(k) is irreducible aperiodic or ergodic, there is a unique invariant distribution
7 = [T @1 ... Ta|T which 7, converges to for any 7y and vector 7 is called the
steady state probability of the ergodic form process r(k). In our case, the value
of dis 1, i.e. r(k) switches between two modes 1 (attacked) and 0 (non-attacked).

2.3. Secure transition mechanism

The most important security services in data transition in CPS are data in-
tegrity and confidentiality. A secure transmission mechanism, which guarantees
message integrity by using hash functions and confidentiality by using encryp-
tion algorithms, is shown in Fig. [2] As shown in this figure, a sender provides
a plain text message (M) as the input to the hash function that generates a
unique hash code which is concatenated with M,. Then, it can be encrypted
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Figure 2: A secure transmission mechanism.

by encryption algorithms and shared keys, and sent to the destination. At the
destination, that incoming data packet is first decrypted and the hash function
is applied to the message again in order to calculate the digestion. If the result
is equal to the appended hash code of incoming data packet, the message is
considered authentic. Otherwise, the message is discarded.

3. The Proposed Intrusion Detection and Identification Method

In this section, the proposed methods for detecting cyber attacks and iden-
tifying their location are presented.

3.1. Intrusion detection

The solution for intrusion detection that is proposed here is based on placing
an identifier, using the mathematical model of plant, on the controller side.
We first consider a secure phase for the closed-loop system during which the
dynamics of the normal system is identified and modeled. In fact, it is assumed
that the system starts from a secure phase, let us say [0 — T, during which no
attack happens. By the end of this phase, we have gathered enough information
for intrusion detection. After this phase, we monitor the system behavior and,
if the residual, i.e., the difference between the model output and the received
output by IDS, exceeds a threshold, an anomaly is detected. This threshold
can be set by analyzing the collected information during the secure phase. The
proposed scheme can be seen in Fig. [3| and Algorithm I. In the algorithm, we
compare the statistics of two time-series; the first one is related to received
output by IDS (Y) and the other one is related to model output (Yas). As
a result of this comparison, the residual vector can be generated. Assuming
that the vector of residuals has a Gaussian distribution, detection thresholds
are defined as p + Jo where J and o are the Gaussian mean and standard
deviation of residuals, respectively, and J is a constant which depends on system
sensitivity. J should be chosen based on false positive and false negative values.

3.2. Identifying the Location of Intrusion

Cyber attacks may occur in the forward or backward communication chan-
nel. Attacks in both channels may have adverse effects on the output of physical
system and it is important to determine in which link they have occurred. Iden-
tifying the location of attacks is useful for compensation and control processes,
as well as analyzing the effects of attacks on physical system. This is achiev-
able by an adversarial model based on cryptography, hash functions, and an
additional sensor. We use an additional sensor on the physical system side as
shown in Fig. [3l Suppose all data streams (forward and backward channel data,
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Figure 3: Proposed adversarial model schema to intrusion detection and identification.

as well as the second sensor data) are protected with different encryption keys
such that integrity and confidentiality services are provided. The attacker who
is going to inject false data in the channels, must compromise the keys then.
We assume that the attacker can compromise at most one key in our adversarial
model. It can be shown that it is possible to determine the location of the attack
precisely if this assumption holds. It is reasonable to assume that an attacker
acquires only one key at a time, because if the attacker obtains two different
keys simultaneously, he/she can intercept the controller and the physical system
and pretend to each one that he/she is the other. The schema of the adversarial
model is shown in Fig. [3] and its functionality in Algorithm 1.

Remember the secure transmission mechanism of Fig. [2| The controller and
the plant use this mechanism in forward and backward communication links.
They use three shared (secret) keys to protect their data streams (i.e. forward
and backward streams plus the information submitted by sensor 2). In Fig. |3]
the control data stream in the forward channel is protected using the key Kj,
and the measured output in the backward channel with the key Ks. In our
model, the received data hash code is recorded by sensor 2 at the plant side and
is sent to the controller to be used in the intrusion identification process. This
data is protected by K3, as shown in Fig. [3| By considering these, we can now
explain the proposed attack place identification process.

Controller and plant send and receive data through a communication net-
work. As we can see in Algorithm 1, they have a data sender and a data receiver
unit. The sender unit calculates the hash code of data, concatenates the data
with its hash code, encrypts the result with the corresponding encryption key,
and sends the data packet to the destination. Then, the receiver unit receives
the data packet (which can be the original data packet or one that is generated
by the attacker).

Algorithm 1. Intrusion detection and identification.

***Secure transmission in proposed adversarial model***



Controller data sender: Plant data sender:

1. hashy <— HashFunction(u(k)) 7. hashy < HashFunction(y(k))
2. Buf fer(hashy) 8. Moutput < Encrypt(y(k)||hashsa, K2)
3. Meontror — Encrypt(u(k)||hashy, K1) 9. My, + Encrypt(hashy, K3)
4. Send(Meontrot) 10. Send(Mouiput), Send(Mp)
Plant data receiver: Controller data receiver:
5. Receive(M,  ..01) 11. Receive(M}, ), Receive(M;)
6. (ul(k)”hG’Sh/l) A Decrypt(Méontroh Kl) 12. (y/(k)”haSh/Z) A Decrypt(M(;utputv KQ)

13. hashy < Decrypt(M;, Ks3)

***Intrusion detection and intrusion place identification***
LR« [y(1) —yn(1),y(2) = yn(2), -, y(T) — yma (T)]

2. p < mean(R), o « std(R)

3. )\high<_/~L+J07 )\low<—,U,—JO'

4if (Y (k) =y (k) > Anign - OR - (y' (k) = ynr (k) < Aow

5. if hashy # hash{

6. r(k) =1, AttackPlace + ForwardLink

7. else

8. r(k) =1, AttackPlace < BackwardLink
9. endif

10. else

11. r(k)=0

12. end if

Notations:

|| : Concatenation, Std : Standard deviation

In Algorithm 1, the controller calculates the hash code of the control signal
(hashy) and buffers this code to be used in the intrusion detection process. It
encrypts (u(k)||hashy) with K; and sends it out as a packet (which we refer to as
Meontrot)- The plant receives the control packet M/ . . (which may be different
from Montror due to an attack). It decrypts the packet and uses the embedded
control signal. In the sender unit of the plant, the measured plant output is
hashed, encrypted and sent back to the controller. Moreover, the hash code of
the received control packet is recorded by sensor 2, encrypted with K3 and sent
to the controller. In the IDS, if the difference between the received plant output
and the model output exceeds a threshold, the presence of intrusion in forward
or backward channel is detected. If the hash code received by the controller is
different from the buffered one, it can be deduced that the attack has happened
in the forward link and accordingly, K; has been compromised, otherwise it has
happened in the backward channel and K3 has been compromised. In the case
that the residual of the received plant output and the model output is within
the thresholds, but the hash code received by the controller is different from
the buffered one, K35 must have been compromised. The other possibility could
be that two or three keys have been compromised simultaneously, but since we
have assumed only one key can be compromised at a time, this option is ruled
out.
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4. Stability Analysis

Stochastic cyber attacks make a CPS behave as a switching system, with
a switching signal that is continually switched between different modes. Our
goal is to analyze system stability under these switches and propose sufficient
conditions for stability of a system under stochastic deception attacks. As we
mentioned before, in the present taxonomy, sometimes injected false data are
generated without a previous knowledge of the CPS model and they are ran-
dom. On the other hand, sometimes injected packets are generated intelligently
after gathering information about the system. We extract sufficient stability
conditions in presence of both of these two switching systems.

Assumptions

1) In both attack cases, we assume that attack occurrence (i.e. the replace-
ment of packets) follows a Bernoulli distribution with a probability of p. p
can be estimated by using the proposed intrusion detection and identification
schema.

2) Random attack is applied as a uniformly distributed multiplicative coef-
ficient.

3) Intelligent attack employs as an optimal control law based on Linear
Quadratic Regulator (LQR) [41] to destabilize the system (presumably in a
short period).

Definition 1. According to [30, BI], the system is EAS-stable if and only
if A = E(\) < 0 where, A = limj_,o0 supzIn||¢(0,k)|| is the top Lyapunov
exponent [42], ¢(to,t1) is the state transfer matrix over the interval [ty, o], F
and |.|| denotes expectation and norm respectively.

Proposition 1. System @ is AS-stable if, for some integer m > 0 we have,

Ez[In||¢(m,0)[] <0 (7)

in which E7 is the expectation operator with respect to 7, as a steady state
probability of r(k).

Proof: See the Appendix.

In this section, using the above definition as well as the proposition, we
will introduce two new sufficient conditions for AS-stable CPSs under stochas-
tic deception attacks. Since ergodicity conditions for an attack with Bernoulli
distribution is satisfied, it has a steady state probability and we can consider
Proposition 1 to find sufficient the stability conditions for CPSs under both
random/blind and intelligent attacks. The key idea here is to consider the evo-
lution of the state x(k) over m transitions, and to investigate that the system
is converging, averagely over that time interval.

4.1. Stability condition for random deception attack

Proposition 2. The closed loop system of , with multiplicative uniform
random attack in the interval [a, b] on forward channel is AS-stable if there exists
some finite integer value like m > 0, such that the following condition holds:

1 b
(1= pymdn( dol)) + prm.— / In(||A - BK.i[)di < 0 (8)

a

10
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where a and b are the minimum and maximum values that can be multiplied by
the control signal and results a value in the acceptable rang of plat input.
Proof: The state feedback controller of can be formulated as follows:

(9)

o () = u(k) = —-Kx(k) if r(k)=0
ua(k) = 6(k) if r(k)=1

We assumed the attack occurs in the forward link. The attacker generates and
sends random data as control signals. In this case, the original control data
u(k) = —K.x(k) is the only information that the attacker has about the closed
loop system, so he/she uses this information. Therefore, the switching system
can be modelled as follows:

(A — BK,)z(k) if r(k)=0
1

(A— BK. f(k)z(k) if r(k)= (10)

x(k‘—l—l):{

where f(.) is a random data generator and the switching signal r(k) shows the
existence or absence of attack. By considering the probability of attack p and
the state transfer matrix property (i.e. ¢(t2,t0) = ¢(¢2,t1)p(t1,t0) [43]), for
the system of , we have:

[o(m, 0)[| = ll¢(m, m — 1)d(m —1,m —2)...6(1, 0)]| (11)

Ayg = A — BK, is the system state transfer matrix in the benign mode and
Ay = A— BK._.f(k) is the system state transfer matrix in the attack mode. From
(11) and since Ay is a constant matrix, by some mathematical simplifications it
can be concluded that:

E(In]l¢(m, 0)])) < tn]lAo|| =7 + E(In||Ay|*™) (12)

Since f(k) produces a random value for each k, A; will be time-variant. In the
case that function f(.) produces uniform random numbers in [a, b], we have,

b
E(In| A, [™) = E(Inl|A_ BKi|l™) = pm. / In(|A_ BE.il|)p(i)di

b
:pm.%/ In(|A_ BK.i|)di (13)
“a .

Now according to Proposition 1, a sufficient condition for stability of system
with uniform random attack is:

b
Eltn]jo(m, 0[] < (1~ p)m.inl| Aol| +pm. -~ / In(|A_BE,il|)di <0 (14)

The proof of Proposition 2 is completed.

11



4.2. Stability condition for intelligent deception attack

When the attacker is able to identify the controller and know the state of
the system, forged packets can be generated intelligently. If the controller’s
K, is designed to decrease a Lyapunov function and keep the system stable,
the attacker uses an optimal K, to maximize another Lyapunov function which
works in his/her favor.

(A - BK.)a(k) if v(k)=0
(A= BE,(k)(k)  if r(k)=1

8

x(k+1)= { (15)

Designing intelligent attack: According to the assumptions, the attacker’s
objective in designing the intelligent attack is to find an optimal control law
that maximizes a cost function. This problem can be considered as designing
an optimal controller aims at minimizing the cost function named G that can
be expressed as a negative of a quadratic cost function (min,)[G(x(0))]). This
kind of controller is known as LQR.

N-1

G(2(0) = E[~(Y_ (2" (k + 1)(Qugey (k + 1)k + 1) + u” (k) (R (k) Julk))
k=1
N—-1

+ 2T (N)(Prwy(N))a(N))] = ELY (27 (k + 1)(=Qurry (k + 1)) (k + 1)
k=1

o
() (— Ry (R))u(k)) + 27 (V) (— P oy (V) (V)] (16)

where —Q,.x)(k), —Rrx) (k) and —P,n)(N) are positive semi-definite matrices
for each mode r(k) € S and each sample time k = 0,1,..., N — 1, in addition
for each j € S, the following condition is met: p;; = Pr(r(k+ 1) = i|r(k) =

. M
.7)’ Ei:l Dij = 17

M
—R;(k) +B" Y pij(—Qi(k+1))B >0 (17)

i=1

In particular, this condition is satisfied if —R;(k) and —Q,(k) are positive def-
inite and positive semi-definite respectively. To minimization process, these
matrices are given and have appropriate dimensions.

The solution of this jump linear quadratic control problem, can be calculated
using dynamic programming [44]. To this end let V,(;(x(k)) be the expected
cost to go from state x(k) with mode r(k) to state z(k + 1):

Ve (x(k)) = minu(k)E(xT(k + 1)(=Qpy(k + 1))z (k + 1)
+ul (k) (= Ry iy (K))u(k) + Vi (x(k + 1)) (18)

and

Vo) (#(N) = & (N) (=P () (N))a(N) (19)
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The iterative relationship can be recursively solved by going backward from
finite time N. In this way the optimal control law for minimizing is given
by [44]:

uj(k) = —K;(k)z(k) (20)

where the optimal gain is:

M
Kj(k) = [=R;(k) + B" (Y pij(—Qi(k +1) — Pi(k +1)))B] ™"
=1
M
BT pi(—Qi(k+1) = Pi(k+1))A (21)

Which the set of symmetric positive semi-definite matrices {P;(k) : j € M}
satisfies the following set of M coupled differential equations are given by the
dynamic programming algorithm.

M
Pi(k) = AT[Y_ pij(=Qi(k + 1) = Pi(k + 1))][A - BEK; (k)] (22)
i=1

K (k) and P;j(k) can be computed recursively. Then the optimal value of the
cost function G is given by G((0)) = 27 (0)(Py(0)(0))z(0). For the case intelli-
gent deception attack, in the attack mode, we have K, (k) = K;(0).

Stability analysis of intelligent attack: For stability analysis in the
intelligent attack case, in the sequence of modes is important. Hence, the
probability and the transfer matrix of the sequences are needed in calculation
of E[in(||¢(m,0)]])]. For this purpose, we should consider the tree of mode
occurrences and compute the probability and transition matrix in each branch.
For example, for M = 3 (Fig. , the probability and its transition matrix is as
follows:

Branch 1: p; = (1—p)%, ¢1(3,0) = (A — BK,)3
Branch 2: p2 = p(l - p)27 ¢2(37 0) = (A - BKC)Q(A - BKa(S))

Branch 8 ps=p%,  05(3,0) = (A — BE,(1))(A — BE,(2))(A ~ BK,(3))
Therefore,

Elln]|¢(3,0)[[] = pr.Inl|$1(3,0) ||+ p2.ln[¢2(3,0)[| + ... + ps.In| #s(3,0) || (23)

Then, Proposition 1 can be investigated for this case to find the sufficient con-
dition for system stability based on p.

Proposition 3. System with intelligent deception attack in forward
channel is AS-stable if there exists some finite integer value m > 0 such that
the following condition holds,

Elin|[¢(m,0)||] = p1.in|[¢1(m, 0)||+p2.In||@2(m, 0)|+...4p2m In|[¢pam (m, 0)|| < 0
(24)
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Figure 4: Tree of mode sequences for three time steps.

4.8. Stability Analysis when attack occurs in the backward link

Suppose that the explained deception attacks occur in backward link. In
this case, the data receiver is the controller that unlike the physical system, is
able to detect the attacked packets using the IDS engine. It discards non-benign
packet and uses local model output. The dynamics of the switching system will
be based on the following equations:

z(k+1) = Ax(k) + Bu(k)

_[uat) i e =0
“(“{um(k» if () =1 )

If the local model produces outputs with high accuracy such that z(k) and z;(k)
remain close, stability of the switching system will be equivalent to that of the
system in normal state.

5. Simulations and Results

In this section, an example is used to illustrate the detection and the effect
of deception attacks on system stability. Some intuitions on intrusion detection
and system stability are confirmed by numerical tests. The example plant is a
second order one (DC motor). Its state space model formulation is

SRR N I

where 6 is the rotational speed of the shaft and i is the armature current. The
system parameters are Z = 0.1 Kg.m?; b = 0.09 N.m.s; k = 0.01 N.m.Amp; R =
1 Ohm; L = 0.5 H. To control the speed of the DC motor under normal con-
ditions, the state feedback controller K, = [0.04,—0.55] is used such that the
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system output tracks a unit step function. We also assume the system is safe
in the first 10 seconds of operation (T = 10s). The attacker intrudes after that.
The sample time in simulations is set to 0.001s.

5.1. Intrusion detection system

The differences in attacks, their places (forward or backward channel) and
their probabilities provide evidences to evaluate the reliability of the proposed
intrusion detection method. To this end, we use different attack scenarios. We
conduct experiments on random and intelligent deception attacks in forward
channel, and random attack in backward channel.

The main purpose of an IDS is to detect as many intrusions as possible
with minimum number of false alarms in the shortest possible time. Our IDS
works in real time and uses statistical measures. The main problem in statistical
methods is determining the detection thresholds. In our algorithm, parameter
J extends the thresholds and should be tuned for each system individually. As
we mentioned in Section 3, J should be chosen in a way that yields low false
positive (F'P) and false negative (F'N) values, and eventuate a balance between
them. A series of experiments was conducted to analyze the effect of chang-
ing this parameter on the test system. We can find the optimal threshold by
some experiments. Because of using an extra sensor in the proposed adversar-
ial model, if the intrusion happens in the forward link, the rate of F'P is zero.
Thus, the criteria that is important in selecting parameter J for proposed IDS
is the rate of F'IV in the case that attack happens in forward or backward link
and only the rate of F'P when attacker is on the backward link.

We simulated the intrusion detection algorithm while sweeping the parame-
ter J under both intelligent and random deception attacks with different prob-
abilities. The average values of normalized FN and F'P in 11 runs for different
attack scenarios with different probabilities of intrusion are shown in Fig. [5
Each simulation was run for 150 seconds and for the intrusion probabilities of
0,0.0001,0.0002, ...,0.001. In these experiments, F'N and F'P are normalized by
the number of attacked samples and the number of normal samples, respectively.
It is clearly seen in the figure that the F'IV rate goes up with the increase of J,
and F'P goes down at the same time. Therefore, using larger thresholds might
let small intrusions slip away. Let us suppose that the cost of false negative
error is equal to that of false positive error. As we can see in Fig. [5] by using
J = 3.2 to set the thresholds, we have balanced and negligible FFN and FP
rates under different attack scenarios. For FN, the average of three charts at
the bottom is concerned.

To evaluate the intrusion detection system in over/under estimation of sta-
tionary distribution of MJLS, we use the metrics precision, recall and F-measure,
which are defined as,

o TP I TP P precision X recall
preasion = p Tpp T T rp L ENT T T 2% precision + recall (27)
Since the costs of FP and F'N are assumed to be equal, precision, recall and
F-measure are all important. Over/under estimation of stationary distribution
of MJLS affects the accuracy of the stability thresholds found by the proposed
propositions.
Now, we examine the proposed IDS with the chosen value of J under different
attack scenarios and attack probabilities.
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Figure 5: (Top) Mean rate of F'P for random deception attack in the backward link, (Bot-
tom) Mean rate of FN for random deception attack in the forward and backward links, and
intelligent deception attack in the forward link with different values of J.

1) Scenario I: Random attack in forward channel

Consider the system with uniform random attacks in the interval [a, b]
on the forward channel. Let a = 0 and b = 40 be the minimum and maximum
values that can be multiplied by the control signal and get accepted at the
DC motor. As an experimental setting, the number of intrusions changes by
changing the probability of attack and then precision, recall and F-measure are
calculated for the proposed IDS. The results of the experiments are listed in
Table [l

2) Scenario II: Intelligent attack in forward channel

Now, we examine the proposed intrusion detection algorithm by consider-
ing an intelligent attacker in the forward channel. First, we need to determine
the parameters of LQR. We considered the results of Bryson’s rule [45] as the
starting point for a trial-and-error iterative process, therefore the following pa-
rameters were chosen for the system of ,

Ro(k) = [~5], Qo(k)= {_1604_ 0% 0 ]

1
9000

Sl o

B =0ax [~ Q=g %
0 360
The attack occurrence follows the Bernoulli distribution. We set pgg = 1 —
ps Po1 = p, pro=1—p, p11 = p.

We examined the proposed intrusion detection algorithm for intelligent at-
tacks with these parameters and reported the results in Table [2] for different
attack probabilities.

3) Scenario I1I: Attack in backward channel

Based on what was explained in Section 3, the attacker can obtain the secrete
key of forward or backward channel. Suppose that the attacker compromises the
backward channel key and sends its generated packet. Since the packet receiver
is the controller, it can detect the malicious packets using the IDS. It discards
the abnormal data and uses the local model output. There are no differences
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Table 1: Detection results for proposed IDS by considering intelligent deception attack in
forward channel.

Prob. Precision Recall F-measure
0.01 1 0.9965 0.9983

0.02 1 0.9972 0.9986
0.03 1 0.9976 0.9988
0.04 1 0.9988 0.9994
0.05 1 0.9988 0.9994

Table 2: Detection results for proposed IDS by considering intelligent deception attack in
forward channel.

Prob. Precision Recall F-measure
0.0002 1 0.9111 0.9535

0.0004 1 0.9344 0.9661
0.0006 1 0.9895 0.9947
0.0008 1 0.9920 0.9960
0.001 1 0.9936 0.9968

between the malicious data generated randomly or intelligently here. Similar to
the previous scenarios, we examine the proposed intrusion detection algorithm
under different probabilities of intrusion. The results can be seen in Table

4) Discussion

In this section, we confirm that our statistical intrusion detection and iden-
tification algorithm achieves successful and meaningful results. In a CPS, real-
time intrusion detection is an important requirement that increases the robust-
ness of the whole system and makes the system respond to intrusions more
quickly. Our proposed algorithm is a real-time threshold-based IDS that de-
tects intrusion and its place almost immediately. This approach, in addition
to reducing the detection time, reduces the computational complexity of model
learning in comparison with the model-based intrusion detection methods. We
also analyze the security results, in term of precision, recall and F-measure. As
we can observe in Table [T} Table 2] and Table [3] by adjusting proper detection
thresholds the mentioned metrics in most cases goes ups to 0.99. First point
which can be seen in Table[I]and Table[2]is that the proposed algorithm reduces
the value of F'P to zero, in the case that attack happens in the forward link,

Table 3: Detection results for proposed IDS by considering random deception attack in back-
ward channel.

Prob. Precision Recall F-measure
0.05 0.9924 0.9974 0.9949
0.1 0.9964 0.9968 0.9966
0.15 0.9978 0.9969 0.9973
0.2 0.9985 0.9969 0.9977
0.25 0.9989 0.9970 0.9979
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Figure 6: System output under different attack scenarios with determined probabilities and
estimated ones by IDS.

thus it has the highest precision (i.e.1). Another thing that can be understood
from the results is that, in the cases the attack probability is small, attacker
tries to influence the control system and decrease its performance in a gentler
way. Therefore, in such cases, most IDSs may classify some attacked data as
normal and have nonzero FFN and accordingly, low recall and F-measure rates.
By increasing the attack probability, F'N decreases and these two measures go
up. In any case, the obtained results are satisfactory for our stability analysis
purposes. For instance, in our system, according to Table|l|and for the random
attack in the forward link with a probability of 0.01, the value of recall is equal
to 0.9965. In fact, the IDS detects the presence of an attack at an incidence rate
of 0.009965 that is so close to 0.01. As we can see in Fig. [0 the system outputs
for these two rates of attack are close to each other. The results of mentioned ex-
ample and two other cases (intelligent attack in the forward link with p = 0.0002
and random attack in the backward link with p = 0.05) are shown in Fig. @
According to the relevant precision and recall, the probabilities for these two
cases are estimated as p = 0.0001822 and p = 0.05025, respectively. Therefore,
these results show that the proposed IDS gives good estimations of stationary
distribution of switching signal, and the stability/instability of the system with
the estimated attack probability can be checked with high confidence.

The results of our IDS are also comparable with other threshold-based in-
trusion detection methods. We examine the detection methods of [22], [23] and
[24] in the presence of a random attack at p = 0.0008 and compare the triggered
attack alarms of theirs with the result of our method. The results are reported
in Fig. [7] As one can see in the figure, the intrusion detection methods of [22],
[23] and [24], sense the presence of attack in most cases, but they fall short in
the estimation of attack rate. The effects of attack remain for a while after
its occurrence, and because of this phenomenon, these methods can not detect
whether the data is still plagued by attack or not. Our proposed method, by
using the adversarial model, decreases the misdiagnoses.

5.2. Stability analysis

Now we are going to discuss the stability of system under the three attack
scenarios of the previous section. In order to identify the probability of attack
(p) that satisfies sufficient stability conditions (discussed in Proposition 2 and
3), numerical examples are given. We illustrate the effect of stochastic switching
signal on the stability of the system of . First, we implement the theoretical
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Figure 7: Comparison of different threshold-based intrusion detection methods for the system
of Eq. under a random attack with p = 0.0008: a) the attack signal (1: attack, 0: no
attack), b) the triggered alarms by our proposed IDS, ¢) the triggered alarms by the intrusion
detection method of [22], d) the triggered alarms by the intrusion detection method of [23],
e) the triggered alarms by the intrusion detection method of [24].
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part in Matlab and calculate the range of attack probabilities under which the
system can stay stable. Then, we will evaluate the results by implementing the
system in Simulink environment. These results show whether the attack is going
to destabilize the system or not.

1) Scenario I: Random attack in forward channel

Consider the first attack scenario of Section 5.1. Results of running the
Matlab code for this attack show that if the attacker changes the data in the
forward channel by a probability of p < 0.043, the sufficient stability condition
of Proposition 2 is satisfied and for p > 0.043, stability of system will not
be guaranteed. To verify this theoretical result, the control system, is also
implemented in the Simulink environment. The results of Simulink runs for
the attack probabilities of 0,0.025,0.03,0.035,0.04,0.045 and 0.05, are shown
in Fig. Results confirm that the system under this attack with p < 0.043
remains stable.

2) Scenario II: Intelligent attack in forward channel

In the second scenario, the attacker replaces the data in the forward channel
intelligently. These new data are based on an optimal control method that is
designed through identifying the closed loop system. The LQR parameters have
the same values as the ones presented in . Proposition 3 was implemented
in Matlab in order to find the probabilities of attack (p) under which the system
remains stable. By using the initial conditions of , for p < 0.0004, the suffi-
cient condition will be satisfied. To validate this result, the system was examined
for the attack probabilities of 0,0.0002,0.0003,0.0004,0.0007, and 0.0009. The
outputs of the system are depicted in Fig. [0} which validate the results of the
theoretical part.

3) Scenario III: Attack in backward channel

Imagine that the attack occurs in the backward link. We examine this sce-
nario by random attack with gain in range [0,45] which is equivalent to the
random attack of forward channel with range [0,40]. In this case, the controller
detects the attacked data using the IDS, discards them and uses the local model
output. As we said before, if the local model produces the output with high ac-
curacy, stability of the attacked system will be equivalent to that of the normal
system. Here, we examine the stability of system with attack in the backward
channel with probabilities of 0.01 and 0.1. The results can be seen in Fig.
Considering the compensation mechanism that the controller uses, for any in-
jected data and at any probability, the system should remain stable.

6. Conclusion

This paper studied intrusion detection and stability of CPSs under some
kind of deception attack in which the attacker manipulates the original data
stream by injecting false data. In this case, some of received packets at the
destination are the original data packets and some are generated by the at-
tacker, either randomly or intelligently. These attacks make the system behave
as a switching system. The switching signal stochastically switches between
normal and attacked modes and is modeled using a Markovian jump modelling
approach. The contributions of this work were in two parts. We first proposed
an adversarial model along with an intrusion detection and identification sys-
tem that detects the presence of any deception attack in the closed loop and
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spots its location. This is a real time operation. The proposed schema brings
us the rate and the place of attack, which are helpful to predict whether an

s attack will destabilize system or not. Then, two sufficient conditions for system
stability under random and intelligent deception attacks were derived. Some
numerical examples were used to validate the developed theory and illustrate
its applications. The results were consistent with our intuitions and confirmed
the validity of theoretical findings. Future research could be directed toward the

s development of stability conditions for nonlinear systems as well as randomly
switched time-delay systems.

APPENDIX

Proof of Proposition 1. According to definition 1, A = limy—,csupin||o(k,0)||
is the top Lyapunov exponent of discrete time linear system. The mentioned
sis system is AS-stable if and only if A = E[)\] < 0.
Consider

g umkw%Eﬁ inl|é(k, 0)]] (29)

Now, similar to the proof of the theorem 3.1 of the reference [29], let k =
Nm+h,0<h<m-—1 and

1
S, Exlinlo(h, O)l]

1
7 Exlinllo(k,0)[]] = Nm +

mEﬁ[l”||¢(k70)||] <

N
+N£+hEﬂ;¥MWUm+hii—Um+hm] (30)

1 Na
=—— F. -
o Erlinll o O + 1

where @ = Ez[in|¢(m,0)|]] < 0. Then, taking the limit as N — oo, it is
immediate to see that

A< =<0 (31)

3=

By increasing m, a sequence of sufficient conditions is obtained.
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