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A B S T R A C T

Wind turbines have become one of the essential sources of energy generation due to their contribution to
energy security, economic development, job creation, and technological innovation. This work proposes a
methodology for designing robust fault diagnosis systems based on a bank of zonotopic state estimators built
upon Takagi–Sugeno (TS) models. The TS models with associated parametric uncertainty are obtained using
a Multiple Output Adaptive Neuro-fuzzy Inference System (MANFIS), an extended and improved version of
single-input, single-output ANFIS. Its main difference is its multi-output architecture, which allows generalized
weighting functions to be obtained, reducing training times, uncertainties estimation, and reduced complexity.
As a result, a set of Linear Matrix Inequalities is obtained with the ∞ criterion to adjust the parameter of
the zonotopic estimator considering the modeling uncertainty. Overall, the work contributes to improving the
safety of WT through diagnostic methods that improve its operability. A well-known certified reference case
study of a wind turbine system is considered to validate the proposed method.
1. Introduction

Over the past few years, many countries have gradually adopted
renewable energy sources, such as wind power, to reduce their reliance
on hydrocarbons. According to the Global Wind Energy Council, the
installation of wind farms worldwide exceeded 77.6 [GW] in 2022,
resulting in a total global capacity increase of over 906 [GW] (Statistics
GWEC, 2023). This marks a significant milestone in the history of wind
energy and presents a major management challenge for both new and
existing wind turbines. Like any electromechanical system, they are
prone to faults due to their operational complexity and their exposure
to harsh conditions in nature in coasts or mountain environments where
they are exposed to turbulent winds. The main objective of efficient
electric power generation through wind turbines is the monitoring and
diagnosis of the overall system, anticipating serious faults (Liu & Zhang,
2020). Therefore, the task of a fault diagnosis (FD) is to anticipate and
prevent a serious fault (Li et al., 2020). The fault diagnosis community
has proposed different methods used by energy companies to trigger
alarms in response to potential faults (McMorland et al., 2022).
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FD methods can be classified into two groups: model-based and
data-driven. The first group includes techniques based on differential
equations describing the system behavior. According to this model, it is
possible to generate residuals and thus detect and isolate faults (Song &
He, 2022). On the other hand, data-driven methods use measured data
without an explicit mathematical model (Rahimilarki et al., 2019). Gen-
erally based on statistical methods (Zhang et al., 2021), and recently
on artificial intelligence such as neural networks (Liang et al., 2022),
and others. Data-driven depends on the quality and availability of the
system information provided by sensors. Most techniques also require
historical and large volumes of data for the learning process, reducing
their practical applicability. In both cases, robustness is essential to
consider the influence of uncertainties, disturbances, and measurement
noise, which makes their application more difficult.

Various robust FD schemes have been proposed to minimize the
effects of uncertainty, modeling mismatches, disturbances, and mea-
surement noise, such as unknown input observer, descriptor observers

mailto:esvan.de.jesus.perez@upc.edu
mailto:vicenc.puig@upc.edu
mailto:frlopez@ittg.edu.mx
mailto:gvalencia@hermosillo.tecnm.mx
mailto:ildeberto.dr@tuxtla.tecnm.mx
mailto:gloria.og@cenidet.tecnm.mx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.121095&domain=pdf


 
 

e
k  
f  
a  
c

d
v  
l
o
b  
R  
o
c  
u  
a
t  
r

 
f

 
 
 

f
f  
b
t  
t
(
s
a
u  
a  
d
f
c
n
b  
a
u
p  

 
 

 

 
 

 
 
 

 
 
 

T
l  

 

o
t
e
m

l
o
m

3

3

systems (Bougatef et al., 2020), sliding mode observers (Barboni et al.,
2022), ∞ observers (Sato & Marcos, 2020), adaptive observers (Su
t al., 2022), among others. Uncertainties are usually considered un-
nown but bounded. This assumption has been taken as an advantage
or some schemes such as interval observers, zonotopes, and ellipsoids,
mong others (Wang, Puig, Xu, & Cembrano, 2019). This work will
onsider the approach based on zonotopes.

For instance, Wang, Puig, Cembrano, and Zhao (2021) presents the 
esign of zonotopic observers for fault detection in linear parameter-
arying descriptor systems; noise and disturbance are unknown but
imited by zonotopes. Wang et al. (2021b) investigated a zonotopic 
bserver design method for FD in linear parameter-varying systems, 
ased on ∞ to ensure residual robustness and reduce false detection.
ecently, Pourasghar et al. (2022) addressed the design of zonotopic
bservers for Takagi–Sugeno systems affected by uncertainty. As dis-
ussed, zonotopes are generally used as geometric sets to bound the
ncertainties. Under this set-based scheme, robustness to uncertainties
nd sensitivity to faults is achieved by evaluating the consistency be-
ween measurements and estimated states. Nevertheless, these methods
equire accurate and well-calibrated dynamic models.

In Chen et al. (2013), a fault diagnosis method is proposed that
ocuses on the use of an ANFIS algorithm based on a priori knowledge 

of faults by analyzing wind turbine SCADA data. Although it addresses
explicitly only electric pitch faults, it provides valuable insights into
fault diagnosis techniques. The work by Rajabi et al. (2022) focuses on
ault diagnosis for rotating machines and utilizes a multi-output neuro-
uzzy classifier with permutation entropy for signal analysis. The work
y Liu et al. (2023) presents a fault detection method based on convolu-
ional deep residual networks using SCADA data. The network proposes
o provide accurate fault classification based on raw data. Zhang et al.
2023) propose a scheme for faults diagnosis of bearing in the transmis-
ion system through a semi-supervised approach and fusion of vibration 
nd acoustic information. A coupled convolutional residual network is 
sed for discriminative feature extraction, and an enhanced mix-match
lgorithm performs semi-supervised fault diagnosis. Sun et al. (2023)
eveloped a matching contrastive learning strategy for wind turbine 
ault diagnosis using unbalanced SCADA data; spatial and temporal 
haracteristics of the data are extracted with a convolutional neural 
etwork, then a classifier is trained to identify faults. The reference 
y Pérez-Pérez et al. (2022) corresponds to our previous contribution
nd serves as an important point of comparison. While their work 
tilizes an ANFIS and an interval observer for fault diagnosis, our pro-
osed method incorporates a MAMFIS and a zonotopic observer. The

inclusion of the MAMFIS enables the detection of multiple fault types,
and the zonotopic observer enhances robustness against disturbances,
sensor noise, and model mismatches.

This work introduces a hybrid strategy for robust fault diagnosis 
in complex systems, leveraging data-driven techniques combined with 
uncertain Takagi–Sugeno zonotopic observers. The structural analysis
employs the graph of a wind turbine process, which generates model 
structures (MS) without knowledge of a mathematical model. The MS is
identified with a Multi-output Adaptive Neuro-Fuzzy Inference System
(MANFIS) that can remarkably capture the inherent complexity and 
nonlinear relationships in wind turbine data. The MANFIS combines 
the strengths of neural networks and fuzzy systems, making it suitable
for system identification. One notable advantage of our proposal is that
the MANFIS is trained with only fault-free data, which sets it apart
from other approaches that typically require prior knowledge of faulty 
models. This aspect is crucial as it eliminates the need to label faulty
data manually. Instead, fault-free training enables the system to learn
healthy operational behavior, allowing for more efficient and accurate
fault diagnosis. Each MS identified with the MANFIS is expressed by 

akagi–Sugeno models that capture wind turbines’ dynamic and non-
inear behavior. Then, a set of robust zonotopic observers is designed

to generate residual signals that detect abnormal behaviors on the
MSs, detecting and isolating faults. The main advantage of considering
 d
zonotopic observers is the inclusion of adaptive thresholds contributing
to more precise fault diagnosis and robustness. The observer gains
are computed based on sufficient conditions given by a Linear Matrix
Inequalities (LMIs) set with ∞ performance, which mitigate the effects
f uncertainty and disturbance. Finally, simulations of a certified wind
urbine benchmark are executed in realistic settings to demonstrate the
ffectiveness of the proposed method in various fault scenarios. The
ain contributions of this work can be listed as follows:

• Identification of uncertain TS models using MANFIS and struc-
tural analysis using a wind turbine process graph: Uncertain TS
models are identified using MANFIS trained on healthy data.
Furthermore, taking advantage of the graph-based structural anal-
ysis of a wind turbine process to improve understanding of the
structural interconnections of the system without the need for a
mathematical model.

• Design of TS zonotope observers for the robust detection of faults
in the wind turbine. These observers use the identified TS models
and take advantage of zonotope representations to effectively
monitor and diagnose system behavior under fault conditions in
the presence of uncertainty and measurement noise.

• Implementation of a fault isolation stage that uses fault signal ma-
trices. This module enhances diagnostic capabilities by providing
identification of specific faults in the wind turbine.

This document is organized as follows: Section 2 presents the pre-
iminaries regarding notation and zonotopes; Section 3 provides an
verview of the proposed approach and the derivation of structural
odels from a process graph; Section 4 describes system identification

using MANFIS; Section 5 presents the robust TS zonotopic observers
design for fault diagnosis; next, Section 6 presents the results and
discussions of MANFIS learning and the fault diagnosis of the wind
turbine; finally, Section 7 presents the conclusions.

2. Preliminaries and definitions

In this paper, R and N denote the set of real and natural numbers,
respectively. R𝑚 denotes the set of 𝑚-dimensional real vectors. ‖ ⋅ ‖𝐹
indicates the Frobenius norm, ‖ ⋅ ‖𝑝 indicates the 𝑝-norm, and ‖ ⋅ ‖∞
indicates the infinity norm.

Definition 2.1 (Zonotopes Le et al., 2013). A zonotope ⟨𝑐, 𝑅⟩ ⊂ R𝑚 with
center 𝑐 ∈ R𝑚 and generator 𝑅 ∈ R𝑚×𝑝 is a symmetric polytope defined
as the affine transformation of a unitary hypercube [−1, 1]𝑝 ⊂ R𝑝, s.t.,
⟨𝑐, 𝑅⟩ =

{

𝑐 + 𝑅𝜍 ∶ ‖𝜍‖∞ ≤ 1
}

.

Definition 2.2 (Centered Zonotope Combastel, 2003). A centered zono-
tope is defined as ⟨𝑅⟩ = ⟨0, 𝑅⟩ ⊂ R𝑚. Any permutation of the columns
of 𝑅 the zonotope remains invariant.

Property 2.1 (Zonotope Inclusion Alamo et al., 2005). Given a zonotope
 = ⟨𝑐, 𝑅⟩ ⊂ R𝑚, with a vector 𝑐 ∈ R𝑚 and interval matrix 𝑅 ∈ R𝑚×𝑛
denoting the shape of the zonotope, a zonotope inclusion indicated by ⋄()
is defined as ⋄() = ⟨𝑐, [𝑚𝑖𝑑(𝑅), 𝑆]⟩, where 𝑆 is a diagonal matrix that
satisfies 𝑆𝜚𝜚 =

∑𝑚
𝜛

𝑑𝑖𝑎𝑚(𝑅𝜚𝜛 )
2 , 𝜚 = 1, 2,… , 𝑛, where 𝑚𝑖𝑑(⋅) and 𝑑𝑖𝑎𝑚(⋅) are

the center and diameter of interval matrix, respectively.

Property 2.2. Representing the Minkowski sum and the linear image as
⊕ and ⊙, respectively, s.t., 𝑀 is a matrix of appropriate dimension, then,
⟨𝑐1, 𝑅1⟩⊕ ⟨𝑐2, 𝑅2⟩ = ⟨𝑐1 + 𝑐2, [𝑅1, 𝑅2]⟩, and 𝑀 ⊙ ⟨𝑐, 𝑅⟩ = ⟨𝑀𝑐,𝑀𝑅⟩.

. Overview of the proposed approach

.1. Wind turbine case study

A benchmark wind turbine, certified for its reliability, is utilized to
emonstrate the proposed method. This benchmark is constructed using
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Fig. 1. Wind turbine scheme of components and sensors.

he Fatigue, Aerodynamics, Structures, and Turbulence (FAST) simula-
or,1 a creation of the National Renewable Energy Laboratory (Odgaard

Johnson, 2013). The scientific community has widely accepted
this simulator to create and test new control and fault diagnosis
systems (Zare & Ayati, 2021).

Fig. 1 shows the schematic diagram of the wind turbine considered
s a case study. The turbulent wind input 𝑣𝑤 is generated by TurbSim2

n the simulator. The pitch is related to the three-blade angle variables
𝑙, where 𝑙 = 1, 2, 3; the root moment 𝑀𝐵,𝑙; and gets the reference 𝛽𝑟
rom the controller. The transmission system has the generator 𝜏𝑔 and
otor 𝜏𝑟 torque as input. The outputs are the rotor 𝜔𝑟 and generator
𝑔 angular velocities; in addition, in the low-speed axis, an azimuth
ngle sensor 𝜙𝑚 is placed. The electrical energy 𝑃𝑔 is given by the
enerator/converter determined by the torque reference 𝜏𝑔,𝑟. The tower
s equipped with the signal of yaw reference 𝜔𝑦,𝑟; a sensor that collects
he acceleration provided by the wind

[

𝑥̈𝑋 𝑥̈𝑌
]𝑇 , and another sensor to

apture the yaw error 𝛯𝑒. From these relationships, the graph process
f the wind turbine can be generated as shown at the bottom of Fig. 2.

.2. Proposed approach

Model structures (MS) obtained from the graph of a process (GP)
escribes the relationships between the variables and components of
he system (Sztyber et al., 2015). Each MS could be used to generate

residual in a fault diagnosis scheme; the main advantage of using
S is that it does not require knowledge of the mathematical model,

nlike other structural analysis methods, such as analytical redundancy
elations (Perez-Zuniga et al., 2022), which relate known variables
measured) to model equations.

For the wind turbine, the MSs are constructed by analyzing the
raph displayed in Fig. 2 that represents the connections of the wind
urbine components and influences variables. All these model structures
re shown in Table 1; each MS generates a residual for fault diagnosis. A
ata-based model is required to construct the residuals given in Table 1.
n this work, these models are obtained by an identification process
arried out by a MANFIS algorithm, as detailed below.

To generate such residuals, the proposed scheme is presented in
ig. 3. Uncertain TS convex systems are obtained for each variable

using MANFIS, using only data from sensors in the wind turbine. Then,
a bank of TS zonotopic observers is designed for fault detection through

1 https://www.nrel.gov/wind/nwtc/fast.html
2 https://www.nrel.gov/wind/nwtc/turbsim.html
Fig. 2. Graph of a process for the wind turbine.

adaptive thresholds of the residuals that compare the consistency be-
tween the measured 𝑦𝑘

𝑘 and estimated ̂𝑧𝑜
𝑘 sensor data. Then, a fault

signal matrix that relate residuals with faults is used for fault isolation.

4. TS MS identification using MANFIS

Neuro-fuzzy methods combine the benefits of Artificial Neural Net-
works (ANN) and fuzzy inference systems to approximate dynamic be-
haviors (Takagi & Sugeno, 1985). For this work, MANFIS is used, which
is an improved multi-output version of ANFIS (Benmiloud, 2010).
MANFIS produces a weighted sum of linear models from an ANN
composed of antecedent and consequent parts. Subsequently, backprop-
agation and recursive least squares learning are combined to obtain the
corresponding neuro-fuzzy hyper-parameters for each network part. To
illustrate the procedure, the MANFIS depicted in Fig. 4 structures the
convex TS model to estimate the variable 𝜔̂𝑔 . The input vector 𝜁 is made
up of the variable estimates 𝜔̂𝑔 of MS7 from Table 1 as:

𝜁 =
[

𝜔𝑔(𝑘) 𝜔𝑔(𝑘 − 1) 𝜔𝑔(𝑘 − 2) 𝜏𝑔(𝑘) 𝜏𝑟(𝑘)
]𝑇 . (1)

The MANFIS estimates the dynamic of each MS and is represented
by convex TS systems. Its main strength is that the data sets for the
learning stage are constituted of fault-free sensor data, unlike tradi-
tional ANN techniques that need faulty data to learn the fault–caused
anomalous behavior. The input data for MANFIS are composed of each
MS in Table 1 and are built as follows:

Layer 1: Premise layer where the input is assigned to the fuzzy rules
and their respective membership function (MF). Each MF, denoted by
𝜂(⋅), has three neuro-fuzzy parameters (𝑎𝑚𝑜, 𝑏𝑚𝑜, 𝑐𝑚𝑜), and is defined as:

̌1 = 𝜂𝑚𝑜(𝜁𝑜) =
1

1 + 𝜁𝑜−𝑐𝑚𝑜
𝑎𝑚𝑜

2𝑏𝑚𝑜
, ∀𝑚 = 1,… , 𝑁𝑀𝐹 , ∀𝑜 = 1,… , 𝑁𝜁 , (2)

Layer 2: This layer produces the rules by using the preceding MF;

̌2 = 𝜇𝑖(𝜁 ) =
𝑁𝜁
∏

𝑜=1
𝜂𝑚𝑜(𝜁𝑜), ∀𝑖 = 1,… , 𝑁𝑣. (3)

Each premise parameter 𝜁𝑜 is calculated and varies in a defined interval
𝜁𝑜∈

[

𝜁𝑜, 𝜁𝑜
]

⊂R.

Layer 3: The triggering intensity of each rule is normalized:

̌ 3 = 𝜇̄𝑖(𝜁 ) =
𝜇𝑖(𝜁 )

∑𝑁𝑣
𝑖=1 𝜇𝑖(𝜁 )

, ∀𝑖 = 1,… , 𝑁𝑣. (4)

Layer 4: So-denominated the fuzzy if-then rules of TS are used (Takagi
& Sugeno, 1985):

𝑖 ∶ 𝐼𝐹 𝜁1 𝑖𝑠 𝜂𝑚1 𝐴𝑁𝐷,… , 𝐴𝑁𝐷 𝜁𝑁𝜁 𝑖𝑠 𝜂𝑚𝑁𝜁

𝑇𝐻𝐸𝑁

̌4 = 𝜇̄𝑖𝜉𝑖 = 𝜇̄𝑖(𝜁𝑝𝐼𝑖 + ℎ
𝐼
𝑖 )

̌4𝐼 = 𝜇̄𝑖𝜉𝐼𝑖 = 𝜇̄𝑖(𝜁𝑝𝐼𝐼𝑖 + ℎ𝐼𝐼𝑖 )
4𝐼𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝐼

⎫

⎪

⎬

⎪

, ∀𝑖 = 1,… , 𝑁𝑣. (5)

̌ = 𝜇̄𝑖𝜉𝑖 = 𝜇̄𝑖(𝜁𝑝𝑖 + ℎ𝑖 )

⎭

https://www.nrel.gov/wind/nwtc/fast.html
https://www.nrel.gov/wind/nwtc/turbsim.html


Table 1
Model structures of wind turbine.

Pitch system

MS1 𝑟1 = 𝛽1(𝑘) − 𝛽1(𝑘)(𝛽1(𝑘), 𝛽1(𝑘 − 1), 𝛽1(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1))

MS2 𝑟2 = 𝛽2(𝑘) − 𝛽2(𝑘)(𝛽2(𝑘), 𝛽2(𝑘 − 1), 𝛽2(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1))

MS3 𝑟3 = 𝛽3(𝑘) − 𝛽3(𝑘)(𝛽3(𝑘), 𝛽3(𝑘 − 1), 𝛽3(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1))

MS4 𝑟4 =𝑀𝐵,1(𝑘) − 𝑀̂𝐵,1(𝑘)(𝑀𝐵,1(𝑘),𝑀𝐵,1(𝑘 − 1),𝑀𝐵,1(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1)),

MS5 𝑟5 =𝑀𝐵,2(𝑘) − 𝑀̂𝐵,2(𝑘)(𝑀𝐵,2(𝑘),𝑀𝐵,2(𝑘 − 1),𝑀𝐵,2(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1)),

MS6 𝑟6 =𝑀𝐵,3(𝑘) − 𝑀̂𝐵,3(𝑘)(𝑀𝐵,3(𝑘),𝑀𝐵,3(𝑘 − 1),𝑀𝐵,3(𝑘 − 2), 𝛽𝑟(𝑘), 𝛽𝑟(𝑘 − 1)),

Transmission

MS7 𝑟7 = 𝜔𝑟(𝑘) − 𝜔̂𝑟(𝜔𝑟(𝑘), 𝜔𝑟(𝑘 − 1), 𝜔𝑟(𝑘 − 2), 𝜏𝑔 (𝑘), 𝜏𝑟(𝑘))

MS8 𝑟8 = 𝜔𝑔 (𝑘) − 𝜔̂𝑔 (𝜔𝑔 (𝑘), 𝜔𝑔 (𝑘 − 1), 𝜔𝑔 (𝑘 − 2), 𝜏𝑔 (𝑘), 𝜏𝑟(𝑘))

MS9 𝑟9 = 𝜙𝑟(𝑘) − 𝜙̂𝑟(𝑘)(𝜙𝑟(𝑘), 𝜙𝑟(𝑘 − 1), 𝜙𝑟(𝑘 − 2), 𝜔𝑟(𝑘), 𝜔𝑟(𝑘 − 1))

Yaw system

MS10 𝑟10 = 𝛯𝑒(𝑘) − 𝛯̂𝑒(𝑘)(𝛯𝑒(𝑘), 𝛯𝑒(𝑘 − 1), 𝛯𝑒(𝑘 − 2), 𝜔𝑦𝑟(𝑘), 𝜔𝑦𝑟(𝑘 − 1))

MS11 𝑟11 = 𝑥̈𝑋 (𝑘) − ̂̈𝑥𝑋 (𝑘)(𝑥̈𝑋 (𝑘), 𝑥̈𝑋 (𝑘 − 1), 𝑥̈𝑋 (𝑘 − 2), 𝜔𝑦𝑟(𝑘), 𝜔𝑦𝑟(𝑘 − 1))

Generator/converter

MS12 𝑟12 = 𝑃𝑔 (𝑘) − 𝑃𝑔 (𝑘)(𝑃𝑔 (𝑘), 𝑃𝑔 (𝑘 − 1), 𝑃𝑔 (𝑘 − 2), 𝜏𝑔 (𝑘), 𝜏𝑔 (𝑘 − 1), 𝜏𝑔 (𝑘 − 2))

MS13 𝑟13 = 𝜏𝑔 (𝑘) − 𝜏𝑔 (𝑘)(𝜏𝑔 (𝑘), 𝜏𝑔 (𝑘 − 1), 𝜏𝑔 (𝑘 − 2)𝜏𝑔𝑟(𝑘), 𝜏𝑔𝑟(𝑘 − 1))
Fig. 3. Scheme of the proposed method for fault diagnosis.
Fig. 4. Polytopic TS learning scheme for 𝜔𝑔 .
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Output: This layer calculates the total output 5 by adding up all the
information from layer four.

̌5 =
𝑁𝑣
∑

𝑖=1
𝜇̄𝑖𝜉𝑖, (6)

̌5𝐼 =
𝑁𝑣
∑

𝑖=1
𝜇̄𝑖𝜉

𝐼
𝑖 , (7)

̌5𝐼𝐼 =
𝑁𝑣
∑

𝑖=1
𝜇̄𝑖𝜉

𝐼𝐼
𝑖 . (8)

After the MANFIS has been trained and the normalized values (4)
nd the fuzzy rules (5) have been determined, proceed to build the
olytopic TS system. The case of MS8 will be employed for illustrative
urposes; it is given in the following terms

𝜔̂𝑔 = ̌5 =
𝑁𝑣
∑

𝑖=1
𝜇̄𝑖(𝜁 (𝑘))

(

𝑝1𝑖𝜔𝑔(𝑘) + 𝑝2𝑖𝜔𝑔(𝑘 − 1) + 𝑝3𝑖𝜔𝑔(𝑘 − 2)

+ 𝑝4𝑖𝜏𝑔(𝑘) + 𝑝5𝑖𝜏𝑟(𝑘) + ℎ𝑖
)

. (9)

Terms in (9) can be rearranged as:

̂ 𝑔 =
𝑁𝑣
∑

𝑖=1
𝜇̄𝑖(𝜁 (𝑘))

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎡

⎢

⎢

⎢

⎣

𝑝11𝑖 𝑝12𝑖 𝑝13𝑖
𝑝21𝑖 𝑝22𝑖 𝑝23𝑖
𝑝31𝑖 𝑝32𝑖 𝑝33𝑖

⎤

⎥

⎥

⎥

⎦

𝑥 +

𝐵𝑖
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎡

⎢

⎢

⎢

⎣

𝑝14𝑖 𝑝15𝑖
𝑝24𝑖 𝑝25𝑖
𝑝34𝑖 𝑝35𝑖

⎤

⎥

⎥

⎥

⎦

𝑢 +

ℎ𝑖
⏞⏞⏞
⎡

⎢

⎢

⎢

⎣

ℎ1𝑖
ℎ2𝑖
ℎ3𝑖

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(10)

where 𝑥 =
[

𝜔𝑔(𝑘) 𝜔𝑔(𝑘 − 1) 𝜔𝑔(𝑘 − 2)
]𝑇 is the state vector and

𝑢 =
[

𝜏𝑔 𝜏𝑟
]𝑇 is the input vector; the superscript 𝜄 = 1, 2, 3 indicates

the number for output for MAMFIS, such as the system described in
(11) is obtained.

𝑥(𝑘 + 1) =
𝑁𝑣
∑

𝑖=1
𝜇̄𝑖(𝜁 (𝑘))

(

𝐴𝑖𝑥(𝑘) + 𝐵𝑖𝑢(𝑘) + ℎ𝑖
)

,

𝑦(𝑘) = 𝐶𝑥(𝑘), (11)

here 𝑁𝑣 is obtained by 𝑁𝑣 =
(

𝑁𝑀𝐹
)𝑁𝜁 , 𝜇̄𝑖(𝜁 (𝑘)) denotes the premise

unctions, 𝐴𝑖 ∈ R𝑛𝑥×𝑛𝑥 , 𝐵𝑖 ∈ R𝑛𝑥×𝑛𝑢 , ℎ𝑖 ∈ R𝑛𝑥 , and 𝐶 ∈ R𝑛𝑦×𝑛𝑥 indicates
he system matrices, and 𝑦(𝑘) ∈ R𝑛𝑦 represents the output vector that is
alculated. Uncertainties related to model mismatches and uncertainty
ue to aerodynamic loads and sensor noise are included. Matrices 𝛥𝐴𝑖
nd 𝛥𝐵𝑖 are the uncertainties.

(𝑘 + 1) =
𝑁𝑣
∑

𝑖=1
𝜇̄𝑖(𝜁 (𝑘))

(

(𝐴𝑖 + 𝛥𝐴𝑖)𝑥(𝑘) + (𝐵𝑖 + 𝛥𝐵𝑖)𝑢(𝑘) + ℎ𝑖
)

+ 𝐸𝑑 𝑑(𝑘),

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐹𝑣 𝑣(𝑘), (12)

𝑑 and 𝐹𝑣 represents the uncertainty and noise matrices with fixed
izes, 𝑑(𝑘) ∈ R𝑛𝑥 indicates the uncertainty by aerodynamic loads, and
(𝑘) ∈ R𝑛𝑦 indicates the sensor noise. The values of the uncertain matri-
es are obtained from the error covariance matrix 𝛩 of all consequent
arameters, which is generated from the hybrid learning algorithm:

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜎211 𝜎212 ⋯ 𝜎21𝑗
𝜎221 𝜎222 ⋯ 𝜎22𝑗
⋮ ⋮ ⋱ ⋮

𝜎2𝑖1 𝜎2𝑖2 ⋯ 𝜎2𝑖𝑗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (13)

here the elements on the main diagonal, 𝜎2𝑖,𝑖, are the variances var(𝑐𝑖)
btained at the end of the training; and the elements off the main

2
iagonal, 𝜎𝑖,𝑗 , are the covariances cov(𝑐𝑖, 𝑐𝑗 ), 𝑖 ≠ 𝑗. 
To build matrices 𝛥𝐴𝑖 and 𝛥𝐵𝑖, the standard deviations are calcu-
lated from the variances extracted from matrix 𝛩 in (13), and are stored 
in 𝛶 . Subsequently, 𝛶 is reshaped to the appropriate dimensions of
matrices 𝐴𝑖 and 𝐵𝑖, where:

𝛶 =

⎡

⎢

⎢

⎢

⎣

𝜎1
⋮

𝜎𝑛𝑚

⎤

⎥

⎥

⎥

⎦

; (14)

𝛥𝐴𝑖 =

⎛

⎜

⎜

⎜

⎝

𝜎1𝑖 𝜎2𝑖 𝜎3𝑖
𝜎𝐼1𝑖 𝜎𝐼2𝑖 𝜎𝐼3𝑖
𝜎𝐼𝐼1𝑖 𝜎𝐼𝐼2𝑖 𝜎𝐼𝐼3𝑖

⎞

⎟

⎟

⎟

⎠

, 𝛥𝐵𝑖 =

⎛

⎜

⎜

⎜

⎝

𝜎4𝑖 𝜎5𝑖
𝜎𝐼4𝑖 𝜎𝐼5𝑖
𝜎𝐼𝐼4𝑖 𝜎𝐼𝐼5𝑖

⎞

⎟

⎟

⎟

⎠

. (15)

To calculate the disturbances, the following procedure, as in Blesa
et al. (2010), is considered; 𝐸𝑑 is defined as follows:

𝐸𝜄𝑑 = max(𝜔𝑔 − 𝜔̂𝑔 − 𝜆, 𝜔̂𝑔 − 𝜔𝑔 − 𝜆), (16)

where 𝜆 is a scalar that limits the uncertainty. 𝐸𝑑 is a diagonal matrix
of suitable sizes constructed as 𝐸𝑑 = diag([𝐸1

𝑑 , 𝐸
2
𝑑 , 𝐸

3
𝑑 ]). 𝐹𝑣 is a diagonal

matrix of suitable sizes shaped by the additive noise of the sensors in
the wind turbine simulator. Vectors 𝑑(𝑘) and 𝑣(𝑘) are supposed to be
unknown but bounded. These convex models are used to design the TS
observers as described below.

5. Robust MS evaluation using robust zonotopic TS observers

5.1. Zonotopic TS observer

Let us consider an uncertain TS system (12) subject to disturbances
nd measurement noises as:

(𝑘 + 1) = (𝐴𝑧 + 𝛥𝐴𝑧)𝑥(𝑘) + (𝐵𝑧 + 𝛥𝐵𝑧)𝑢(𝑘) + ℎ𝑧 + 𝐸𝑑𝑑(𝑘),

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐹𝑣𝑣(𝑘), (17)

here 𝐴𝑧=
∑𝑁𝑣
𝑖=1 𝜇̄𝑖(𝜁 (𝑘))𝐴𝑖, 𝛥𝐴𝑧=

∑𝑁𝑣
𝑖=1 𝜇̄𝑖(𝜁 (𝑘))𝛥𝐴𝑖, 𝐵𝑧=

∑𝑁𝑣
𝑖=1 𝜇̄𝑖(𝜁 (𝑘))𝐵𝑖,

𝐵𝑧 =
∑𝑁𝑣
𝑖=1 𝜇̄𝑖(𝜁 (𝑘))𝛥𝐵𝑖, ℎ𝑧 =

∑𝑁𝑣
𝑖=1 𝜇̄𝑖(𝜁 (𝑘))ℎ𝑖.

It is assumed that,

𝐴𝑧 ≤ 𝛥𝐴𝑧 ≤ 𝛥𝐴𝑧, (18)

𝐵𝑧 ≤ 𝛥𝐵𝑧 ≤ 𝛥𝐵𝑧, (19)

where 𝛥𝐴𝑧 ∈ R𝑛𝑥×𝑛𝑥 , 𝛥𝐵𝑧 ∈ R𝑛𝑥×𝑛𝑢 , 𝛥𝐴𝑧 ∈ R𝑛𝑥×𝑛𝑥 , and 𝛥𝐵𝑧 ∈ R𝑛𝑥×𝑛𝑢
re matrices containing the minimum and maximum values of 𝛥𝐴𝑧 and
𝐵𝑧, respectively.

The uncertain parameters can be approximated in a single term
ccording to Chen and Patton (2012). Therefore, (17) is rewritten as
ollows

(𝑘 + 1) = 𝐴𝑧𝑥(𝑘) + 𝐵𝑧𝑢(𝑘) + ℎ𝑧 + 𝐸𝑑𝑑(𝑘) + 𝐸𝛿𝛿(𝑘),

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐹𝑣𝑣(𝑘), (20)

ith

𝛿𝛿(𝑘) = 𝛥𝐴𝑧𝑥(𝑘) + 𝛥𝐵𝑧𝑢(𝑘) (21)

here 𝐸𝛿 is the uncertainty distribution matrix of appropriate dimen-
ions and 𝛿(𝑘) ∈ R𝑛𝑥 is a vector that embeds the effect of uncertainty.
or example, in a wind turbine, aerodynamic loads and sensors noise
re unknown but bounded, such as:

= {𝑑(𝑘) ∈ R𝑛𝑥 ∶ |𝑑(𝑘) − 𝑐𝑑 | ≤ 𝑑(𝑘), 𝑐𝑑 ∈ R𝑛𝑥 , 𝑑(𝑘) ∈ R𝑛𝑥}, (22)
 = {𝑣(𝑘) ∈ R𝑛𝑦 ∶ |𝑣(𝑘) − 𝑐𝑣| ≤ 𝑣(𝑘), 𝑐𝑣 ∈ R𝑛𝑦 , 𝑣(𝑘) ∈ R𝑛𝑦},

where 𝑐𝑑 , 𝑑(𝑘), 𝑐𝑣 and 𝑣(𝑘) are constant vectors.
This work considers a zonotopic depiction of state estimation, such

as (22) is rewritten as follows:

 = ⟨𝑐𝑑 , 𝑅𝑑⟩, (23)
= ⟨𝑐 , 𝑅 ⟩,
𝑣 𝑣
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where 𝑐𝑑 and 𝑐𝑣 denote the centers of the disturbance and noise-
ounding zonotopes, respectively, with their generator matrices 𝑅𝑑 ∈
𝑛𝑥×𝑛𝑥 and 𝑅𝑣 ∈ R𝑛𝑦×𝑛𝑦 , respectively.

For the estimation of the TS system with uncertainty (20), the
ollowing zonotopic TS observer is considered:

̂(𝑘 + 1) = 𝐴𝑧𝑥̂(𝑘) + 𝐵𝑧𝑢(𝑘) + ℎ(𝑘) + 𝐿𝑧(𝑦(𝑘) − 𝑦̂(𝑘)),

𝑦̂(𝑘) = 𝐶𝑥̂(𝑘), (24)

where 𝑥̂(𝑘+1) is the vector of estimated states and 𝑦̂(𝑘) is the prediction
output. The objective is to find the observer gain matrix such that
the estimation error between (20) and (24) converges asymptotically
to zero. The goal is to find the observer gain matrix 𝐿𝑖 ∈ R𝑛𝑥×𝑛𝑦 ,
such that the state estimation error between (20) and (24) converges
symptotically to zero, i.e. 𝑒(𝑘) = 𝑥(𝑘) − 𝑥̂(𝑘), whose dynamics error is
escribed by:

(𝑘 + 1) = (𝐴𝑧 − 𝐿𝑧𝐶)𝑒(𝑘) + 𝐸𝑑𝑑(𝑘) − 𝐹𝑣𝑣(𝑘) + 𝐸𝛿𝛿(𝑘), (25)

n observer that wraps the states corresponding to the system with
ncertainty (20), can be obtained as a zonotope ̂𝑘 = ⟨𝑐𝑥𝑘 , 𝑅

𝑥
𝑘⟩ using the

bserver (24) and Proposition 1 considering the bounded uncertainties
and zonotopic representation under the following assumptions.

Assumption 5.1. The uncertainties and disturbances represented in
(20) are assumed to be bounded by zonotope centered (see Defini-
ion 2.2), i.e., ∀𝑘 ≥ 0, 𝑑 =∈ [−1, 1]𝑛𝑑 = ⟨0, 𝐼𝑛𝑑 ⟩, 𝑣 ∈ [−1, 1]𝑛𝑣 = ⟨0, 𝐼𝑛𝑣 ⟩
nd 𝛿 ∈ [−1, 1]𝑛𝑧 = ⟨0, 𝐼𝑛𝑧 ⟩ where 𝐼𝑛𝑑 , 𝐼𝑛𝑣 and 𝐼𝑛𝑧 denote the identity
atrix.

ssumption 5.2. The initial state 𝑥0 belongs to the set 𝑧𝑜
0 =

𝑐𝑧𝑜𝑘,0, 𝑅
𝑧𝑜
𝑘,0⟩, where 𝑐𝑧𝑜𝑘,0 ∈ R𝑛𝑥 denotes the center and 𝑅𝑧𝑜𝑥,0 ∈ R

𝑛𝑥×𝑛𝑅𝑧𝑜𝑘,0

s a non-empty matrix containing the generators matrix of the initial
onotope 𝑧𝑜

0 .

roposition 1. With the system (20) and observer (24), the zonotope
̂ 𝑧𝑜
𝑘 = ⟨𝑐𝑧𝑜𝑘+1, 𝑅

𝑧𝑜
𝑘+1⟩ is recursively forward predicted as:

𝑐𝑧𝑜𝑘+1 = (𝐴𝑧 − 𝐿𝑧𝐶)𝑐𝑧𝑜𝑘 + 𝐵𝑧𝑢𝑘 + ℎ𝑘 + 𝐿𝑧𝑦𝑘 (26)
𝑧𝑜
𝑘+1 =

[

(𝐴𝑧 − 𝐿𝑧𝐶)𝑅̄𝑧𝑜𝑘 𝐸𝑑 −𝐿𝑧𝐹𝑣 𝐸𝛿
]

𝑅̄𝑧𝑜𝑘 =↓𝑞 (𝑅𝑧𝑜𝑘 ).

nd the reduction operator ↓𝑞 suffices to satisfy 𝑅̄𝑘 =↓𝑞 (𝑅), and 𝑥̂(𝑘) ∈
𝑐𝑘, 𝑅𝑘⟩ ⊂ ⟨𝑐𝑘, 𝑅̄𝑘⟩, furthermore, the zonotope inclusion Property 2.1 holds
or all 𝑘 ≥ 0.

roof. Assuming ̂𝑧𝑜 = ⟨𝑐𝑧𝑜𝑘+1, 𝑅
𝑧𝑜
𝑘+1⟩ at instant 𝑘 (true at 𝑘 ≥ 0) and

𝑞,𝑊 has preserved inclusion property, ̂𝑧𝑜 = ⟨𝑐𝑘, 𝑅̄𝑘⟩. Since 𝑑 ∈ ⟨0, 𝐼𝑛𝑑⟩,
∈ ⟨0, 𝐼𝑛𝑣 ⟩ and 𝑧 ∈ ⟨0, 𝐼𝑛𝑧 ⟩ (20), from (24), it comes:

̂(𝑘 + 1) = ((𝐴𝑧 − 𝐿𝑧𝐶)⊙ ⟨𝑐𝑧𝑜𝑘 , 𝑅
𝑧𝑜
𝑘 ⟩)⊕ (𝐵𝑧 ⊙ ⟨𝑢𝑘, 0⟩)⊕ (⟨ℎ𝑧, 0⟩) (27)

⊕ (𝐿𝑧 ⊙ ⟨𝑦𝑘, 0⟩)⊕ (𝐸𝑑 ⊙ ⟨0, 𝐼𝑛𝑑 ⟩)⊕ (−𝐿𝑧𝐹𝑣 ⊙ ⟨0, 𝐼𝑛𝑣 ⟩)⊕ (𝐸𝛿 ⊙ ⟨0, 𝐼𝑛𝑧 ⟩).

Applying the zonotope Property 2.2 obtains (26), hence the proof is
ulfilled. □

Note from expression (27) that the terms ⟨ℎ𝑧, 0⟩, (𝐵𝑧 ⊙ ⟨𝑢𝑘, 0⟩) and
𝐿𝑧⊙⟨𝑦𝑘, 0⟩) had no impact on the generator matrix 𝑅𝑧𝑜𝑘+1 and influence
nly the center matrix 𝑐𝑧𝑜𝑘+1 of the zonotope ⟨𝑐𝑧𝑜𝑘+1, 𝑅

𝑧𝑜
𝑘+1⟩. Taking into

ccount the dynamics of the error (25), the set of zonotopes bounding
the estimation error can also be obtained iteratively as

𝑒(𝑘 + 1) ∈ ⟨0, 𝑅𝑒𝑘+1⟩ (28)

where 𝑅𝑒𝑘+1 =
[

(𝐴𝑧 − 𝐿𝑧𝐶)𝑅̄𝑧𝑜𝑘 𝐸𝑑 −𝐿𝑧𝐹𝑣 𝐸𝛿
]

. The main chal-
lenge in building the bounding observer is reduce the influence of
uncertainties and unknown disturbances. To address this, the ∞ cri-
terion technique for designing the observer gain 𝐿 for the zonotopic
𝑧
observer in Proposition 1 is considered. The dynamics of the estimation
error (25) is rewritten as follows:

𝑒(𝑘 + 1) = 𝛷𝑧𝑒(𝑘) + 𝛤𝑧𝜑(𝑘), (29)

where 𝛷𝑧 = 𝐴𝑧 − 𝐿𝑧𝐶 and 𝛤𝑧 =
[

𝐸𝑑 𝐹𝑣 𝐸𝛿
]

, 𝜑(𝑘) =
𝑑(𝑘) 𝑣(𝑘) 𝛿(𝑘)

]𝑇 .

.2. Zonotopic TS observer design

The following theorem provides sufficient conditions for the esti-
ation of the observer gains and the performance of ∞ from the

stimation error given in (29).

heorem 5.1. The estimation error dynamics in (29) is asymptotically
stable with the performance∞, satisfies the condition ‖𝑒(𝑘)‖22 < 𝛾

2
‖𝜑(𝑘)‖22

and attenuation index 𝛾 > 0, with 𝛾̄ = 𝛾2, if there are matrices 𝑃 = 𝑃 𝑇 > 0
and 𝐿𝑧, 𝑧 ∈ {1,… , 𝑁𝑣}, such that the following optimization problem is
satisfied:

𝑚𝑖𝑛 − 𝛾̄

subject to the following LMI:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑃 + 𝐼 0 0 0 𝐴𝑇𝑧 𝑃 − 𝐶𝑇𝑊 𝑇
𝑧

⋆ −𝛾̄𝐼 0 0 𝐸𝑇𝑑 𝑃

⋆ ⋆ −𝛾̄𝐼 0 𝐹 𝑇𝑣 −𝑊 𝑇
𝑧

⋆ ⋆ ⋆ −𝛾̄𝐼 𝐸𝑇𝛿 𝑃

⋆ ⋆ ⋆ ⋆ −𝑃

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

< 0 (30)

The observer gains are calculated as 𝐿𝑧 = 𝑃−1𝑊𝑧, 𝑧 ∈ {1,… , 𝑁𝑣}, the
attenuation index is 𝛾 =

√

𝛾̄.

Proof. Proof is displayed in the Appendix □

.3. Fault diagnosis scheme

The MSs (𝑦̂𝑠(𝑘)) of Table 1 are computed by MANFIS; where 𝑠
efers to the identified variables. All identified variables includes uncer-
ainty and noise in accordance with (22), they are propagated through
onotopic observer; a 𝑦𝑘

𝑘 strip is calculated regarding every measured
ariable of 𝑦𝑠(𝑘) as:
𝑦𝑘
𝑘 =

{

𝑥(𝑘) ∈ R𝑛𝑥 ∶ |

|

𝐶𝑥(𝑘) − 𝑦𝑠(𝑘)|| ≤ 𝐹𝜎
}

. (31)

Fig. 5 shows the fault detection process by evaluating the zonotopic
sets. At each instant 𝑘, we evaluate: if ̂𝑧𝑜

𝑘 ∩𝑦𝑘
𝑘 = ∅, then, fault is true.

There is no fault if there is an intersection between measurements and
estimations.

The evaluation for each MS, when faults exist, produces residuals
𝑟𝑠(𝑘) and these are collected in a fault signal matrix (FSM) which are
formed as follows:

𝜓𝑠,𝑗 (𝑘)

=

{

0 if 𝑟𝑠(𝑘) is congruent (No fault)

1 if 𝑟𝑠(𝑘) is not congruent (Fault)
, 𝑠 = 1,… , 𝑁𝑦; 𝑗 = 1,… , 𝑁𝑓 .

(32)

where 𝑁𝑓 is the number of fault cases, the isolation is carried under col-
umn reasoning, analyzing the FSM and the binary relationship among
the activated residuals for every fault. The results of the diagnostic
scheme based on MANFIS and zonotopic TS observers are discussed
below.
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Fig. 5. Graphic interpretation of the fault detection process with zonotopes.
Table 2
Experimental setup.

Attribute Value

Time of simulation 630 [s]
Sampling rate 80 [Hz]
Samples for each measurement 50401
Subset for training 70% 35281
Subset for test 15% 7560
Subset for validation 15% 7560

6. Results and discussions

This section reveals the outcomes of fault diagnosis achieved in
various scenarios delineated for the FAST wind turbine benchmark, as
elucidated in Odgaard and Johnson (2013). The Benchmark uses a 5
[MW] three-blade variable speed turbine with full-span pitch control.
Its main characteristics are: hub height is 89.6 [m], rotor radius is
63 [m], with a nominal speed of 12.1 [rpm]. TurbSIM, a certified
stochastic, full-field turbulence simulator, generates the turbulent wind
input. The wind speed averages 17 [m/s] at the shaft height of 90 [m],
as shown in Fig. 6. The experimental setup used to obtain the MANFIS
training data sets is detailed in Table 2.

Training continues until the RMSE estimation error is as close to
zero. Table 3 exhibits the training results for MS. Column 3 presents
the number of fuzzy rules corresponding to the premise parameters ob-
tained during the learning processes. The accuracy of MANFIS is quan-
tified using the Root Mean Square Error (RMSE), which can be found
in Column 4. The RMSE is calculated using the following equation:

RMSE =

√

√

√

√
1
𝑁𝜖

𝑁𝜖
∑

𝜖=1
(𝑦𝜖 − 𝑦̂𝜖)2 (33)

here 𝑦𝜖 is the real variable, 𝑦̂𝜖 is the identified variable by MANFIS
nd 𝑁𝜖 is the number of registers. During the training process, a
aximum of 100 epochs was conducted. The RMSE was computed

t the magnitudes of 10−3 and 10−4. It was observed that the RMSE
id not show a tendency to decrease further beyond these values. This
ndicates that the MANFIS model with the proposed structures exhibits
igh accuracy in the identification process.

Multiple simulations were conducted as part of the benchmark to
enerate a free-faults dataset and establish the structure of the convex
Table 3
RMSE obtained after training.

MS Estimated variable Number of fuzzy rules RMSE

1 𝛽1 32 9.0876 × 10−3

2 𝛽2 32 9.8544 × 10−3

3 𝛽3 32 8.9876 × 10−3

4 𝑀̂𝐵,1 32 6.8569 × 10−3

5 𝑀̂𝐵,2 32 7.5813 × 10−3

6 𝑀̂𝐵,3 32 6.3589 × 10−3

7 𝜔̂𝑟 32 4.9851 × 10−4

8 𝜔̂𝑔 32 5.0499 × 10−4

9 𝜙̂𝑟 32 4.5689 × 10−4

10 𝛯̂𝑒 32 2.9825 × 10−4

11 ̂̈𝑥𝑋 32 6.7219 × 10−4

12 𝑃𝑔 32 7.2583 × 10−4

13 𝜏𝑔 32 3.1268 × 10−4

TS systems. As an illustration, Fig. 7 illustrates the graph of the TS
zonotopic observer representing the 𝜔̂𝑔 variable. The upper and lower
boundaries are denoted by the green and yellow lines, respectively.
These bounds are formed by the zonotopic observer encompassing the
𝜔𝑔 variable under fault-free conditions.

Faults in sensors and actuators were induced based on Table 4 to
assess the effectiveness of the proposed approach.

• Sensor faults: There are three scaled value faults, where 𝑓1 by a
factor of 0.95, 𝑓3 by a factor of 0.95, and 𝑓5 by a factor of 1.1;
𝑓4 by a fixed value of 1, 𝑓2 by an offset of −0.5, and 𝑓6 by a bit
error.

• Actuator faults: 𝑓7 and 𝑓8 are pitch faults, referring to air in oil is
incipient type and abrupt hydraulic damage. 𝑓9 involves an offset
in the control loop of the generator by a constant of 1000 Nm.
Finally, 𝑓10 corresponds to a fixed value of 0 rad/s in the control
signal of the Yaw system.

The complete sequence of ten faults presented in Table 4 is applied
to verify the proposed fault diagnosis method. As shown in Table 5,
the faults detected at the time of occurred were determined using the
FSM constructed according to (32). Fault detection and isolation can
be realized easily by analyzing the FSM. For example, in Fig. 8, 𝑓3
is observed in the 𝜔𝑔 sensor; the activation period is from 130 [s] to
155 [s], and it can be seen that the fault affects the 𝜔 signal, which
𝑔



Fig. 6. Wind profile using in simulations generated by TurbSIM.
Fig. 7. TS zonotopic observer for 𝜔𝑔 .
Table 4
Faults considered in the wind turbine.

Fault Description Time interval [s]

𝑓1 Fault in sensor 𝑀𝐵,2 20–45
𝑓2 Fault in accelerometer sensor 𝑥̈𝑋 75–100
𝑓3 Fault in sensor 𝜔𝑔 130–155
𝑓4 Fault in angle sensor 𝛽1 185–210
𝑓5 Fault in sensor 𝑃𝑔 240–265
𝑓6 Fault in encoder 𝜙 295–320
𝑓7 Fault incipient in Pitch actuator 350–410
𝑓8 Fault abrupt in Pitch actuator 440–465
𝑓9 Fault in Generator Torque 495–520
𝑓10 Fault in Yaw actuator 550–575

exceeds the upper threshold of the zonotopic observer, the activated
residual is 𝑟8 according to the information shown in the incidence
matrix. Let us consider the 𝑓4 in the corresponding 𝛽1 sensor from 185
[s] to 210 [s], whose corresponding residuals are shown in Fig. 9; as
can be observed, the 𝛽1 signal affected by the fault exceeds the lower
threshold of its respective zonotopic observer, the activated residual is
𝑟1 in the incidence matrix. The 𝑓9 in the generator torque 𝜏𝑔 is observed
in Fig. 10, the fault was triggered from 495 [s] to 520 [s]; it can be seen
that the fault in the actuator affects the 𝜏𝑔 signal, where it exceeds the
upper threshold of its zonotopic observer, the activated residual is 𝑟7
in incidence matrix. Then, fault isolation is carried out by analyzing
this particular signature with binary logic. A similar analysis can be
performed for the rest of the faults.

The proposed method is compared to various FD schemes to assess
its effectiveness. Table 6 presents a comparison between the proposed
method and preceding works registered in the literature; TSZO denotes
the proposed method. The table includes the fault scenarios and com-
pares the time required (TD) for the fault diagnosis system to detect



Fig. 8. Detection of 𝑓3 in the sensor of 𝜔𝑔 .
Fig. 9. Detection of 𝑓4 in the sensor of 𝛽1.
the fault. This metric is the most accepted and standard for this kind
of approach. As can be seen, the TSZO can detect faults in less time
than the other approaches. The last row is a checkmark that compares
the robustness criteria to noise and uncertainties. The results obtained
from the following FD methods collected from the literature:
• ANN and 𝑘-Nearest Neighbors (AKNN) (Pashazadeh et al., 2018):
this method combines an ANN and k-NN algorithm for Fault
Detection. However, it does not take into account the faults
labeled as (NC) 𝑓1 and 𝑓7 in the analysis.



Fig. 10. Detection of 𝑓9 in the Generator Torque 𝜏𝑔 .
Table 5
Fault signal matrix for the set of the different fault scenarios.

FSM 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10
1 0 0 0 1 0 0 1 0 0 0
2 0 0 0 0 0 0 1 0 0 0
3 0 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 0 1 0 0
5 1 0 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 1 0
8 0 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1
11 0 1 0 0 0 0 0 0 0 0
12 0 0 0 0 1 0 0 0 0 0
13 0 0 0 0 0 0 0 0 1 0
• SVM and Kalman filter (SVMKF) (Sheibat-Othman et al., 2013):
proposes a combined scheme for fault detection but does not meet
detection times and marks NC on faults 𝑓1, 𝑓7, 𝑓10.

• Residual SVM (RSVM) (Zeng et al., 2013): this scheme has hits
and meets the detection times except for fault 𝑓1.

• Standard interval observer (SIO) (Sanchez et al., 2015): the pro-
posed scheme successfully detects all faults. However, its effec-
tiveness relies heavily on the dynamic model’s accuracy and fails
to meet the required detection time for faults labeled as 𝑓2 and
𝑓7.

• Takagi–Sugeno interval observer (TSIO) (Pérez-Pérez et al., 2022):
the proposed scheme demonstrates the capability to detect all
faults. However, it does not accurately isolate faults 𝑓4, 𝑓7, and
𝑓8.

The proposed method successfully diagnoses all faults within the
required Time Diagnosis. The proposed method based on MANFIS and
zonotopic observers verifies the congruence of the system estimates
with the measurements at each step. All faults were correctly identified
by incorporating an FSM. Nevertheless, it is important to note that
this method is specifically designed for sequential faults, such as those
commonly observed in wind turbines. For scenarios involving multiple
simultaneous faults, it is necessary to implement alternative approaches
to address these situations effectively.

7. Conclusions

This article introduces a hybrid wind turbine fault diagnosis ap-
proach combining machine learning techniques and TS zonotopic ob-
servers. The methodology involves a graphical process to obtain a set of
MS, which considers the relationships between the Wind Turbine com-
ponents and the measured variables. Two contributions are considered;
the first involves identifying a collection of convex TS models based
on the MS obtained by considering the MANFIS learning technique.
All training data were obtained from fault-free scenarios. The second
contribution was related to the design of zonotopic TS observers by con-
sidering the ∞ criterion to guarantee robustness against uncertainty,
disturbance, and noise. The approach considers both parametric uncer-
tainty and disturbances as unknown but bounded. For fault diagnosis,
a strategy is proposed that evaluates the generating residuals using a
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Table 6
Comparison of the results achieved with preceding work.

Fault 𝑇𝐷 required 𝑇𝐷 obtained

TSZO TSIO AKNN SVMKF RSVM SIO

𝑓1 𝑇𝐷 < 10𝑇𝑠 2𝑇𝑠 2𝑇𝑠 NC NC NC 3𝑇𝑠
𝑓2 𝑇𝐷 < 10𝑇𝑠 𝑇𝑠 7𝑇𝑠 17𝑇𝑠 3𝑇𝑠 6𝑇𝑠 18𝑇𝑠
𝑓3 𝑇𝐷 < 10𝑇𝑠 𝑇𝑠 2𝑇𝑠 4𝑇𝑠 22𝑇𝑠 𝑇𝑠 3𝑇𝑠
𝑓4 𝑇𝐷 < 10𝑇𝑠 𝑇𝑠 2𝑇𝑠 7𝑇𝑠 44𝑇𝑠 6𝑇𝑠 3𝑇𝑠
𝑓5 𝑇𝐷 < 10𝑇𝑠 2𝑇𝑠 2𝑇𝑠 4𝑇𝑠 11𝑇𝑠 2𝑇𝑠 3𝑇𝑠
𝑓6 𝑇𝐷 < 10𝑇𝑠 𝑇𝑠 4𝑇𝑠 13𝑇𝑠 34𝑇𝑠 6𝑇𝑠 6𝑇𝑠
𝑓7 𝑇𝐷 < 8𝑇𝑠 𝑇𝑠 5𝑇𝑠 NC NC 2𝑇𝑠 375𝑇𝑠
𝑓8 𝑇𝐷 < 100𝑇𝑠 𝑇𝑠 9𝑇𝑠 11𝑇𝑠 12𝑇𝑠 2𝑇𝑠 33𝑇𝑠
𝑓9 𝑇𝐷 < 3𝑇𝑠 𝑇𝑠 2𝑇𝑠 18𝑇𝑠 35𝑇𝑠 3𝑇𝑠 3𝑇𝑠
𝑓10 𝑇𝐷 < 50𝑇𝑠 2𝑇𝑠 3𝑇𝑠 32𝑇𝑠 NC 36𝑇𝑠 3𝑇𝑠

Robustness ✓ ✓ × × × ×
fault incidence matrix. The effectiveness of the method is tested on a
certified wind turbine benchmark, encompassing various fault scenar-
ios. Comparative analysis against multiple FD schemes demonstrates
the method’s applicability and satisfactory performance.

Some limitations of the present work are (i) the dependence of the
analysis on the graph process since there is a possibility that the graph
does not contain all relevant information or that some vital connec-
tion is omitted. Also, structural analysis based on GP requires many
sensors and correct sensor placement to represent the system structure
accurately; a lack of adequate sensors or incorrect sensor placement
can affect the result. (ii) adaptability to other systems, implementing
the proposed approach in other wind turbines or different systems
may require retraining the MANFIS models and recalculating zonotope
observer gains. This adaptability process may involve additional time
and effort to tailor the methodology for specific system configurations
and characteristics. However, it is essential to mention that the method-
ology presented here can be applied to other systems by following the
steps mentioned on the document. These limitations will be addressed
in future work and will also focus on developing prognosis systems
to identify critical faults that could potentially harm the wind turbine
system.
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Appendix. Proof of Theorem 5.1

Proof. Consider the following quadratic Lyapunov function for system
(29):

𝑉 (𝑒(𝑘)) = 𝑒(𝑘)𝑇 𝑃𝑒(𝑘) > 0 (A.1)

The increment function along the trajectory is:

𝛥𝑉 (𝑒(𝑘)) = 𝑉 (𝑒(𝑘 + 1)) − 𝑉 (𝑒(𝑘)) (A.2)

The ∞ criterion guarantees the asymptotic convergence of the esti-
mation error and the robustness to disturbances, verifying the following
dissipation inequality:

𝛥𝑉 (𝑒(𝑘)) + 𝑒(𝑘)𝑇 𝑒(𝑘) − 𝛾2𝜑(𝑘)𝑇𝜑(𝑘) < 0 (A.3)

Substituting (A.2) into (A.3) and using the dynamic equation of
error (29), the following is obtained:

𝑒(𝑘)𝑇 (𝛷𝑇
𝑧 𝑃𝛷𝑧 − 𝑃 + 𝐼𝑛)𝑒(𝑘) + 𝑒(𝑘)𝑇 (𝛷𝑇

𝑧 𝑃𝛤𝑧)𝜑(𝑘) + 𝜑(𝑘)
𝑇 (𝛤 𝑇𝑧 𝑃𝛷𝑧)𝑒(𝑘)

+ 𝜑(𝑘)𝑇 (𝛤 𝑇𝑧 𝑃𝛤𝑧 − 𝛾
2𝐼𝑛)𝜑(𝑘) < 0 (A.4)

Rewriting the previous expression in matrix form:

(

𝑒(𝑘)𝑇 𝜑(𝑘)𝑇
)

(

𝛷𝑇
𝑧 𝑃𝛷𝑧 − 𝑃 + 𝐼 𝛷𝑇

𝑧 𝑃𝛤𝑧
𝛤 𝑇𝑧 𝑃𝛷𝑧 𝛤 𝑇𝑧 𝑃𝛤𝑧 − 𝛾

2𝐼

)(

𝑒(𝑘)

𝜑(𝑘)

)

(A.5)

which can hold for any
(

𝑒(𝑘)

𝜑(𝑘)

)

must be non-zero, if and only if

(

𝛷𝑇
𝑧 𝑃𝛷𝑧 − 𝑃 + 𝐼 𝛷𝑇

𝑧 𝑃𝛤𝑧
𝛤 𝑇𝑧 𝑃𝛷𝑧 𝛤 𝑇𝑧 𝑃𝛤𝑧 − 𝛾

2𝐼

)

< 0 (A.6)

writing the condition as
(

−𝑃 + 𝐼 0

0 −𝛾2𝐼

)

+

(

𝛷𝑇
𝑧 𝑃𝛷𝑧 𝛷𝑇

𝑧 𝑃𝛤𝑧
𝛤 𝑇𝑧 𝑃𝛷 𝛤 𝑇𝑧 𝑃𝛤𝑧

)

< 0 (A.7)

then, using the Schur complement, the following expression is ob-
tained:
⎛

⎜

⎜

⎜

−𝑃 + 𝐼 0 𝛷𝑇
𝑧 𝑃

0 −𝛾2𝐼 𝛤 𝑇𝑧 𝑃

⎞

⎟

⎟

⎟

< 0 (A.8)
⎝
𝑃𝛷𝑧 𝑃𝛤𝑧 −𝑃

⎠



h

t

e

W

Z

Z

Z

Z

[

𝐸𝑑 𝐹𝑣 𝐸𝛿
]

, in (A.8), isreplacing 𝛷𝑧 = 𝐴𝑧 − 𝐿𝑧𝐶 and 𝛤𝑧 = 
aved:

⎛

⎜

⎜

⎜

⎝

−𝑃 + 𝐼 0 𝐴𝑇𝑧 𝑃 − 𝐶𝑇𝐿𝑇𝑧 𝑃

⋆ −𝛾2𝐼
[

𝑃𝐸𝑑 −𝑃𝐿𝑧𝐹𝑣 𝑃𝐸𝛿
]𝑇

⋆ ⋆ −𝑃

⎞

⎟

⎟

⎟

⎠

< 0 (A.9)

perform a change of variable in (A.9), such that 𝑊𝑧 = 𝑃𝐿𝑧, to transform
his condition into an LMI, is obtained:

⎛

⎜

⎜

⎜

⎝

−𝑃 + 𝐼 0 𝐴𝑇𝑧 𝑃 − 𝐶𝑇𝑊 𝑇
𝑧

⋆ −𝛾̄𝐼
[

𝑃𝐸𝑑 −𝑊𝑧𝐹𝑣 𝑃𝐸𝛿
]𝑇

⋆ ⋆ −𝑃

⎞

⎟

⎟

⎟

⎠

< 0 (A.10)

xtending the inequality in (A.10), we finally obtain as follows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑃 + 𝐼 0 0 0 𝐴𝑇𝑧 𝑃 − 𝐶𝑇𝑊 𝑇
𝑧

⋆ −𝛾̄𝐼 0 0 𝐸𝑇𝑑 𝑃

⋆ ⋆ −𝛾̄𝐼 0 𝐹 𝑇𝑣 −𝑊 𝑇
𝑧

⋆ ⋆ ⋆ −𝛾̄𝐼 𝐸𝑇𝛿 𝑃

⋆ ⋆ ⋆ ⋆ −𝑃

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

< 0 (A.11)

By considering 𝛾̄ = 𝛾2, sufficient LMI conditions are obtained. □
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