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A B S T R A C T

In this paper, an actuator fault and state interval estimation method for a class of nonlinear systems is proposed
by integrating observer design and zonotope analysis. For the considered systems, we present a novel unknown
input observer structure with broad applications. The design procedure is based on 𝐻∞ method to decrease the
influence of unknown but bounded process disturbances and measurement noise. Moreover, a novel interval
estimation method is presented based on zonotope analysis to obtain tighter intervals. Numerical simulations
of a quadruple-tank system are conducted to assess the performance of the proposed approach.
1. Introduction

To enhance performance and product quality, industrial systems
have become progressively complex, consequently escalating the likeli-
hood of faults. To fulfill the requirements for reliability and safety, fault
diagnosis schemes have received extensive attention in recent years [1–
4]. As a part of the fault diagnosis scheme, rather than merely detecting
fault occurrences, fault estimation methods aim to reconstruct faults
and estimate their magnitudes. This estimation process plays a key role
in implementing active fault-tolerant control (FTC) strategies [5–8].

In recent years, some results have been made in addressing the
roblem of fault estimation in nonlinear systems [9–11]. In [12], the

authors presented a fault estimation method for Lipschitz nonlinear
systems based on an intermediate estimator. State estimation and fault
diagnosis method was designed by integrating optimal observer design
and differential geometry for nonlinear systems subject to an actuator
or plant fault [13]. However, the methods in [12,13] ignore the effect
of measurement noise. To consider it, the authors of [14] addressed
the fault estimation problem in the presence of unknown inputs and
uncertain external disturbances. Their robust approach, formulated
within the 𝐻∞ framework, decouples the unknown input and attenu-
ates the effect of external disturbances at the same time. [15] proposed
a actuator fault estimation method based on delta operator and ap-
plied it to a two-stage chemical reactor system with time delays and
external disturbances. In [16], the authors developed a new adaptive
fuzzy observer design scheme to achieve fault estimation for a class
of continuous-time nonlinear Markovian jump systems. However, these
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methods only focus on a punctual fault estimation but do not provide
fault estimation uncertainty bounds.

Interval estimation provides a confidence interval for the estimated
variables. The upper and lower bounds of the interval define the
plausible range within which the true fault or state lies [17]. Interval
estimation methods are mainly based on interval observers [18–22] and
set-based interval estimation [23–25] methods. An unknown interval
observer for discrete-time linear switched systems is presented in [19]
which is based on the Input-to-State Stability. In [21], the authors
proposed a T–N–L observer and applied it to the design of interval
observers for discrete-time linear systems. By introducing parameter
matrices 𝑻 and 𝑵 , the T–N–L observer provides more design degrees of
freedom. However, the design conditions of interval observers are often
too strict to be satisfied, which limits their application range [23].

By combining an unknown input observer with a set-membership es-
timation technique, [26] addressed the joint state and fault estimation
problem for a class of nonlinear systems affected by unknown bounded
disturbance and actuator fault. The quadratic boundedness method is
used to design the observer, and the interval estimation is obtained
by overbounding the estimation error. Moreover, the uncertainties like
disturbance and noise considered in [26] are assumed to be unknown
bounded in ellipsoid sets. In [27], authors designed an ellipsoid-based
framework for actuator fault estimation and the remaining useful life
prediction. The actuator fault estimation is achieved by integrating
𝐿∞ observer design and ellipsoid analysis. Similar to ellipsoids, zono-
topes are a kind of geometric regions that provide a good trade-off
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between computational efficiency and estimation accuracy and have
been widely used in the field of fault diagnosis [28–30]. A sensor
fault estimation method for the discrete-time linear system is presented
in [31], which transforms the system to an augmented descriptor
system and uses the zonotopic Kalman filter to obtain the interval
estimation. The authors of [32] proposed a fault detection method for
nonlinear systems based on zonotopic filter, which demonstrates the
otential of zonotopes in handling complex system dynamics. However,
ew joint fault and state interval estimation methods for discrete-time
onlinear systems have been designed, and it is still a challenging and

worthwhile problem to be investigated.
Motivated by the above-mentioned discussion, this paper aims to

propose a simultaneous actuator fault and state interval estimation
approach for a class of nonlinear systems [14,26,33] by combining the
bserver design with zonotope analysis, and the considered systems are
ffected by unknown input and actuator fault. The main contributions
re summarized as follows:

• An observer with a T–N–L structure is proposed to decouple the
unknown input, and its sufficient design conditions are derived
by using 𝐻∞ method to minimize the influence of unknown but
bounded disturbances and noise.

• Based on the proposed robust observer, zonotope analysis is used
for fault and state interval estimation, obtaining tighter intervals
than the existing method in [26].

This paper is organized as follows. Some preliminaries are given in
ection 2. In Section 3, the interval estimation problem for a class of
onlinear systems is formulated. Section 4 presents the main results
f the proposed method via a T–N–L observer design and zonotope
nalysis. In Section 5, numerical simulations under two fault scenarios
re conducted to verify the effectiveness of the proposed method.
inally, the conclusions are drawn in Section 6.

. Preliminaries

Notation: 𝑘 is time step. R𝑛 denotes 𝑛 dimensional vector space,
𝑛×𝑚 stand for the set of real matrices with 𝑛 × 𝑚 dimension. R≥0

epresents the set of all non-negative real numbers. ⊕ is the symbol
f Minkowski sum. The symbols ≤, ≥ and absolute value operator | ⋅ |
re understood element-wise. For a vector 𝒂 ∈ R𝑛, 𝒂(𝑖) is the 𝑖th
lement of 𝒂. diag(𝒂) denotes a diagonal matrix with 𝒂 as the main
iagonal. ‖𝒂‖1 =

∑𝑛
𝑖=1 |𝒂(𝑖)| denotes the 𝐿1 norm of 𝒂. The interval set

𝒂] = [𝒂−,𝒂+] is introduced in Definition 1. For a matrix 𝑨 ∈ R𝑛×𝑚, 𝑨T

nd 𝑨† are the transpose and pseudo-inverse matrix of 𝑨, respectively.
(𝑖, ∶) and 𝑨(𝑖, 𝑗) represent the 𝑖th row vector and the (𝑖, 𝑗)-th element

n 𝑨, respectively. The interval matrix set [𝑨] = [𝑨−,𝑨+] is described
n Definition 2. In a symmetric matrix, the asterisk ∗ stands for the
ymmetric term. 𝟎 and 𝑰 are zero and identity matrix, respectively.
≻ 𝟎 (𝑷 ≺ 𝟎) presents that 𝑷 is a positive (negative) definite square

atrix. For a signal 𝒙, ‖𝒙‖2 =
√

∑∞
𝑘=1 𝒙

T
𝑘𝒙𝑘 denotes the 𝐿2 normal of

. 𝛼 > 0 (𝛼 < 0) implies that 𝛼 is positive (negative) scalar.

efinition 1. For a vector 𝒂 ∈ R𝑛, the real interval vector [𝒂] ⊂ R𝑛 is
efined as:

𝒂] = [𝒂−,𝒂+] =
{

𝒂 ∈ R𝑛 ∶ 𝒂− ≤ 𝒂 ≤ 𝒂+
}

. (1)

here 𝒂− ∈ R𝑛,𝒂+ ∈ R𝑛 are the lower and upper bound of 𝒂,
espectively.

efinition 2. For a matrix 𝑨 ∈ R𝑛×𝑚, the real interval matrix [𝑨] ⊂
𝑛×𝑚 is defined as:
𝑨] = [𝑨−,𝑨+]

=
{

𝑨 ∈ R𝑛×𝑚 ∶ 𝑨−(𝑖, 𝑗) ≤ 𝑨(𝑖, 𝑗) ≤ A+(𝑖, 𝑗) , (2)

𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚} .
,𝑹[𝑨] =
𝑨+ −𝑨−

2
,

𝒔[𝑨] =
𝑚
∑

𝑗=1
𝑹[𝑨](𝑖, 𝑗), 𝑖 = 1,… , 𝑛.

(3)

Definition 3. An 𝑚-order zonotope  ⊂ R𝑛 is defined as:

 = 𝒄 ⊕𝑮𝑚 = {𝒄 +𝑮𝜀, 𝜀 ∈ 𝑚} (4)

where 𝒄 ∈ R𝑛 is the center of  , 𝑮 ∈ R𝑛×𝑚 is the generator matrix of  ,
and 𝑚 = [−1, 1]𝑚 is a hypercube. For simplicity, the zonotope is also
denoted as  = ⟨𝒄,𝑮⟩.

Property 1 ([24]). The zonotopes in R𝑛 satisfy:

⟨𝒄1,𝑮1⟩⊕ ⟨𝒄2,𝑮2⟩ = ⟨𝒄1 + 𝒄2, [𝑮1 𝑮2]⟩ (5)

𝑲⟨𝒄,𝑮⟩ + 𝒂 = ⟨𝑲𝒄 + 𝒂,𝑲𝑮⟩ (6)

 ∈ ⟨𝒄,𝑮⟩ ⊆ ⟨𝒄, ↓𝑑 (𝑮)⟩ (7)

𝒙 ∈ ⟨𝒄,𝑮⟩ ⊆ [𝒙] = [𝒙−,𝒙+] (8)

where 𝑲 and 𝒂 stand for the known matrix and vector with appropriate
dimensions, respectively. ↓𝑑 (⋅) is the zonotope reduction operator, where
𝑑(𝑛 < 𝑑 < 𝑚) is the chosen integer. ⃖⃖⃗𝑮 denotes the matrix obtained by
reordering the columns of 𝑮 in decreasing Euclidean norm. Then, ↓𝑑 (𝑮) =
[𝑮𝑎,𝑮𝑏], 𝑮𝑎 is composed of the first 𝑑−𝑛 columns of ⃖⃖⃗𝑮 and 𝑮𝑏 is a diagonal
matrix with 𝑮𝑏(𝑖, 𝑖) =

∑𝑚
𝑗=𝑑−𝑛+1

⃖⃖⃗𝑮(𝑖, 𝑗), 𝑖 = 1,… , 𝑛. Moreover, the bounds
of 𝒙 can be calculated as:
{

𝒙−(𝑖) = 𝒄(𝑖) − ‖𝑮(𝑖, ∶)‖1
𝒙+(𝑖) = 𝒄(𝑖) + ‖𝑮(𝑖, ∶)‖1

, 𝑖 = 1,… , 𝑛

Lemma 1 ([21]). Given matrices 𝒀 ∈ R𝑏×𝑐 , 𝒁 ∈ R𝑎×𝑐 , if rank(𝒀 ) = 𝑐,
then the general solution of equation 𝑿𝒀 = 𝒁 is obtained by

𝑿 = 𝒁𝒀 † +𝜣(𝑰 𝑐 − 𝒀 †𝒀 ) (9)

where 𝜣 ∈ R𝑎×𝑏 is an arbitrary matrix.

Lemma 2 ([34]). There exist 𝑿 ≻ 𝟎, 𝒀 , 𝒁 and 𝑶 matrices with suitable
dimension such that

𝒁T𝑿𝒁 − 𝒀 ≺ 𝟎 (10)
[

−𝒀 ∗
𝑶𝒁 𝑿 −𝑶 −𝑶T

]

≺ 𝟎 (11)

Lemma 3 (Inclusion Function [35]). Let 𝒈 ∶ R𝑛 → R𝑚 be a vector function,
and [𝒙] ∈ R𝑛 be an interval vector, the inclusion function [𝒈] is defined as
the application of 𝒈 over the entire set represented by [𝒙], that is

∀[𝒙] ∈ R𝑛, 𝒈([𝒙]) ⊆ [𝒈]([𝒙]) (12)

where [𝒈] is derived by substituting each real variable with its corresponding
interval and replacing standard operations with interval operations. The in-
terval arithmetic operations are introduced in [36] and can be implemented
using a toolbox as e.g. Cora [37].

Lemma 4 (Mean Value Extension [35]). Let 𝒈 ∶ R𝑛 → R𝑚 be a nonlinear
vector function with continuous first-order derivatives over a set  ⊆ R𝑛.
For any real vector 𝒙 ∈  , the mean value extension of 𝒈 over  can be
expressed as

𝒈() ⊆ 𝒈(𝒙)⊕ [
𝜕𝒈
𝜕𝒙

]()( − 𝒙) (13)

here [ 𝜕𝒈𝜕𝒙 ]() denotes an interval enclosure for 𝜕𝒈
𝜕𝒙 over  . Moreover, using

the zonotope to represent a set, i.e.,  = ⟨𝒄,𝑮⟩ ⊆ [𝒙], (13) can be rewritten

where 𝑨− ∈ R𝑛×𝑚, 𝑨+ ∈ R𝑛×𝑚 are the lower and upper bound of 𝑨,
respectively. The matrices 𝑴 [𝑨] ∈ R𝑛×𝑚, 𝑹[𝑨] ∈ R𝑛×𝑚 and a vector 
𝒔[𝑨] ∈ R𝑛 associated with [𝑨] are respectively defined as

𝑴 [𝑨] = 𝑨
+ 

2
+ 𝑨−
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as

𝒈() ⊆ 𝒈(𝒄)⊕ [
𝜕𝒈
𝜕𝒙

]([𝒙])⟨𝟎,𝑮⟩. (14)

emma 5 (Zonotope Inclusion [35]). Consider a family of zonotopes
epresented by  = 𝒄⊕ [𝑮]𝑚, where 𝒄 ∈ R𝑛 is the center and [𝑮] ∈ R𝑛×𝑚

s the interval generator matrix. The zonotope inclusion ◊ is defined by:

 = 𝒄 ⊕
[

𝑴 [𝑮], diag(𝒔[𝑮])
]

𝑚+𝑛

= ⟨𝒄,
[

𝑴 [𝑮], diag(𝒔[𝑮])
]

⟩

= ⟨𝒄,ZonIn([𝑮])⟩

(15)

here 𝑴 [𝑮] ∈ R𝑛×𝑚, 𝒔[𝑮] are a matrix and a vector related to [𝑮] which
an be computed by (3).

. Problem formulation

Consider the following discrete-time nonlinear systems subject to
nknown input disturbance and actuator fault

⎧

⎪

⎨

⎪

⎩

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 +𝑫𝒅𝑘 + 𝒉(𝒙𝑘, 𝒖𝑘) + 𝑩𝒇𝑘 + 𝑬1𝒘𝑘,

𝒚𝑘 = 𝑪𝒙𝑘 + 𝑬2𝒗𝑘,

𝒇𝑘+1 = 𝒇𝑘 + 𝜟𝒇𝑘,

(16)

here 𝒙𝑘 ∈ R𝑛𝑥 is the system state vector, 𝒖𝑘 ∈ R𝑛𝑢 is the control
nput vector, 𝒅𝑘 ∈ R𝑛𝑑 is the unknown input vector, 𝒇𝑘 ∈ R𝑛𝑓 is
he actuator fault vector, 𝒚𝑘 ∈ R𝑛𝑦 is the measurement output vector,
𝑘 ∈ R𝑛𝑤 is the process disturbance vector, 𝒗𝑘 ∈ R𝑛𝑣 is the mea-

urement noise vector, and 𝜟𝒇𝑘 ∈ R𝑛𝑓 is the actuator fault variation.
, 𝑩, 𝑪,𝑫, 𝑭 ,𝑬1,𝑬2 are the known matrices with suitable dimensions.
(𝒙𝑘, 𝒖𝑘) is a nonlinear vector function with first-order derivative with
espect to 𝒙. Based on the mean value theorem, we have

(𝒂, 𝒖) − 𝒉(𝒃, 𝒖) = 𝑯𝑥,𝑢(𝒂 − 𝒃), (17)

𝑥,𝑢 =
𝜕𝒉
𝜕𝒙

(𝝃, 𝒖) ∈ R𝑛×𝑛 (18)

here 𝝃 ∈ [𝒂, 𝒃], 𝝃 ≠ 𝒂, 𝝃 ≠ 𝒃. According to the fact that state 𝒙 is
ounded, i.e., 𝒙 ∈ [𝒙−,𝒙+], it can be obtained that
− ≤ 𝜕𝒉

𝜕𝒙
(𝒙, 𝒖) ≤ 𝑯+. (19)

where 𝑯−, 𝑯+ are known matrix bounds. Based on Definition 2, 𝑯𝑥,𝑢 ∈
[𝑯] = [𝑯−,𝑯+] can be inferred.

In this paper, the following assumptions are considered.

Assumption 1. There exists a matrix 𝑯 ∈ [𝑯], vectors 𝒙− ≤ 𝒂 < 𝒃 ≤
+ and 𝛥𝒉 = 𝒉(𝒂, 𝒖) − 𝒉(𝒃, 𝒖), such that

𝒉T(𝒂 − 𝒃) ≤ (𝒂 − 𝒃)T𝑯T(𝒂 − 𝒃) (20)

𝜟𝒉T𝛥𝒉 ≤ (𝒂 − 𝒃)T𝑯T𝑯(𝒂 − 𝒃) (21)

otably, if 𝑯T𝑯 = 𝛾2𝑰 , the condition in (21) aligns with the stan-
ard Lipschitz condition, with 𝛾 representing the Lipschitz constant.
oreover, if 𝑯 = 𝜌𝑰 , the condition in (20) aligns with the one-sided

ipschitz condition. Consequently, the proposed method in this paper
ccommodates a broader range of systems.

ssumption 2. To decouple the effects of unknown inputs, the
ollowing rank condition needs to be satisfied as

ank(𝑪𝑫) = rank(𝑫) = 𝑛𝑑 , 𝑛𝑑 < 𝑛𝑦 (22)

Assumption 3. The initial state 𝒙0, the initial fault 𝒇 0, the process
disturbance 𝒘𝑘, the measurement noise 𝒗𝑘 and the actuator fault vari-
tion 𝜟𝒇𝒌 in system (16) are assumed to be unknown but bounded as
ollows:
𝒙0 − 𝒄𝑥,0| ≤ 𝒙̃, |𝒇 0 − 𝒄𝑓,0| ≤ 𝒇̃ , |𝒘𝑘| ≤ 𝒘̃,

|𝒗𝑘| ≤ 𝒗̃, |𝜟𝒇𝑘| ≤ 𝜟𝒇̃ ,
(23)

where 𝒙̃, 𝒘̃, 𝒗̃, and 𝜟𝒇̃ are known vectors.
Remark 1. If Assumption 2 does not hold, the effects of unknown in-
put cannot be fully decoupled, but can be mitigated. If Assumption 3 is
not met, the results obtained by the set-membership estimation method
are overly conservative due to the lack of boundary assumptions.
Although this could reduce precision and reliability, these methods may
still useful.

This paper aims to design an interval estimation method to find both
actuator fault interval [𝒇𝑘] and state interval [𝒙𝑘] such that 𝒇−

𝑘 ≤ 𝒇𝑘 ≤
𝒇+
𝑘 and 𝒙−𝑘 ≤ 𝒙𝑘 ≤ 𝒙+𝑘 , instead of a single point estimation, providing

these intervals tighter as possible.

4. Simultaneous interval estimation of state and actuator fault

In this section, a robust observer and its sufficient design conditions
will be presented. Then, an interval estimation of the state and actuator
fault method based on zonotope analysis is provided.

4.1. A T–N–L observer design

A robust observer with T–N–L structure is proposed for system (16):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒛̂𝑘+1 = 𝑻𝑨𝒙̂𝑘 + 𝑻𝑩𝒖𝑘 + 𝑻 𝒉(𝒙̂𝑘, 𝒖𝑘) + 𝑻𝑩𝒇̂𝑘

+ 𝑳1(𝒚𝑘 − 𝑪𝒙̂𝑘)

𝒙̂𝑘 = 𝒛̂𝑘 +𝑵𝒚𝑘
𝒇̂𝑘+1 = 𝒇̂𝑘 +𝑳2(𝒚𝑘 − 𝑪 𝑥̂𝑘)

(24)

here 𝒛̂𝑘 ∈ R𝑛𝑥 , 𝒙̂𝑘 ∈ R𝑛𝑥 , 𝒇̂𝑘 ∈ R𝑛𝑓 denote the observer intermediate
tate, the estimate of 𝒙𝑘 and the estimate of 𝒇𝑘, respectively. 𝑻 ∈
𝑛𝑥×𝑛𝑥 , 𝑵 ∈ R𝑛𝑦×𝑛𝑥 , 𝑳1 ∈ R𝑛𝑥×𝑛𝑦 , 𝑳2 ∈ R𝑛𝑓×𝑛𝑦 are parameter matrices

hat should be designed. In addition, 𝑻 and 𝑵 need to satisfy the
ollowing relations:

𝑫 = 𝟎, (25)

+𝑵𝑪 = 𝑰𝑛𝑥 . (26)

𝑻 and 𝑵 can be considered as weighting matrices to select information
rom model and measurement outputs. (25) ensures that unknown
nput 𝒅𝑘 does not affect the state estimation. By post-multiplying (26)
ith 𝑫, we get

𝑪𝑫 = 𝑫. (27)

ased on Assumption 1 and Lemma 1, the general solution of 𝑵 and 𝑻
an be obtained as

= 𝑫(𝑪𝑫)† +𝜣(𝑰𝑛𝑦 − (𝑪𝑫)(𝑪𝑫)†) (28)

= 𝑰𝑛𝑥 −𝑫(𝑪𝑫)†𝑪 −𝜣(𝑰𝑛𝑦 − (𝑪𝑫)(𝑪𝑫)†)𝑪 (29)

here 𝜣 ∈ R𝑛𝑥×𝑛𝑦 is an arbitrary matrix that need to be determined.
To analyze observer (24), the state and fault estimation error is

efined as

𝒆𝑥,𝑘 = 𝒙𝑘 − 𝒙̂𝑘, (30)

𝑓,𝑘 = 𝒇𝑘 − 𝒇̂𝑘. (31)

aking into account (16), (24)−(26), we have:

𝑥,𝑘+1 = (𝑻 +𝑵𝑪)𝒙𝑘+1 − 𝒛̂𝑘+1 −𝑁𝒚𝑘+1
= 𝑻𝒙𝑘+1 +𝑵(𝒚𝑘+1 − 𝑬2𝒗𝑘+1) − 𝒛̂𝑘+1 −𝑁𝒚𝑘+1
= (𝑻𝑨 −𝑳1𝑪)𝒆𝑥,𝑘 + 𝑻𝑩𝒆𝑓,𝑘
− 𝑻 (𝒉(𝒙𝑘, 𝒖𝑘) − 𝒉(𝒙̂𝑘, 𝒖𝑘))

+ 𝑻𝑬1𝒘𝑘 −𝑳1𝑬2𝒗𝑘 −𝑵𝑬2𝒗𝑘+1

(32)

𝑓,𝑘+1 = 𝒇𝑘 + 𝜟𝒇𝑘 − 𝒇̂𝑘 −𝑳2(𝒚𝑘 − 𝑪 𝑥̂𝑘) (33)

= 𝑳2𝑪𝒆𝑥,𝑘 + 𝒆𝑓,𝑘 + 𝜟𝒇𝑘 −𝑳2𝑬2𝒗𝑘.
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⎢

⎢

⎢

⎣

𝜟
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By defining

𝒆𝑘 =
[

𝒆𝑥,𝑘
𝒆𝑓,𝑘

]

,𝜟𝒉𝑘 = 𝒉(𝒙𝑘, 𝒖𝑘) − 𝒉(𝒙̂𝑘, 𝒖𝑘),𝒘𝑘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝒘𝑘
𝜟𝒇𝑘
𝒗𝑘
𝒗𝑘+1

⎤

⎥

⎥

⎥

⎥

⎦

, (34)

the augmented error dynamic system can be formulated as

𝒆𝑘+1 = 𝑺𝒆𝑘 + 𝑻𝜟𝒉𝑘 + 𝑬𝒘𝑘 (35)

here

= 𝑨 −𝑳𝑪 ,𝑬 = 𝑬1 −𝑳𝑬2,𝑨 =
[

𝑻𝑨 𝑻𝑩
𝟎 𝑰

]

,

𝑳 =
[

𝑳1
𝑳2

]

,𝑬1 =
[

𝑻𝑬1 𝟎 𝟎 −𝑵𝑬2
𝟎 𝑰 𝟎 𝟎

]

,

𝑬2 =
[

𝟎 𝟎 𝑬2 𝟎
]

,𝑪 =
[

𝑪 𝟎
]

.

(36)

ased on the augmented error dynamic system (35), the following
heorem is proposed to give sufficient design conditions for fault and
tate observer (24).

heorem 1. For a prescribed 𝒘𝑘 ∈ R𝑛𝜔 (𝑛𝜔 = 𝑛𝑥 + 𝑛𝑓 + 2𝑛𝑣)
attenuation level 𝛿 > 0, if there exist constants 𝛼 > 0, 𝛽 > 0, matrices
𝑷 ≻ 𝟎 ∈ R(𝑛𝑥+𝑛𝑓 )×(𝑛𝑥+𝑛𝑓 ), 𝑾 ∈ R(𝑛𝑥+𝑛𝑓 )×𝑛𝑦 and 𝑶 ∈ R𝑛𝑥×𝑛𝑥 for all 𝑯 ∈
[𝑯] such that

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜞 11 ∗ ∗ ∗ ∗
−𝛼𝒀 −𝛽𝑰𝑛𝑥 ∗ ∗ ∗
𝟎 𝟎 −𝛿2𝑰𝑛𝜔 ∗ ∗

𝑷𝑨 −𝑾 𝑪 𝑷𝑻 𝑷𝑬1 −𝑾𝑬2 −𝑷 ∗
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⎤

⎥

⎥

⎥

⎥

⎥

⎦

≺ 𝟎 (37)

here

11 = 𝑰𝑛𝑥+𝑛𝑓 − 𝑷 + 𝛼𝒀 T(𝑯T +𝑯)𝒀 ,

𝜞 55 = 𝛽𝑰𝑛𝑥 −𝑶 −𝑶T,

𝒀 = [𝑰𝑛𝑥 𝟎].

Then, the augmented error system in (35) is stable and satisfies the condition

(‖𝒆‖2)2 ≤ 𝛿2(‖𝒘‖2)2 + 𝒆T0𝑷𝒆0. (38)

To improve estimation performance, the following optimization problem
eeds to be solved

in 𝛿2, s.t. (37). (39)

hen, if the optimization problem in (39) is solvable, the matrices 𝑳1 and
2 can be determined by

𝑳 = 𝑷 −1𝑾 ,𝑳1 = 𝑳(1 ∶ 𝑛𝑥, ∶),

2 = 𝑳(𝑛𝑥 + 1 ∶ 𝑛𝑥 + 𝑛𝑓 , ∶).
(40)

roof. The following Lyapunov function for the augmented system is
efined as:

𝑘 = 𝒆T𝑘𝑷𝒆𝑘, 𝑷 ≻ 𝟎 (41)

nd its time difference is

𝑉𝑘 = 𝑉𝑘+1 − 𝑉𝑘 = 𝒆T𝑘+1𝑷𝒆𝑘+1 − 𝒆T𝑘𝑷𝒆𝑘. (42)

Substituting (35) into (42) yields

𝛥𝑉𝑘 = [𝒆T𝑘 𝜟𝒉T𝑘 𝒘T
𝑘 ]𝜳 [𝒆T𝑘 𝜟𝒉T𝑘 𝒘T

𝑘 ]
T (43)

with

𝜳 =

⎡

⎢

⎢

⎢

𝑺T𝑷𝑺 ∗ ∗
𝑻
T
𝑷𝑺 𝑻

T
𝑷𝑻 ∗

T T T

⎤

⎥

⎥

⎥

. (44)
⎣

𝑬 𝑷𝑺 𝑬 𝑷𝑻 𝑬 𝑷𝑬
⎦

ubstituting

𝑷𝑺 = 𝑷𝑨 − 𝑷𝑳𝑪 = 𝑷𝑨 −𝑾 𝑪 ,

𝑷𝑬 = 𝑷𝑬1 − 𝑷𝑳𝑬2 = 𝑷𝑬1 −𝑾𝑬2,

with 𝑾 = 𝑷𝑳 into (37), inequality (37) becomes

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜞 11 ∗ ∗ ∗ ∗
−𝛼𝒀 −𝛽𝑰𝑛𝑥 ∗ ∗ ∗
𝟎 𝟎 −𝛿2𝑰𝑛𝜔 ∗ ∗

𝑷𝑺 𝑷𝑻 𝑷𝑬 −𝑷 ∗
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⎤

⎥

⎥

⎥

⎥

⎥

⎦

≺ 𝟎. (45)

Taking into account Lemma 2, (45) can be rewritten as

⎡

⎢

⎢

⎢

⎢

⎣

𝜰 11 ∗ ∗ ∗
−𝛼𝒀 −𝛽𝑰𝑛𝑥 ∗ ∗
𝟎 𝟎 −𝛿2𝑰𝑛𝜔 ∗

𝑷𝑺 𝑷𝑻 𝑷𝑬 −𝑷

⎤

⎥

⎥

⎥

⎥

⎦

≺ 𝟎. (46)

where 𝜰 11 = 𝑰𝑛𝑥+𝑛𝑓 − 𝑷 + 𝛼𝒀 T(𝑯T +𝑯)𝒀 + 𝛽𝒀 T𝑯T𝑯𝒀 .
Then, we apply the Schur complement lemma [38] to rewrite (46)

s
𝜩11 ∗ ∗

𝑻
T
𝑷𝑺 − 𝛼𝒀 𝑻

T
𝑷𝑻 − 𝛽𝑰𝑛𝑥 ∗

𝑬
T
𝑷𝑺 𝑬

T
𝑷𝑻 𝜩33

⎤

⎥

⎥

⎥

⎦

≺ 𝟎, (47)

with 𝜩11 = 𝑺T𝑷𝑺 + 𝑰𝑛𝑥+𝑛𝑓 − 𝑷 + 𝛼𝒀 T(𝑯T +𝑯)𝒀 + 𝛽𝒀 T𝑯T𝑯𝒀 , 𝜩33 =

𝑬
T
𝑷𝑬 − 𝛿2𝑰𝑛𝜔 , and it equals to

𝜳 +
⎡

⎢

⎢

⎣

𝜰 11 ∗ ∗
−𝛼𝒀 −𝛽𝑰𝑛𝑥 ∗
𝟎 𝟎 −𝛿2𝑰𝑛𝜔

⎤

⎥

⎥

⎦

≺ 𝟎, (48)

Now, we can get that if (48) is satisfied, (37) holds.
Pre- and post-multiplying (48) with [𝒆T𝑘 𝜟𝒉T𝑘 𝒘T

𝑘 ] and its trans-
pose, respectively. we obtain that

𝛥𝑉𝑘 + 𝒆T𝑘𝒆𝑘 − 𝛿2𝒘T
𝑘𝒘𝑘 + 𝜇1 + 𝜇2 ≤ 0. (49)

where 𝜇1 = 𝛼𝒆T𝑘𝒀
T(𝑯T + 𝑯)𝒀 𝒆𝑘 − 𝛼𝜟𝒉T𝑘𝒀 𝒆𝑘 − 𝛼𝒆T𝑘𝒀

T𝜟𝒉𝑘, 𝜇2 =
𝛽𝒆T𝑘𝒀

T𝑯T𝑯𝒀 𝒆𝑘 − 𝛽𝜟𝒉T𝑘𝜟𝒉𝑘.
According to (20) in Assumption 1, we have

𝜟𝒉T𝑘 (𝒙𝑘 − 𝒙̂𝑘) ≤ (𝒙𝑘 − 𝒙̂𝑘)T𝑯T(𝒙𝑘 − 𝒙̂𝑘)
𝜟𝒉T𝑘𝒆𝑥,𝑘 ≤ 𝒆T𝑥,𝑘𝑯

T𝒆𝑥,𝑘

𝜟𝒉T𝑘𝒆𝑥,𝑘 ≤ 1
2
𝒆T𝑥,𝑘(𝑯

T +𝑯)𝒆𝑥,𝑘

𝒉T𝑘𝒆𝑥,𝑘 + 𝒆T𝑥,𝑘𝜟𝒉𝑘 ≤ 𝒆T𝑥,𝑘(𝑯
T +𝑯)𝒆𝑥,𝑘. (50)

ased on (34), it follows

𝑥,𝑘 = [𝑰𝑛𝑥 𝟎]
[

𝒆𝑥,𝑘
𝒆𝑓,𝑘

]

= 𝒀 𝒆𝑘 (51)

ubstituting (51) into (50) yields that

𝒉T𝑘𝒀 𝒆𝑘 + 𝒆T𝑘𝒀
T𝜟𝒉𝑘 ≤ 𝒆T𝑘𝒀

T(𝑯T +𝑯)𝒀 𝒆𝑘

𝒆T𝑘𝒀
T(𝑯T +𝑯)𝒀 𝒆𝑘 − 𝜟𝒉T𝑘𝒀 𝒆𝑘 − 𝒆T𝑘𝒀

T𝜟𝒉𝑘 ≥ 0 (52)

imilarly, based on (21) in Assumption 1, we obtain

𝜟𝒉T𝑘𝜟𝒉𝑘 ≤ (𝒙𝑘 − 𝒙̂𝑘)T𝑯T𝑯(𝒙𝑘 − 𝒙̂𝑘)
𝜟𝒉T𝑘𝜟𝒉𝑘 ≤ 𝒆T𝑥,𝑘𝑯

T𝑯𝒆𝑥,𝑘
𝜟𝒉T𝑘𝜟𝒉𝑘 ≤ 𝒆T𝑘𝒀

T𝑯T𝑯𝒀 𝒆𝑘
𝒆T𝑘𝒀

T𝑯T𝑯𝒀 𝒆𝑘 − 𝜟𝒉T𝑘𝜟𝒉𝑘 ≥ 0. (53)

ubstituting (52), (53) into (49) yields

𝛥𝑉 + 𝒆T𝒆 − 𝛿2𝒘T𝒘 ≤ 0 (54)
𝑘 𝑘 𝑘 𝑘 𝑘
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𝑘 (55)

When 𝒘𝑘 = 𝟎, we have

𝛥𝑉𝑘 ≤ −𝒆 𝒆𝑘 ≤ 0

which implies the augmented error system in (35) is stable.

Then, we define a criterion as

=
∞
∑

𝑘=1
(𝛥𝑉𝑘 + 𝒆T𝑘𝒆𝑘 − 𝛿2𝒘T

𝑘𝒘𝑘). (56)

According to (42), (56) becomes

𝐽 = 𝑉∞ − 𝑉0 +
∞
∑

𝑘=1
(𝒆T𝑘𝒆𝑘 − 𝛿2𝒘T

𝑘𝒘𝑘). (57)

It is evident that if (54) holds, 𝐽 < 0. Due to 𝑷 ≻ 𝟎, we have 𝑉∞ ≥ 0.
(57) equals to (‖𝒆‖2)2 − 𝛿2(‖𝒘‖2)2 − 𝑉0 = 𝐽 − 𝑉∞. Then 𝐽 < 0 implies
(‖𝒆‖2)2−𝛿2(‖𝒘‖2)2−𝑉0 ≤ 0 and (38) holds. The optimization problem in
45) should be solved for obtaining an accurate interval estimation of
𝑘 and 𝒙𝑘. Additionally, considering the relations in (36), the required
arameter matrices 𝑳1 and 𝑳2 can be obtained by (40). □

emark 2. The interval matrix [𝑯] = [𝑯−,𝑯+] ∈ R𝑛 in Definition 2
an be equivalently expressed as

𝑯] =

{

𝑯(𝝀) ∶ 𝑯(𝝀) =
𝜂
∑

𝑖=1
𝝀(𝑖)𝑯 𝑖,

𝜂
∑

𝑖=1
𝝀(𝑖) = 1,

𝝀(𝑖) ≥ 0, 𝜂 = 2𝑛
2
}

(58)

here 𝑯 𝑖 is a matrix composed by the elements of 𝑯− and 𝑯+,
.e. 𝑯 𝑖(𝑗1, 𝑗2) =

{

𝑯−(𝑗1, 𝑗2),𝑯+(𝑗1, 𝑗2)
}

, 𝑗1, 𝑗2 = 1,… , 𝜂. Considering
here are constant elements in 𝑯 , 𝜂 can be calculated by 𝜂 = 2𝑛2−𝜙 with

is the number of constant elements in 𝑯 . Therefore, substituting
58) to (37) and applying S-procedure, the uncertainty problem in
37) is transformed into a semi-definite programming problem. Similar
rocessing procedures have been applied in existing research [14,26]
nd theoretically ensures the conservativeness and feasibility of the
esults. Solving (37) is equivalent to solving

or 𝑖 = 1,… , 𝜂

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜞 11(𝑖) ∗ ∗ ∗ ∗
−𝛼𝒀 −𝛽𝑰𝑛𝑥 ∗ ∗ ∗
𝟎 𝟎 −𝛿2𝑰𝑛𝜔 ∗ ∗

𝑷𝑨 −𝑾 𝑪 𝑷𝑻 𝑷𝑬1 −𝑾𝑬2 −𝑷 ∗
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⎤

⎥

⎥

⎥

⎥

⎥

⎦

≺ 𝟎
(59)

ith 𝜞 11(𝑖) = 𝑰𝑛𝑥+𝑛𝑓 − 𝑷 + 𝛼𝒀 T(𝑯T
𝑖 + 𝑯 𝑖)𝒀 . Correspondingly, the

ptimization problem in (38) becomes

in 𝛿2, s.t. (59). (60)

.2. Zonotope-based interval estimation

After determining the observer (24), the zonotope analysis is used to
chieve the state and actuator fault interval estimation for the system
n (16) by means of the following theorem.

heorem 2. Given 𝒙0 ∈ 𝑥,0 = ⟨𝒄𝑥,0, 𝑮𝑥,0⟩,𝒇 0 ∈ 𝑓,0 = ⟨𝒄𝑓,0,𝑮𝑓,0⟩,
̂ 0 = 𝒄𝑥,0 and 𝒇̂ 0 = 𝒄𝑓,0, the initial augmented error 𝒆0 is defined as

𝒆0 =
[

𝒙0 − 𝒙̂0
𝒇 0 − 𝒇̂ 0

]

∈ 𝒆,0 = ⟨𝟎, 𝑮𝒆,0⟩ = ⟨𝟎,
[

𝑮𝑥,0
𝑮𝑓,0

]

⟩ (61)

aking into account the augmented error dynamic system (35) and the ob-
erver (24), the augmented error 𝒆𝑘 can be contained by 𝒆,𝑘 = ⟨𝟎,𝑮𝒆,𝑘⟩ ∈
R𝑛𝑥+𝑛𝑓 . Then, the interval estimation [𝒙𝑘] and [𝒇𝑘] are determined as
{

𝒙−𝑘 (𝑖) = 𝒙̂𝑘(𝑖) − ‖𝑮𝒆,𝑘(𝑖, ∶)‖1
𝒙+𝑘 (𝑖) = 𝒙̂𝑘(𝑖) + ‖𝑮𝒆,𝑘(𝑖, ∶)‖1

, (62)
{

𝒇−
𝑘 (𝑗) = 𝒇̂𝑘(𝑗) − ‖𝑮𝒆,𝑘(𝑛𝑥 + 𝑗, ∶)‖1
+ ̂ , (63)
𝒇𝑘 (𝑗) = 𝒇𝑘(𝑗) + ‖𝑮𝒆,𝑘(𝑛𝑥 + 𝑗, ∶)‖1
𝑖 = 1,… , 𝑛𝑥, 𝑗 = 1,… , 𝑛𝑓 .

where

𝑮𝒆,𝑘 =↓𝑑 (𝑮̃𝒆,𝑘) (64)

𝑮̃𝒆,𝑘 = [𝑺𝑮𝒆,𝑘−1 𝑻 𝑮̃𝒙,𝑘−1 𝑬𝑮𝒘] (65)

𝑮̃𝒙,𝑘−1 = ZonIn([𝑯]𝑘−1𝑮𝒙,𝑘−1) (66)

𝑮𝒘 = diag([𝒘̃ 𝜟𝒇̃ 𝒗̃ 𝒗̃]T) (67)

[𝑯]𝑘−1 = [ 𝜕𝒉
𝜕𝒙

]([𝒙−𝑘−1,𝒙
+
𝑘−1], 𝒖𝑘−1) (68)

𝑮𝒙,𝑘−1 = 𝑮𝒆,𝑘−1(1 ∶ 𝑛𝑥, 1 ∶ 𝑛𝑥) (69)

Proof. Based on Assumption 3, (23) can be converted to the following
zonotope form

𝒙0 ∈ 𝒙,0 = ⟨𝒄𝑥,0,𝑮𝑥,0⟩ = ⟨𝒄𝑥,0, diag(𝒙̃)⟩,

𝒇 0 ∈ 𝒇 ,0 = ⟨𝒄𝑓,0,𝑮𝑓,0⟩ = ⟨𝒄𝑓,0, diag(𝒇̃ )⟩.
(70)

Given 𝒙̂0 = 𝒄𝑥,0 and 𝒇̂ 0 = 𝒄𝑓,0, the initial augmented error 𝒆0 and
disturbance 𝒘𝑘 is contained by

𝒆0 ∈ 𝒆,0 = ⟨𝟎,𝑮𝒆,0⟩ = ⟨𝟎,
[

𝑮𝑥,0
𝑮𝑓,0

]

⟩,

𝒘𝑘 ∈ 𝒘 = ⟨𝟎,𝑮𝒘⟩ = ⟨𝟎, diag([𝒘̃T 𝜟𝒇̃T 𝒗̃T 𝒗̃T]T)⟩.
(71)

Correspondingly, we have

𝒙𝑘 ∈ 𝒙,𝑘 = ⟨𝒙̂𝑘,𝑮𝑥,𝑘⟩,𝒇𝑘 ∈ 𝒇 ,𝑘 = ⟨𝒇̂𝑘,𝑮𝑓,𝑘⟩,

𝒆𝑘 =
[

𝒙𝑘 − 𝒙̂𝑘
𝒇𝑘 − 𝒇̂𝑘

]

∈ 𝒆,𝑘 = ⟨𝟎,𝑮𝒆,𝑘⟩ = ⟨𝟎,
[

𝑮𝑥,𝑘
𝑮𝑓,𝑘

]

⟩.
(72)

Then, according to the augmented error system (35), we obtain

𝒆𝑘 = 𝑺𝒆𝑘−1 + 𝑻𝜟𝒉𝑘−1 + 𝑬𝒘𝑘−1

∈ 𝑺𝒆,𝑘−1 ⊕ 𝑻 (𝒉(𝒙,𝑘−1, 𝒖𝑘 − 1) − 𝒉(𝒙̂𝑘−1, 𝒖𝑘−1))⊕ 𝑬𝒘.
(73)

Based on 𝒙,𝑘−1 = ⟨𝒙̂𝑘−1,𝑮𝒙,𝑘−1⟩, Lemmas 4 and 5, it can be shown that

(𝒙,𝑘−1, 𝒖𝑘−1) − 𝒉(𝒙̂𝑘−1, 𝒖𝑘−1)

⊆ [ 𝜕𝒉
𝜕𝒙

](𝒙,𝑘−1, 𝒖𝑘−1)(𝒙,𝑘−1 − 𝒙̂𝑘−1)

⊆ [ 𝜕𝒉
𝜕𝒙

]([𝒙𝑘−1], 𝒖𝑘−1)⟨𝟎,𝑮𝒙,𝑘−1⟩

⊆ ⟨𝟎,ZonIn([ 𝜕𝒉
𝜕𝒙

]([𝒙−k−1,𝒙
+
k−1], 𝒖k−1)𝑮𝒙,k−1)⟩. (74)

Defining

[𝑯]𝑘−1 = [ 𝜕𝒉
𝜕𝒙

]([𝒙−𝑘−1,𝒙
+
𝑘−1], 𝒖𝑘−1),

𝑮̃𝒙,𝑘−1 = ZonIn([𝑯]𝑘−1𝑮𝒙,𝑘−1),

(74) can be rewritten as

𝒉(𝒙,𝑘−1, 𝒖𝑘−1) − 𝒉(𝒙̂𝑘−1, 𝒖𝑘−1) ⊆ ⟨𝟎, 𝑮̃𝒙,𝑘−1⟩ (75)

Substituting (72), (75) into (73) and using Property 1 lead to

𝒆𝑘 ∈ 𝑺⟨𝟎,𝑮𝒆,𝑘−1⟩⊕ 𝑻 ⟨𝟎, 𝑮̃𝒙,𝑘−1⟩⊕ 𝑬⟨𝟎,𝑮𝒘⟩

= ⟨𝟎, [𝑺𝑮𝒆,𝑘−1 𝑻 𝑮̃𝒙,𝑘−1 𝑬𝑮𝒘]⟩

= ⟨𝟎, 𝑮̃𝒆,𝑘⟩ ⊆ ⟨𝟎, ↓𝑑 (𝑮̃𝒆,𝑘)⟩ = ⟨𝟎,𝑮𝒆,𝑘⟩.

(76)

which completes the proof. □

The proposed algorithm are summarized as follows:
Step 1. Off-line observer design:

(a) Set 𝜣 and then determine 𝑻 , 𝑵 by using (28) and (29).
(b) Calculate matrices 𝑯 𝑖 (for 𝑖,… , 𝜂) based on (58).
(c) Select bounds 𝒘̃, 𝒗̃, 𝜟𝒇̃ and then determine 𝑳1, 𝑳2 by solving

(37) under constraints (39).
Step 2. On-line interval estimation:

(a) Select initial state 𝒄𝑥,0, 𝒄𝑓,0 and initial bounds 𝒙̃, 𝒇̃ to calculate
initial zonotopes 𝑥,0,𝑓,0. Then determine the bounds of state [𝒙𝑘] and

fault [𝒇𝑘] by propagating (62)–(69).
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Fig. 1. The diagram of quadruple-tank system.

. Simulations

In this section, a quadruple-tank system from [26] is used to demon-
trate the effectiveness and superiority of the proposed interval esti-
ation method. The diagram of quadruple-tank system is depicted in

ig. 1. The mathematical model of the quadruple-tanks system derived
rom Bernoulli′s theorem and mass balances can be described as

̇ 1(𝑡) = −
𝑎1
𝐴1

√

2 𝑔ℎ1(𝑡) +
𝑎3
𝐴1

√

2 𝑔ℎ3(𝑡) +
𝛾1𝑘1
𝐴1

𝑣1(𝑡),

ℎ̇2(𝑡) = −
𝑎2
𝐴2

√

2 𝑔ℎ2(𝑡) +
𝑎4
𝐴2

√

2 𝑔ℎ4(𝑡) +
𝛾2𝑘2
𝐴2

𝑣2(𝑡),

ℎ̇3(𝑡) = −
𝑎3
𝐴3

√

2 𝑔ℎ3(𝑡) +

(

1 − 𝛾2
)

𝑘2
𝐴3

𝑣2(𝑡),

̇ 4(𝑡) = −
𝑎4
𝐴4

√

2 𝑔ℎ4(𝑡) +

(

1 − 𝛾1
)

𝑘1
𝐴4

𝑣1(𝑡).

(77)

where 𝑡 ∈ R≥0 is time. The model parameters are shown in Table 1.
Defining 𝒙 = [ℎ1(𝑡) ℎ2(𝑡) ℎ3(𝑡) ℎ4(𝑡)]T and 𝒖 = [𝑣1(𝑡) 𝑣2(𝑡)]T,

(77) can be rewritten as

𝒙̇ = 𝑨𝐿(𝒙)𝒙 + 𝑩𝒖, (78)

with

𝑨𝐿(𝒙) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 𝑎1
√

2𝑔
𝐴1

√

ℎ1
0 𝑎3

√

2𝑔
𝐴1

√

ℎ3
0

0 − 𝑎2
√

2𝑔
𝐴2

√

ℎ2
0 𝑎4

√

2𝑔
𝐴2

√

ℎ4

0 0 − 𝑎3
√

2𝑔
𝐴3

√

ℎ3
0

0 0 0 − 𝑎4
√

2𝑔
𝐴4

√

ℎ4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑩 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾1𝑘1
𝐴1

0

0 𝛾2𝑘2
𝐴2

0 (1−𝛾2)𝑘2
𝐴3

(1−𝛾1)𝑘1
𝐴4

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0.0653 0
0 0.0488
0 0.0628

0.0440 0

⎤

⎥

⎥

⎥

⎥

⎦

.

For 𝒖 = [10 10]T and based on (77), the equilibrium point 𝒙𝑒 can
be calculated 𝒙𝑒 = [130.1 172.6 31.3 38.8]T. Expanding (77) around
the equilibrium point 𝒙𝑒 and discretizing it with 𝑇𝑠 = 1s using Euler
method, we obtain

𝒙𝑘+1 = (𝑰𝑛𝑥 +𝑨𝐿(𝒙𝑒))𝒙𝑘 + 𝑩𝒖𝑘 + (𝑨𝐿(𝒙𝑘) −𝑨𝐿(𝒙𝑒))𝒙𝑘
= 𝑨𝒙𝑘 + 𝑩𝒖𝑘 + 𝒉(𝒙𝑘, 𝒖𝑘)

(79)

Considering actuator fault, unknown input, process disturbance, and
measurement noise, (79) can be expressed as the form of (16) as
follows:
{

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 +𝑫𝒅𝑘 + 𝒉(𝒙𝑘, 𝒖𝑘) + 𝑩𝒇𝑘 + 𝑬1𝒘𝑘, (80)

𝒚𝑘 = 𝑪𝒙𝑘 + 𝑬2𝒗𝑘.
Table 1
The model parameters of quadruple-tank system.

Symbol Definition and value

ℎ𝑖(𝑡) The 𝑖th tank water level at the time 𝑡
𝑣𝑖(𝑡) The 𝑖th pump input voltage at the time 𝑡
𝐴𝑖 The 𝑖th tank cross-section:

𝐴1 = 𝐴3 = 28 cm2, 𝐴2 = 𝐴4 = 32 cm2

𝑎𝑖 The 𝑖th outlet hole cross-section:
𝑎1 = 𝑎3 = 0.071 cm2, 𝑎2 = 𝑎4 = 0.051 cm2

𝑔 The gravity acceleration: 𝑔 = 9.8 m∕s2

𝛾𝑖 The 𝑖th valve proportional coefficient:
𝛾1 = 0.565, 𝛾2 = 0.47

𝑘𝑖 The 𝑖th pump proportional coefficient:
𝑘1 = 3.235 cm3∕V s, 𝑘2 = 3.320 cm3∕V s

with

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9902 0 0.0201 0
0 0.9946 0 0.0113
0 0 0.9799 0
0 0 0 0.9887

⎤

⎥

⎥

⎥

⎥

⎦

,𝑫 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑪 =
⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥

⎥

⎦

,𝑬1 =

⎡

⎢

⎢

⎢

⎢

⎣

0.1
0.1
0.1
0.1

⎤

⎥

⎥

⎥

⎥

⎦

,𝑬2 =

⎡

⎢

⎢

⎢

⎢

⎣

1
1
1
1

⎤

⎥

⎥

⎥

⎥

⎦

.

𝒉(𝒙𝑘, 𝒖𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜌11 0 𝜌13 0
0 𝜌22 0 𝜌24
0 0 𝜌33 0
0 0 0 𝜌44

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

ℎ1
ℎ2
ℎ3
ℎ4

⎤

⎥

⎥

⎥

⎥

⎦

,

𝜌11 = −0.11235
√

ℎ1
− 0.9902, 𝜌13 =

0.11235
√

ℎ3
− 0.0201,

𝜌22 = −0.07059
√

ℎ2
− 0.9946, 𝜌24 =

0.07059
√

ℎ4
− 0.0113,

𝜌33 = −0.11235
√

ℎ3
− 0.9799, 𝜌44 = −0.07059

√

ℎ4
− 0.9887.

In this paper, the water level of tanks is assumed to be ℎ1, ℎ2 ∈
[60, 280] and ℎ3, ℎ4 ∈ [5, 100], that is 𝒙− = [60 60 5 5]T and 𝒙+ =
[280 280 100 100]T. Based on (18), the bounds of [𝑯] = [𝑯−,𝑯+]
can be obtained as

𝑯− =

⎡

⎢

⎢

⎢

⎢

⎣

0.0026 0 −0.0145 0
0 0.0008 0 −0.0078
0 0 −0.005 0
0 0 0 −0.0045

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑯+ =

⎡

⎢

⎢

⎢

⎢

⎣

0.0065 0 0.005 0
0 0.0033 0 0.0045
0 0 0.0145 0
0 0 0 0.0078

⎤

⎥

⎥

⎥

⎥

⎦

.

with the form of 𝜕𝒉
𝜕𝒙 (𝒙, 𝒖) is given in Appendix. Then, the matrix 𝑯 𝑖 has

𝜂 = 242−10 = 64 vertices.

In the simulations, the initial state value and the input voltage
of pumps are chosen as 𝒙0 = [130 170 30 40]T and 𝒖𝑘 = [10 +
in(𝑘∕50) 10+cos(𝑘∕80)]T, respectively. The constant input disturbance
s set as 𝒅𝑘 = 1. The process disturbance 𝒘𝑘 ∈ [−0.1, 0.1] and

measurement noise 𝒗𝑘 ∈ [−0.1, 0.1] are considered, which yields that
𝒘̃ = 0.1 and 𝒗̃ = 0.1. The initial state of interval observer are set as
𝒙̂0 = 𝒄𝒙,0 = [125 165 25 35]T, 𝒇̂ 0 = 𝒄𝒇 ,0 = [0 0]T. Moreover, the
initial bounds of state and fault are chosen as 𝒙̃ = [5 5 5 5]T and
𝒇̃ = [5 5]T. The integer of zonotope reduce operator and the bound of

̃
actuator fault variation are set as 𝑑 = 50 and 𝛥𝒇 = 0.05, respectively.
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Fig. 2. 𝒇 𝑘, estimated set and interval estimation under fault scenario 1 at 𝑘 =
00, 2500, 4500.

Fig. 3. 𝒇 𝑘(1) and interval estimation under fault scenario 1.

Considering (28)−(29), we have

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0
0.5 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,𝑻 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
−0.5 1 0 0
0 0 0 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0
0.5 0 0
0 0 1
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

Then, solving the optimization problem (60) (for 𝑖 = 1,… , 𝜂), we
btain

1 =

⎡

⎢

⎢

⎢

⎢

⎣

1.3384 −0.3653 −0.3079
−0.7175 1.6388 −0.5897
−0.0016 −0.0008 0.0012
0.8490 −0.3787 −0.0785

⎤

⎥

⎥

⎥

⎥

⎦

,

2 =
[

6.4207 −5.6908 1.1436
0.1995 9.5112 −7.1120

]

ith 𝐻∞ performance index 𝛿 = 5.0381.

The following fault scenarios affecting the pumps are defined as

ollows:
Fig. 4. 𝒇 𝑘(2) and interval estimation under fault scenario 1.

Fig. 5. 𝒙𝑘(1) and interval estimation under fault scenario 1.

Fig. 6. 𝒙𝑘(2) and interval estimation under fault scenario 1.



𝒇

Fig. 7. 𝒙𝑘(3) and interval estimation under fault scenario 1.

Fig. 8. 𝒙𝑘(4) and interval estimation under fault scenario 1.

-Fault scenario 1:

𝑘(1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 0 ≤ 𝑘 ≤ 1000
−0.05𝑘 + 50 1000 < 𝑘 ≤ 1100
−5 1100 < 𝑘 ≤ 3000
0.05𝑘 − 155 3000 < 𝑘 ≤ 3200
5 3200 < 𝑘 ≤ 5000.

𝒇𝑘(2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 0 ≤ 𝑘 ≤ 1000
0.05𝑘 − 50 1000 < 𝑘 ≤ 1100
5 1100 < 𝑘 ≤ 3000
−0.05𝑘 + 155 3000 < 𝑘 ≤ 3200
−5 3200 < 𝑘 ≤ 5000.

-Fault scenario 2:

𝒇𝑘(1) =
{

0 0 ≤ 𝑘 ≤ 1000
5 sin(0.005𝑘 − 1) 1000 < 𝑘 ≤ 5000.

𝒇𝑘(2) =
{

0 0 ≤ 𝑘 ≤ 1000
−5 sin(0.005𝑘 − 1) 1000 < 𝑘 ≤ 5000.

Interval estimation of actuator fault and state based on the pro-
posed method is compared with a bounded-error approach [26]. The
parameters of the bounded-error approach are detailed in Appendix.
Figs. 2 and 9 demonstrate the actuator fault 𝒇𝑘, its estimated set,
and its interval estimation based on proposed method and method
in [26] under two fault scenarios at 𝑘 = 500, 2500, 4500. Under fault
scenario 1, the interval estimation results are presented in Figs. 3–
8. Similarly, for fault scenario 2, the estimation results are shown
in Figs. 10–15. In Figs. 3–8 and 10–15, the dashed line, the solid
Fig. 9. 𝒇 𝑘, estimated set and interval estimation under fault scenario 2 at 𝑘 =
500, 2500, 4500.

Fig. 10. 𝒇 𝑘(1) and interval estimation under fault scenario 2.

line, and the dash-dotted line stand for actuator fault/states, interval
estimation based on the proposed method and interval estimation based
on the bounded-error approach [26], respectively. In these figures,
the proposed method achieves interval estimation convergence within
approximately 10 steps, whereas the method presented in [26] necessi-
tates 500 steps for convergence. Additionally, we compare the interval
widths between the two methods. The interval width can be calculated
as the difference between the upper and lower bounds: 𝒇+

𝑘 − 𝒇−
𝑘 and

𝒙+𝑘 −𝒙
−
𝑘 . Then, the average widths of interval estimation under two fault

scenarios obtained by the applied two methods are shown in Tables 2
and 3. Comparative analysis of simulation results reveals that the
proposed method outperforms the existing approach [26]. Specifically,
it demonstrates faster convergence and a tighter estimation interval.
Furthermore, even in scenarios involving multiple faults, our method
effectively handles the fault and state estimation.

Remark 3. Based on the 𝐻∞ design condition, the proposed method
has good robustness to nonlinear systems subjected to multiple pro-
cess disturbances and measurement noise. Moreover, the T–N–L ob-
server can also decouple the influence of unknown inputs, which are
widely present in real world. A highly coupled nonlinear system can
be transformed into the system considered in this paper by using the
equilibrium point linearization method. It is worth noting that when the
system state is far from the chosen equilibrium point, the equilibrium
point linearization method may not be the optimal choice. Therefore,
selecting an appropriate linearization method for different nonlinear
systems will be the focus of our future research.
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Fig. 11. 𝒇 𝑘(2) and interval estimation under fault scenario 2.

Fig. 12. 𝒙𝑘(1) and interval estimation under fault scenario 2.

Fig. 13. 𝒙𝑘(2) and interval estimation under fault scenario 2.

. Conclusions

In this paper, the simultaneous actuator fault and state interval
stimation problem for a class of nonlinear systems affected by un-
nown but bounded disturbances and noise has been investigated.
Fig. 14. 𝒙𝑘(3) and interval estimation under fault scenario 2.

Fig. 15. 𝒙𝑘(4) and interval estimation under fault scenario 2.

Table 2
The average width of interval estimation during 0 ≤ 𝑘 ≤ 5000 for fault scenario 1.

Method 𝑓𝑘(1) 𝑓𝑘(2) 𝑥𝑘(1) 𝑥𝑘(2) 𝑥𝑘(3) 𝑥𝑘(4)

The method in [26] 6.76 8.40 1.61 1.58 4.92 7.76
The proposed method 1.93 3.11 0.30 0.28 0.20 2.97

Table 3
The average width of interval estimation during 0 ≤ 𝑘 ≤ 5000 for fault scenario 2.

Method 𝑓𝑘(1) 𝑓𝑘(2) 𝑥𝑘(1) 𝑥𝑘(2) 𝑥𝑘(3) 𝑥𝑘(4)

The method in [26] 6.76 8.40 1.61 1.58 4.92 7.76
The proposed method 1.94 3.17 0.31 0.29 0.20 3.11

These systems satisfy both a one-sided Lipschitz condition and a stan-
dard Lipschitz condition. The proposed T–N–L observer not only em-
ploys 𝐻∞ method to attenuate the effect of unknown but peak bounded
process disturbances and measurement noise present in real-world,
but also can decouple the effect of unknown inputs. The simulations
for a quadruple-tank system under different fault scenarios are con-
ducted to show the superiority and effectiveness of the presented
method. Moreover, a tighter actuator fault and state interval estima-
tion method is achieved based on zonotope analysis compared to the
existing method [26]. In the future, we plan to extend the proposed
fault estimation method to Takagi–Sugeno fuzzy nonlinear systems and
nonlinear systems described by state-space neural networks.
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ppendix. The calculation of interval matrix [𝑯]

The form of 𝜕𝒉
𝜕𝒙 (𝒙, 𝒖) is given as follows:

𝜕𝒉
𝜕𝒙

(𝒙, 𝒖) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜌11 0 𝜌13 0
0 𝜌22 0 𝜌24
0 0 𝜌33 0
0 0 0 𝜌44

⎤

⎥

⎥

⎥

⎥

⎦

(A.1)

where

𝜌11 = 0.009847 − 0.0562
√

𝒙(1)
, 𝜌13 =

0.0562
√

𝒙(3)
− 0.0201

𝜌22 = 0.00537 − 0.0353
√

𝒙(2)
, 𝜌24 =

0.0353
√

𝒙(4)
− 0.0113

𝜌33 = 0.0201 − 0.0562
√

𝒙(3)
, 𝜌44 = 0.0113 − 0.0353

√

𝒙(4)

Based on the [𝒙] = [𝒙−,𝒙+] and (A.1), the [𝑯] = [𝑯−,𝑯+] can be
calculated.

A.1. The bounded-error approach

The structure of actuator fault and state estimator in [26] is as
follows:
⎧

⎪

⎨

⎪

⎩

𝒛𝑘+1 = 𝑵𝒛𝑘 +𝑮𝒖𝑘 +𝑳𝒚𝑘 + 𝑻𝑩𝒇̂𝑘 + 𝑻 𝒉(𝒙̂𝑘, 𝒖𝑘),

𝒙̂𝑘 = 𝒛𝑘 − 𝑬𝒚𝑘,

𝒇̂𝑘+1 = 𝒇̂𝑘 + 𝑭 (𝒚𝑘 − 𝑪𝒙̂𝑘),

(A.2)

where

𝑻 = 𝑰 + 𝑬𝑪 ,𝑮 = 𝑻𝑩,𝑲 = 𝑵𝑬 +𝑳,𝑵 = 𝑻𝑨 −𝑲𝑪 .

Under Assumption 3, it can be obtained

𝑬 = −𝑫[(𝑪𝑫)T(𝑪𝑫)]−1(𝑪𝑫)T (A.3)

The bound of the actuator fault and state estimator can be calculated
as follows:
{

𝒙−𝑘 (𝑖) = 𝒙̂𝑘(𝑖) − 𝒃𝑘(𝑖)
𝒙+𝑘 (𝑖) = 𝒙̂𝑘(𝑖) − 𝒃𝑘(𝑖)

, 𝑖 = 1,… , 𝑛𝑥
{

𝒇−
𝑘 (𝑗) = 𝒇̂𝑘(𝑗) − 𝒃𝑘(𝑖)

𝒇+
𝑘 (𝑗) = 𝒇̂𝑘(𝑗) − 𝒃𝑘(𝑖)

, (A.4)

𝑗 = 1,… , 𝑛𝑦, 𝑖 = 𝑛𝑥 + 1,… , 𝑛𝑥 + 𝑛𝑓

ith

𝒃 (𝑖) =
√

𝜁 (𝛾)𝒄T𝑷 −1𝒄 , (A.5)
𝑘 𝑘 𝑖 𝑖
𝜁𝑘(𝛾) = (1 − 𝛾)𝑘(𝑉0 − 1) + 1, 𝑘 = 0, 1,… (A.6)

𝑉0 = 𝒆T0𝑷𝒆0, 𝒆0 =
[

𝒙0 − 𝒙̂0 𝒇 0 − 𝒇̂ 0
]T , (A.7)

here 𝒄𝑖 is the 𝑖th column of an 𝑛𝑥 + 𝑛𝑓 order identity matrix. With
𝛾 = 0.01, the following matrices can be obtained by solving LMI as
follows

𝑵 =

⎡

⎢

⎢

⎢

⎢

⎣

0.6315 0.0275 0.0793 0
0.0262 0.7383 −0.0053 0.0113

−8.6 × 10−6 −2.1 × 10−6 4.8 × 10−5 0
−0.2542 0.0278 0.0511 0.9887

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑮 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0653 0
0 0.0488
0 0

0.0440 0

⎤

⎥

⎥

⎥

⎥

⎦

,𝑻 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑬 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 −1
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,𝑭 T =
⎡

⎢

⎢

⎣

0.6107 −0.0632
−0.0306 0.5335
−0.1255 0.0129

⎤

⎥

⎥

⎦

,

𝑳 =

⎡

⎢

⎢

⎢

⎢

⎣

0.3587 −0.0275 0.0201
−0.0262 0.2563 0
8.6 × 10−6 2.1 × 10−6 0
0.2542 −0.0278 0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑷 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

10.6062 −7.5802 0.0017 0.0825 −0.7836 0.1131
−7.5802 11.0193 0.0017 −0.0816 0.2039 −0.6611
0.0017 0.0017 0.3279 0.0000 0.0003 0.0003
0.0825 −0.0816 0.0000 0.1099 −0.0091 0.0651
−0.7836 0.2039 0.0003 −0.0091 0.2814 −0.0024
0.1131 −0.6611 0.0003 0.0651 −0.0024 0.2226

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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