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Abstract— This paper introduces a shared control framework
designed specifically for agricultural mobile manipulators en-
gaged in harvesting operations. The shared control strategy
allows for achieving such operations by dynamically exchanging
the control between the robotic system and a human operator
depending on the uncertainty in the environment perception.
For this purpose, the robot’s behavior is dynamically adapted
to switch between two control modes with a different level
of autonomy of the robot. The level of autonomy is encoded
in two different admittance behaviors which are included in a
first-order Hierarchical Quadratic Programming (HQP) control
framework, that allows the robot to simultaneously address
other control objectives at the same time. Experimental results
with a dual-arm mobile robot, developed as part of the EU-
funded CANOPIES project, demonstrate the effectiveness of
the proposed method in real conditions.

I. INTRODUCTION

Modern agriculture faces the challenge of meeting in-

creasing global food demands while minimizing resource

consumption and environmental impact. In response, preci-

sion agriculture has emerged as a transformative approach,

integrating robotics and automation into farming practices.

Nonetheless, for such kind of systems achieving complete

autonomy is often infeasible or economically inefficient for

the majority of tasks in real-world scenarios, not confined

solely to agricultural contexts. Therefore, in recent years

there has been a growing trend of integrating human-

robot collaboration in various industries and more domestic

environments. This is primarily driven by the recognition

that humans and robots possess unique and complementary

capabilities that can be combined to improve performance in

tasks execution and maximize productivity. The collaboration

can take different forms, such as i) pure sharing a workspace

where humans and robots work together on different tasks

or ii) engaging in collaborative tasks where humans provide

their cognitive skills also intentionally exchanging forces

with robots.

In the first scenario, the main objective of the robot control

strategy is to ensure the safety of humans by preventing any

potential harm that may arise from collisions between the

robot and the human [1]. This can be accomplished through
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Fig. 1. Farming robot designed for the EU-funded project
CANOPIES. In particular, it is highlighted: the head and the wrist
cameras, the end-effectors equipped with gripper and cutter, and
Force/Torque (F/T) sensors.

various methods, such as implementing evasive actions to

create distance between the robot and the person [2] or

utilizing dynamic trajectory scaling techniques such as in [3].

More interesting is the second case, where the synergy

between humans and robots really comes into play. In this

regard, there is a growing emphasis on shared control sce-

narios. These scenarios resemble human-human interactions,

where robot autonomy is retained to a certain extent, and

equal roles might be assigned to both robotic and human

counterparts. The shared control paradigm is adopted, for

example, in teleoperation scenarios [4], where the human

operator typically inputs control commands via a haptic inter-

face. Concurrently, the robotic system maintains autonomous

behaviors, such as, for example, collision avoidance by

relying on its perception capabilities.

In this paper, we focus on shared control in the context of

physical human-robot interaction. Several approaches have

been proposed in the last decades [5] in this context; for

example, a game theory-based solution is introduced in [6],

where it is assumed that both the human and the robot aim

to optimize an identical cost function. Within this proposed

approach, the roles of both the human and the robot evolve

dynamically in response to the force exerted by the human

operator. In the work outlined in [7], a heuristic agreement

index is introduced. This index governs the robot’s role

based on the alignment of forces between the robot and the

human. Furthermore, in [8], a solution based on data-driven

stochastic modeling is devised. It addresses uncertainties in

the human behavior model through the formulation of a



risk-sensitive optimization problem. More recently, in [9]

proposes achieving a similar behavior by adjusting the

robot’s trajectory in response to the exerted human forces.

In a complementary approach, the authors in [10] propose

the development of a systematic approach for impedance

parameter adaption in physical human interaction. In detail,

the goal is the seamless and intuitive transition of control

authority between the two agents. A different approach to a

similar problem is presented in [11]. In detail, the allocation

of control is determined using a metric derived from a

Bayesian filter, which continually adapts based on on-line

sensor measurements. In [12], the case of tasks involving

interactions with the environment is tackled. The concept

of corrective shared autonomy is introduced meaning that

users provide corrections to critical robot state variables

starting from an autonomous task model. In the framework

of shared control and physical interaction, the work in [13]

addresses variable admittance considering the adaptation to

human intentions and the maintenance of system passivity, to

ensure a safe and intuitive human-robot interaction. Passivity

in mixed-initiative shared control is tackled also in [14], in

which the concept of adaptive mixed-initiative shared control

is redefined as an adaptive stiffness control strategy that

preserves passivity when scaling forces.

In this paper, in the framework of the European project

CANOPIES1 we propose a practical approach to per-

form complex harvesting tasks in vineyards via human-

manipulator interaction. Due to the inherent complexity of

this task, caused by imperfect perception and lack of dex-

terity, the assistance of human operators is often necessary.

Therefore, we envisage the case of a bi-manual mobile

robot equipped with advanced perception capabilities and

F/T sensors (Figure 1) whose level of autonomy is adjusted

according to the surrounding scenario, the output of the

perception software used to detect the bunches and estimate

their cut points, and the progress status of the given task. In

detail, the robot might ask for human intervention in case of

perception or goal-reaching failures. Such perception failures

can happen when the vineyard grapes (bunches) overlap with

other grapes or the grape peduncles are rolled up a vineyard

cane, which makes it very difficult to find the cutting point.

In this framework, the level of autonomy is embedded in a

variable admittance controller, whose gains are adapted to let

the robot or human lead depending on the performances of

the perception system. Noticeably, the admittance behavior

is seamlessly integrated within the Hierarchical Quadratic

Programming control framework [15], which allows the

robot to fulfill multiple tasks simultaneously. More in detail,

joint constraints such as their position and velocity limits are

handled by resorting to the Control Barrier Functions (CBFs)

theory [16], while the secondary task in the HQP formulation

is switched between two possible admittance behaviors to

encode different levels of robot autonomy.

1www.canopies-project.eu

II. IMPLEMENTED CONTROL ARCHITECTURE

Figure 2 shows the developed control architecture where

the main blocks of the devised approach are depicted. In

detail, i) the Perception algorithm block is responsible for

the environment perception and grape position estimation;

ii) the Wrench Sensors one for estimating the interaction

wrench between the end-effector and the environment; iii)

the Trajectory generation module allows to plan desired end-

effectors’ trajectories to both acquire information about the

environment and perform harvesting tasks; while iv) the HQP

controller block implements the control algorithm. In the
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Fig. 2. Overall control architecture showing the different compo-
nents and flows of information.

following, we give details about: i) the kinematic modeling

of the considered robotic system; ii) the HQP controller

that is used as a low-level motion controller, detailing all

the considered tasks for implementing the shared control

strategy; iii) the perception algorithm which is responsible

for the recognition of the grapes and the estimation of the

3D position of the peduncle to cut.

A. System modeling

Let us consider a mobile robot equipped with a movable

torso and a dual arm system, in which each end-effector con-

figuration is denoted by xy = [pT
y oT

y ]
T ∈ IR7, (y = L,R,

Left and Right, respectively) where py ∈ IR3 is the position

part, and oy ∈ IR4 represents the unit quaternion expressing

the orientation. We denote by x = [xT
L xT

R]
T ∈ IR14 the

vector collecting all end-effector configurations. Moreover,

let the joint vector q ∈ IRn defined as:

q =
[
qT
B qT

T qT
L qT

R

]T
,

where qB =
[
pT
B , o

T
B

]T
∈ IRb is the vector describing the

mobile base configuration in terms of position and orientation

expressed as quaternion, qT ∈ IRt gathers the joint variables

of the torso, while qL, qR ∈ IRp are the vectors of joint

variables relative to arms, and n = b + t + 2p is the

total number of degrees of freedom (DoFs). The collective

vector of end-effector linear/angular velocities is described

by v =
[
vT
L vT

R

]T
∈ IR12 and its relationship with the

system velocity vector can be expressed as:

v =

[
vL

vR

]

= J(q)q̇ = J(q)u , (1)

where we assumed the following first order model q̇ = u

for the robot, being u ∈ IR12 the control input, and with the



Jacobian J(q) ∈ IR12×n partitioned as follows:

J(q) =

[
JB,L(qB) JT,L(qT ) JL(qL) O6×a

JB,R(qB) JT,R(qT ) O6×a JR(qR)

]

,

(2)

where Ox×y represents the x×y null matrix. The structure of

Eq. (2) highlights that the joint velocities of the common base

and torso contribute to the velocities of both end-effectors,

while q̇L (q̇R) only contributes to the velocity of the left

(right) end-effector.

Finally, we assume the robot is subject to the following joint-

space kinematic constraints:
{

¯
q ≤ q ≤ q̄

¯
q̇ ≤ q̇ ≤ ¯̇q,

(3)

where
¯
q (

¯
q̇) and q̄ (¯̇q) are the minimum and maximum joint

configuration (velocity) values, respectively.

B. HQP controller and considered tasks

In order to safely operate in a dynamic and unstructured

environment, a robot has to be capable of respecting several

constraints, e.g., joint position/velocity limits in Eq. (3) , and

of performing several tasks simultaneously.

A popular control framework that allows assigning a strict

priority order to multiple tasks and computing a solution

that fulfills the hierarchy is the Hierarchical Quadratic Pro-

gramming (HQP) [15], [17]. In this formulation, the task

hierarchy is implemented by solving a cascade of Quadratic

Programming (QP) problems in which the solution of a task

with a given priority is obtained by considering the solutions

of all higher-priority tasks as additional constraints. In this

way, the solution of the lower-priority tasks does not affect

the execution of the higher-priority ones.

More in detail, let us consider a hierarchy composed of

h arbitrary tasks {σ1,σ2, . . . ,σh}. The solution that fulfills

the task hierarchy is computed by solving the cascade of

h QP problems, leading to a sequence of optimal slack

variables {w⋆
1, w

⋆
2, · · · , w

⋆
h} that is minimal with respect

to a lexicographic order. In detail, the i-th QP problem has

the following structure:

min
wi,q̇

1

2
wT

i Qw,iwi

s.t.
¯
bk ≤ Jk(q)q̇ +w⋆

k ≤ b̄k, ∀k ∈ 1, . . . , i− 1

¯
bi ≤ J i(q)q̇ +wi ≤ b̄i,

(4)

where Qw,i ∈ IRmi×mi and wi ∈ IRmi are the weighting

matrix and slack variables relative to the i th task, respec-

tively, while
¯
bi ∈ IRmi and b̄i ∈ IRmi are the minimum

and maximum desired task velocities. The slack variables are

needed to relax the constraints in case they are conflicting

with those included by the higher-priority tasks, or in case

of unfeasibility of the primary task, and their minimization

is aimed at minimizing the error in the execution of the task.

1) Primary task. Joint limits tasks: The primary task that

we consider in our hierarchy allows the robot to respect the

joint constraints in Eq. (3). They can be properly included

in the HQP formulation by exploiting the Control Barrier

Functions (CBFs) framework, which will be briefly recalled

here. Let us consider a system with dynamics:

ξ̇ = f(t, ξ) + g(ξ)u, (5)

where f and g are Lipschitz-continuous vector fields,

ξ ∈ D ⊂ IRl and u ∈ U ⊂ IRq are state and input of

the system, respectively. Let the k th generic constraint be

expressed in the general form hk(ξ) ≥ 0, where hk(·)
is a continuous differentiable function in the domain D.

According to the CBF framework, let Ck ⊂ D be defined

as:
Ck = {ξ ∈ IRl : hk(ξ) ≥ 0},

∂Ck = {ξ ∈ IRl : hk(ξ) = 0},

Int(Ck) = {ξ ∈ IRl : hk(ξ) > 0},

(6)

implying that the state ξ is required to belong to the set

Ck in order to satisfy constraint k. Function hk is a CBF

if an extended class K∞ function αk exists such that, for a

dynamic system represented as in Eq. (5), it holds

sup
u∈U

[Lfhk(ξ) + Lghk(ξ)u] ≥ −φkαk(hk(ξ)), (7)

where φk > 0, and Lfhk and Lghk are the Lie derivatives

of function hk with respect to f and g, respectively. Then,

the following theorem holds [18]:

Theorem 1: Let function hk : D ⊂ IRl → IR be a

continuously differentiable function and the corresponding

set Ck defined as in Eq. (6). If hk is a CBF on D and
∂hk

∂ξ
(ξ) 6= 0 ∀ξ ∈ ∂Ck, then any Lipschitz continuous

controller u(ξ) for system in Eq. (5) satisfying Eq. (7)

renders the set Ck asymptotically stable.

Since Eq. (7) is affine in the control input u, the latter can

be computed as the result of a convex optimization problem

subject to constraint:

u⋆ = argmin
u

1

2

(
u− u(·)

)T
Q

(
u− u(·)

)

s.t. sup
u∈U

[Lfhk(ξ) + Lghk(ξ)u] ≥ −φkhk(ξ), ∀ k

(8)

where u(·) is any nominal input for the system and Q ∈
IRq×q is a positive definite weight matrix. Now, in order to

exploit this framework for handling the joint constraints, let

us introduce the following functions:
{

¯
hi(qi) = qi −

¯
qi ≥ 0, i = 1, · · · , n

h̄i(qi) = q̄i − qi ≥ 0, i = 1, · · · , n
(9)

that lead to
{

q̇i ≥ −
¯
φi
¯
hi(qi) i = 1, · · · , n

−q̇i ≥ −φ̄ih̄i(qi) i = 1, · · · , n.
(10)

with φ̄i,
¯
φi > 0. Let us define vector functions

¯
h = [

¯
h1,

¯
h2 · · · ,

¯
hn] and h̄ = [h̄1, h̄2 · · · , h̄n], and matrices

¯
Φ = diag{

¯
φ1,

¯
φ2, · · · ,

¯
φn} and Φ̄ = diag{φ̄1, φ̄2, · · · , φ̄n};

then, it is straightforward to verify that Eq. (10) can be more

conveniently expressed as

¯
Φ
¯
h(q) ≤ q̇ ≤ Φ̄h̄(q). (11)



By combining Eq. (11) with the second of constraints in

Eq. (3), it holds

¯
bc =

[
−
¯
Φ
¯
h(q)

¯
q̇

]

≤ J jlq̇ ≤

[
Φ̄h̄(q)

¯̇q

]

= b̄c, (12)

where J jl =
[
In In

]T
is the constraints Jacobian.

2) Secondary Task. Admittance Task: A secondary task

that is included in the task hierarchy allows the robot to

follow a desired trajectory with its end-effectors while ex-

hibiting a compliant behavior with respect to external forces

that might occur for accidental contact between the robot and

the environment. Let us assume that the desired trajectory for

the end-effectors can be generated by a Trajectory Generation

module as:

ad =







p̈d
L

αd
L

p̈d
R

αd
R







vd =







ṗd
L

ωd
L

ṗd
R

ωd
R







xd =







pd
L

od
L

pd
L

od
L







, (13)

where p̈d
(·), ṗ

d
(·) and pd

(·) express the desired linear accel-

eration, linear velocity and position and αd
(·),ω

d
(·) and od

(·)

express the desired angular acceleration, angular velocity

and quaternion, respectively. Assuming the presence of a

wrench sensor mounted on the wrist of the manipulators,

it is possible to define the vector:

h =







fL

µL

fR

µR







(14)

as the external measured wrench vector stacking the forces

f (·) and moments µ(·) for both the end-effectors. We want

the system to exhibit the following dynamics:

KM ã+KD ṽ +KP x̃ = h, (15)

where:

ã = ad − a ṽ = vd − v x̃ =







pd
L − pL

od
L ∗ o−1

L

pd
R − pR

od
R ∗ o−1

R







(16)

are the acceleration, velocity and configuration errors, re-

spectively, and:

KM =

[
KM,L O6×6

O6×6 KM,R

]

∈ R
12×12 (17)

KD =

[
KD,L O6×6

O6×6 KD,R

]

∈ R
12×12 (18)

KP =

[
KP,L O6×6

O6×6 KP,R

]

∈ R
12×12 (19)

are the desired virtual mass, damping and stiffness, respec-

tively.

A constraint involving the end-effectors acceleration can

not be directly included in Eq. (4), thus it has to be first

manipulated to be expressed as a constraint on the end-

effector velocity. In the following, it is shown how second-

order constraints can be included in a first order-kinematic

control law by leveraging the HQP framework. The accelera-

tion of the end-effectors can be approximated by numerically

derivating their velocity assuming a sampling time Ts, as:

a(t) =
v(t)− v(t− Ts)

Ts

, (20)

where v(t) is the current velocity and v(t−Ts) is the velocity

at the previous time step. Substituting this expression in

Eq. (15):

KMad −KM

v

Ts

+KM

v(t− Ts)

Ts

+KDv +KP x̃ = h ,

(21)

which can be rewritten as:
(

−
KM

Ts

−KD

)

v = h− γ , (22)

where :

γ = KMad −
KM

Ts

v(t− Ts)−KDvd −KP x̃ . (23)

By folding Eq. (1) in Eq. (22), one finally obtains:
(
KM

Ts

+KD

)

J

︸ ︷︷ ︸

J adm

q̇ = −γ − h
︸ ︷︷ ︸

badm

(24)

which is the expression of the constraint to use in the HQP

formulation.

3) Secondary task. Hand-Guiding Task: An alternative

secondary task is the hand-guiding task, whose aim is to

allow the human operator to fully adjust the end-effector

configuration in case of complete loss of autonomy due to

environmental conditions. It can be easily obtained from the

admittance task by setting Kp = O12×12 and ad = vd =
0 in Eq. (24), thus leading to the following form of the

constraint in the HQP formulation
(
KM

Ts

+KD

)

J

︸ ︷︷ ︸

J hg

q̇ = −γ − h
︸ ︷︷ ︸

bhg

(25)

where:

γ = −
KM

Ts

v(t− Ts) . (26)

C. Perception algorithm for the detection of grapes and

peduncles

The farming robot can use up to three different Realsense

D435i RGB-D cameras located in the head and the wrists

of the robot, to detect the grapes, compute the quality of

the grapes and localize the grapes and their peduncles. The

method that is explained in detail in the article [19], is di-

vided in two parts: (1) detection of the grapes and peduncles;

(2) computation of the grape and peduncle localization. The

detection of the grapes is done by a method that combines

monocular depth [20] and Mask Region-based CNN [21]

methods. The computation of localization of the peduncles is

done by using two methods: (1) depth estimation of peduncle

using the depth map; (2) direct measurement method. Both

methods are fused to obtain better results. The resulting depth



estimation achieves a mean squared error of 2.66 cm within

a distance of 1 m in the CANOPIES dataset. In Figure 3,

the detection of grapes and peduncles with a score above

0.9 is shown. Since the grape detection method computes

relative distances using monocular depth, the grapes that are

further a specific distance of the others are not considered

for detection, that means only grapes closer to the robot arm

are taking into account. The detection method can detect

several grapes although they are partially overlapped, and in

this case, only the area of the seen grape can be computed,

and the border between one grape and the other is separated

by a straight vertical line. In some of the grapes, several

peduncles can be detected in the bunch, and in this case, the

point to cut it is the closer to the vineyard cane from where

the peduncle is connected. If the peduncle is not detected,

the method can estimate where the peduncle is, which can

be used to approach the gripper to the peduncle, and then

take another image to detect the peduncle and compute the

cutting point. However, if finally the peduncle is not seen, as

it is the case of Figure 6 bottom Left, the peduncle detection

fails.

Fig. 3. Detection of grapes and peduncles. It is only shown the detection
outcome considering a confidence score above 0.9.

III. PROPOSED SHARED CONTROL STRATEGY

The proposed shared control strategy is devised for an

agricultural robot engaged in harvesting operations and as-

sumes that the robot is equipped with a specific sensor suite.

In the following, we describe: i) the robotic platform taken

into consideration; ii) the details of a typical harvesting

operation; iii) the devised shared control strategy to change

the level of autonomy of the robot.

A. Robot description

We consider a typical use case scenario addressed within

the EU-funded project CANOPIES, which foresees the de-

velopment of a multi-robot system for precision agriculture

applications. More in detail, the envisaged robotic platform

(named Farming Robot and shown in Figure 1) has a kine-

matic structure that reflects the one described in Section II-B

and has several components, including a tracked mobile base,

a torso with 2 degrees of freedom (DOFs), two manipulators

with 7 DOFs each, and a head with 2 DOFs. As for

the upper body, the torso features a rotational joint and a

prismatic joint, enabling adjustments in its height. The two

manipulators are equipped with wrench sensors, and each

one of them has an Intel RealSense D435 RGB-D sensor

mounted on their wrists. Additionally, the head’s two DOFs

facilitate pan and tilt movements for another Intel RealSense

D435 RGB-D sensor situated inside the robot’s head.

B. Harvesting operation description

To effectively harvest a grape bunch, the robot must first

identify the bunches in its surroundings and accurately esti-

mate the 3D position of the peduncle to cut. The bunches are

detected by the perception algorithm explained before and is

performed in real-time. Once an estimate of the peduncle’s

position is available, the harvesting procedure is started and

the Trajectory Generation module generates the desired end-

effector position and orientation trajectories that connect a

sequence of appropriate waypoints using trapezoidal velocity

profiles, allowing the robot to: i) reach a pre-grasp position

at a predefined distance from the detected peduncle; ii) reach

the grasp position on the peduncle; iii) close the gripper to

hold the bunch; iv) close the scissors to cut the peduncle;

v) place the bunch into a designated container.

In this procedure, the accuracy of peduncle position es-

timation is particularly critical given the varying distances

between the cameras and the grape bunches, as well as

potential occlusions caused by leaves or other grape bunches.

For this reason, it is often mandatory to perform the grapes

and peduncle position estimation procedure from different

points of view, and the proposed strategy is to exploit the

RGB-D sensors mounted on the wrists for this purpose.

Initially, the perception software utilizes RGB-D data from

the head-mounted sensor to provide an initial estimate of

the bunches’ position. Then, if the peduncles are occluded by

leaves or other grape bunches (or if the grapes are positioned

too far away for a precise estimation by the head camera),

we move one of the end-effectors close to the detected bunch

to reattempt and improve the estimation of the peduncle

position using the wrist-mounted cameras. After this second

run of the perception software, the harvesting procedure

mentioned above is started.

C. Shared control strategy

Even employing the strategy described in the previous

subsection, it is not uncommon for the robot to still fail

to get a reliable peduncle position estimate. In order to

increase the effectiveness of the harvesting operation, we

propose to change the level of autonomy depending on the

performances of the perception system. We have envisioned

two possible control modes: autonomous mode and hand-

guiding mode. In autonomous mode, the robot autonomously

performs the needed end-effector motions to perform the

entire harvesting procedure, in case a good estimate has been

acquired; in hand-guiding mode, part of the control of the

operation is left to a human operator in case of failures of the

perception system, thus resorting to its superior perception

and cognitive capabilities. More in detail, in this case, the

human operator guides the end-effector towards the point to

cut by physically moving the end-effector. Then, the robot



control mode switches back to autonomous, and it continues

the remaining steps of the harvesting procedure on its own.

The robot behaviors related to the two control modes are

implemented by switching the secondary task in the HQP

framework. When in autonomous mode, the secondary task

is the Admittance in Section II-B.2, and the desired mass

KM , damping KD and stiffness KP are set to:

KM = diag{
[
20 20 20 3 3 3

]
}

KD = diag{
[
253 253 253 27 27 27

]
} (27)

KP = diag{
[
800 800 800 60 60 60

]
} .

Moreover, the desired velocity vd and acceleration ad are set

as the ones computed by the Trajectory Generation module.

When in hand-guiding mode, the parameters in Eq. (25) are

as before, except KP which is set to KP = O12×12, and

the desired acceleration, velocity and position are all set to

zero, allowing the human operator to freely move the end-

effector to the actual location of the peduncle to cut Figure 4

shows a graphical representation of the Finite State Machine

diagram that implements our shared control strategy.
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Arm Camera
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Harvesting

Grasp and Cut

Ask for Human
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Arm Motion

Deposit Grape
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Found
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Found

Grape Not FoundPosition Reached

Position
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Grape Harvested

Fig. 4. State Machine describing the sequence of operations for
human-robot collaboration in grape harvesting. The colors of the
blocks encode the robot control mode. Yellow: autonomous, orange:
hand-guiding.

IV. EXPERIMENTS

In the following, we report the results obtained during

one of the harvesting experiments conducted during the

experimental campaigns of the CANOPIES project, held in

Aprilia (Italy) in September 2023. We selected a scenario in

which the robot required operation is to harvest a bunch of

grapes occluded by leaves, to validate and test the proposed

shared control strategy. The described experiment is shown

in the video accompanying the present paper.

Figure 5 (top) shows the interaction wrench of the right

end-effector during the harvesting experiment, Figure 5 (mid-

dle) reports the normalized joint positions and velocities and

the corresponding thresholds, and Figure 5 (bottom) depicts

the x, y and z coordinates of the actual position of the

end-effector and the corresponding desired values. The cyan
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Fig. 5. Top. Interaction wrench of the right end-effector over
time during the harvesting experiment. Middle. Normalized joint
positions and joint velocities and normalized lower and upper
bounds for the right arm. Bottom. End-effector x, y and z actual
(blue-solid line) and desired (red-dashed line) coordinates over time.
The cyan background highlights the phase in which the system is
in Hand-Guiding Mode.

background of the top and bottom plots highlights the phase

in which the robot is in Hand-Guiding Mode, while the

white background indicates that it is in Autonomous Mode.

According to Figure 4, at the beginning the robot is in

autonomous control mode and runs the perception software

making use of the RGB-D sensor of the head (Figure 6.

Top Left). Some of the present bunches are detected and

localized by the perception system (Figure 6. Top Right);

however, peduncles are not clearly visible. In this case, the

perception system can estimate the position of the peduncle,

and give this information to the robot to move the arm closer

and take a new image, but if finally the peduncle is not seen,

then the perception system is not able to compute the cutting

point.

Then, from t = 0s to t ≈ 20s the robot moves the

right end-effector in a position at a predefined distance from

one of the bunch, and makes a new estimation attempt

(Figure 6. Bottom Left). Even in this case, the peduncle of

the target bunch was not recognized and, at this point, the



Fig. 6. Top Left: image of the grapes from the head camera of
the robot. Top Right: grapes recognition and peduncle localization.
Bottom left: images of grapes taken from the right wrist camera.
Bottom Right: human assisting the robot for grape harvesting.

robot asks for the human operator’s assistance (by exploiting

its text-to-speech module), and its control mode switches to

Hand-Guiding and remains in this state until t ≈ 58s. The

admittance parameters are changed according to this mode,

allowing the human operator to grab the end-effector and

manually place it on the point to cut. This is clear from Fig. 5

(top), which shows large interaction forces and moments

during this phase, and from Fig. 5 (bottom), which does not

show any desired trajectory given that the operator freely

drives the end-effector by hand. When he/she releases the

end-effector, the robot detects this condition by comparing

the norm of the interaction forces and torques with given

thresholds fmin and τmin, which have been set to 3N and

1 Nm, respectively; in detail, when the ||fR|| ≤ fmin and

||τR|| ≤ τmin for more than 3s the robot switches back

to autonomous mode. This parameters have been tuned in

function of the noise and the polarization in the wrench

readings of the employed sensor. From that point on, the

robot autonomously continues the harvesting procedures with

the admittance parameters as is Eq. (27). It is worth noticing

that, during this phase, the measured interaction wrench is

mainly represented by the gravity due to the grape weight

(yellow line in the top plot in Fig. 5 (top). Finally, it is worth

noticing that Fig. 5 (middle) shows that the (normalized) joint

position and velocity limits are always respected during the

entire experiment.

V. CONCLUSIONS

In this paper, we have envisioned a shared control strategy

that dynamically switches the robot mode control depending

on task execution conditions as estimated by a perception

system. The proposed shared control strategy is based on

a proper dynamic modification of the admittance parame-

ters that allows a human operator to physically help the

robot when the grape peduncle to cut is partially or totally

occluded. Experimental results in an actual vineyard have

been shown and described, proving the effectiveness of the

proposed strategy. Possible directions for future could be:

i) adjusting the admittance parameters on the base of EMG

sensors mounted on the human arm; ii) estimating the human

intention to make the robot capable of exhibiting a proactive

behavior in the interaction; and iii) exploiting the dual-arm

nature of the system achieving active-perception approaches.
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