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Abstract—A clear understanding of where humans move in
a scenario, their usual paths and speeds, and where they stop,
is very important for different applications, such as mobility
studies in urban areas or robot navigation tasks within human-
populated environments. We propose in this article, a neural
architecture based on Vision Transformers (ViTs) to provide
this information. This solution can arguably capture spatial
correlations more effectively than Convolutional Neural Networks
(CNNs). In the paper, we describe the methodology and proposed
neural architecture and show the experiments’ results with a
standard dataset. We show that the proposed ViT architecture
improves the metrics compared to a method based on a CNN.

Index Terms—vision transformers, human motion prediction,
semantic scene understanding, masked autoencoders, occupancy
priors

I. INTRODUCTION

An essential requirement for a mobile robot to be able to
move within a human-populated environment [1] is its ability
to evaluate the human occupancy of the different areas of
the environment and to foresee their most likely direction of
motion in the near future. This information is reconstructed by
humans by a quick sight of the scene and is instinctively used
to identify the most convenient and efficient path to follow.
Robots require a collection of sophisticated algorithms to
accomplish the same results. In this paper, we will concentrate
on the problem of understanding where people move in a
scenario, which are their common trajectories and speeds and
where they stop. This information can be mainly used to know
the priors of human motion for different applications of robot
navigation tasks, whilst its application is envisioned in many
different fields of robotics. For instance, motion priors are of
paramount importance in production plants when robots, most
probably cobots, deal with cooperative and coordinated tasks
with humans in modern robotics cells in order to improve
simultaneously efficiency and safety.

Motivated by previous papers [2] on the importance of
understanding human motion in shared spaces, our approach
takes on the challenges of predicting occupancy priors for
walking individuals in unfamiliar locations by relying solely

on the semantic information of the area. Semantic maps allow
us to break down the observed area into small parcels. The
resulting network has a low complexity and is suitable for
producing real–time predictions within a small time horizon.
The price to pay is the loss of the ”big picture”, i.e., on how the
motion between the different areas is related. Our proposed so-
lution brings about an important advance in the state of the art
proposing the adoption of novel architecture based on Vision
Transformers (ViTs) to predict the occupancy distributions of
walking individuals. The choice of ViTs is dictated by their
well-known ability to extract effectively contextual informa-
tion. This feature is exploited to understand the spatial relation
between the different parcels, thereby enabling the network to
reconstruct global information and learn how humans use the
different areas (affordance). The resulting algorithm keeps the
real–time computation cost within acceptable bounds, but it
significantly improves the performance of the network even in
the face of quick changes in the environment.

The simulation results unequivocally demonstrate that our
ViT-based models outperform the baseline in terms of accu-
racy, reinforcing our belief that this solution can be a natural
choice for real-world applications, in which mobile robots
navigate across complex and dynamic environments.

The paper is organised as follows. In Section II, we offer a
thorough review of the state-of-the-art on existing methodolo-
gies for inferring occupancy prior distributions in semantically
rich urban environments. In Section III, we describe the key
components of our proposed architecture, along with the pro-
posed evaluation metrics and a description of the data set used
in the training phase. In Section IV, we propose an ablation
study to point out the impact of the different components in the
architecture. In Section V, we illustrate our simulation results
on known data set to show the improvement brought by our
solution over the baselines. Finally, in Section VI, we offer
our conclusions and announce future work directions.
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II. RELATED WORK

In this section, we explore the existing body of research on
human motion prediction, focusing particularly on the crucial
role of map priors inference. We provide a succinct overview
of various Neural Network architectures used in vision. Ad-
ditionally, we scrutinize the methodologies and limitations of
previous approaches, with a detailed examination of Rudenko
et al.’s semapp [2]. Notably, we highlight the scarcity of
literature addressing the direct prediction of priors from maps,
a gap we aim to fill with our work.

A. Human Motion Prediction and Prior Occupancy Inference

Anticipating human motion intentions represents a long-
standing challenge, demanding a nuanced comprehension of
social dynamics [3]. As described in the survey [4], the
modelling of human motion trajectories can be categorized
through the representation of the underlying causes. Physics-
based methods rely on explicit dynamical models derived
from Newton’s laws, either with a single model or a set of
adaptive multi-models [5]–[7]. Pattern-based techniques learn
motion patterns from observed data, either sequentially over
time or non-sequentially considering the entire trajectory dis-
tribution [8]. Planning-based methods explicitly consider the
agent’s long-term goals [9], classifying into forward planning,
assuming explicit optimality criteria, and inverse planning,
estimating reward functions from observed trajectories. In [4],
a significant increase in related works in this area is described,
particularly in pattern-based methods.

Importance of Prior Occupancy Inference: Predicting prior
occupancy distribution, rather than individual trajectories,
proves valuable in extrapolating contextual information and
enriching our understanding of a location. While the problems
may appear similar, they represent distinct perspectives. The
former focuses on dynamic predictions of individual or group
actions within an environment, while the latter involves analyz-
ing the environment itself, offering insights into typical human
behaviours within that context. This differentiation enhances
our ability to anticipate future events and make informed
decisions based solely on environmental information [10].
Despite the evident importance of this approach, there is
a distinct gap in existing literature dedicated to the direct
prediction of priors from maps.

B. Neural Network Architectures

We’d like to highlight that our literature review will promi-
nently showcase segmentation models, underscoring the ex-
tensive research in this domain. Unlike classification tasks,
segmentation involves pixel-wise classification, where the goal
is to assign a class label to each pixel in an image, effectively
creating segments based on pixel content. As you explore
further sections, you will observe our focus on a similar pixel-
wise classification task, where the objective is to predict the
likelihood of human presence in individual pixels. This focus
aligns with cutting-edge approaches in segmentation, known
for generating output tensors with the same dimension as the

input. Consequently, our architecture is designed to meet the
unique requirements of these tasks.

Convolutional Neural Network (CNN): ,
Vision Transformers: Vision Transformers (ViTs) [11]

presents a cutting-edge approach to image processing by
incorporating self-attention mechanisms to capture contextual
information. While in image classification often an encoder
structure to downsample features into a latent space and gen-
erate label predictions is enough, in image segmentation, we
need to employ an encoder-decoder structure. In segmentation
and reconstruction tasks, this structure upsamples the latent
space to produce images with per-pixel class scores. To address
the biases towards local interactions observed in convolutional
architectures during segmentation tasks, Strudel et al. [12]
propose a novel perspective. They formulate semantic seg-
mentation as a sequence-to-sequence problem and adopt a
transformer architecture to leverage contextual information
throughout the entire model [13]. The authors claim to surpass
all previous state-of-the-art convolutional approaches by a
substantial margin of 5.3%. This notable improvement is
attributed, in part, to the enhanced global context captured
by their method at every layer of the model.

The potential of ViTs in tasks related to human motion
prediction remains an area of exploration. In this paper, we
delve into the capabilities of Vision Transformers (ViTs)
to map priors inference, investigating their applicability and
performance in this domain.

Masked Autoencoder: The success of masked language
modelling, exemplified by BERT [14] and GPT [15] in NLP
pre-training, lies in holding out portions of input sequences
and training models to predict the missing content. This
method, proven to scale excellently, has demonstrated effec-
tive generalization to various downstream tasks. Inspired by
these achievements, Masked Autoencoders (MAEs) [16] were
developed to introduce a novel approach in computer vision,
specifically addressing challenges related to latent representa-
tion learning. In contrast to traditional supervised learning in
computer vision, which heavily depends on labeled datasets,
Masked Autoencoders (MAEs) adopt a self-supervised ap-
proach for the classification task. Unlike conventional semantic
segmentation based on ViTs, where images are decomposed
into visual analogs of words, MAEs deviate by randomly
removing patches during training. In essence, MAEs focus
on reconstructing pixels, which are not inherently semantic
entities. However, intriguingly, the MAE model demonstrates
the ability to infer complex and holistic reconstructions, sug-
gesting a learned understanding of various visual concepts and
semantics. This behavior hints at the presence of a rich hidden
representation within the MAE, leading to the hypothesis that
the model captures diverse visual concepts through its self-
supervised learning framework.

In this paper, we extend its exploration beyond pixel re-
construction. In particular, we delve into the performance of
MAEs in the realm of map priors inference, investigating their
ability to understand and interpret underlying visual concepts
and semantics, and comparing its performance to the ViT.



By scrutinizing the model’s proficiency in this distinct task,
we aim to unravel the extent to which MAEs can harness
their learned representations for more advanced cognitive
processes. This multifaceted analysis not only broadens our
understanding of MAEs in computer vision but also provides
valuable insights that can guide and inspire future research
endeavors in the field.

To pay homage to the pioneering work in [2], we affection-
ately name our Vision Transformer-based approach ”Semantic
Map-Aware Pedestrian Prediction 2” (semapp2), described
in the next section

III. METHODOLOGY

We start the description of the proposed solution by com-
paring the different metrics to compute the distance between
probability distributions.

A. Metrics

1) Kullback-Leibler divergence: The Kullback-Leibler
(KL) divergence [17] is a measure of how one probability
distribution diverges from a second, expected probability dis-
tribution as

KL(PGT ||Qpred) =
∑
i

PGT (i) log

(
PGT (i)

Qpred(i)

)
,

i.e., the divergence of the probability distribution of the
prediction Qpred from the probability distribution of the target
PGT , over a discrete set of events indexed by i.

The KL divergence is not symmetric, meaning that
KL(P ||Q) is not necessarily equal to KL(Q ||P ). In the
context of neural networks training, it is typically applied
in the direction of the predicted distribution (P ) compared
to the target distribution (Q). The reason for this choice is
often related to the nature of the optimization problem. In
tasks like probabilistic modeling or generative modeling, you
want the predicted distribution to approach or match the target
distribution. Minimizing the KL divergence in the direction of
the predicted distribution helps achieve this goal.

However, in this specific application, it might be meaningful
to also calculate the reverse KL divergence, i.e., KL(Q ||P ),
contrary to the traditional machine learning approaches. This
unconventional choice can be justified by examining the
KL divergence formula: when PGT (i) is near zero, the KL
divergence tends to be low, potentially masking issues in
predictions, leading to misinterpretation of the model’s per-
formance. Instead, by calculating the reverse KL divergence
KL(Q ||P ), the contribution to the divergence is weighted
based on the prediction, ensuring that deviations in regions
where the prediction is far from zero but the target is zero are
appropriately penalized.

2) Earth Mover’s Distance (EMD): The Earth Mover’s
Distance (EMD) [18], also known as Wasserstein distance or
optimal transport distance, is a metric used to quantify the
dissimilarity between two probability distributions. It provides
a measure of the minimum amount of work required to trans-
form one distribution into another. More in-depth, given two

probability distributions P and Q representing the histograms
of pixel intensities in the occupancy distributions, and a ground
distance function d(x, y) representing the cost of transporting
mass from intensity x to intensity y, the EMD is defined as

EMD(P,Q) = min
γ∈Γ(P,Q)

∑
(x,y)∈supp(γ)

γ(x, y) · d(x, y).

Here, Γ(P,Q) represents the set of all possible joint distribu-
tions (couplings) of P and Q whose marginals are P and Q
respectively. The minimization is over these couplings, while
supp(γ) denotes the support of the coupling, i.e., the set of
pairs (x, y) with non-zero probability.

Unlike the KL divergence, the Earth Mover’s Distance is a
metric that adheres to the triangle inequality and is symmetric.
Its symmetry makes it particularly suitable for scenarios where
a balanced evaluation of differences in both directions is
desired. In the paper experiments, we will employ the forward
KL divergence (KL-div), the reverse KL divergence (rKL-div)
and the Earth Mover’s Distance (EMD) to thoroughly assess
the performance of our model in capturing the nuances of
probability distributions.

B. Datasets

Our study builds upon the Stanford Drone Dataset
(SDD) [19]. This extensive dataset captures images and videos
featuring diverse agents like pedestrians, bicyclists, skate-
boarders, cars, buses, and golf carts navigating a real-world
outdoor environment. It provides a comprehensive representa-
tion of human motion in shared spaces.

We utilized a subset of 20 maps from the Stanford Drone
Dataset for training, including ”bookstore”, ”coupa”, ”death
circle”, ”gates”, ”hyang”, ”little” and ”nexus”. Due to the
limited availability of maps, we employed a cross-validation
strategy, leaving one map out at a time for testing while
training and validating on the remaining maps. This approach
allowed us to maximize the use of the available data and ensure
a robust evaluation of our model across various scenarios.

During preprocessing, the Stanford Drone Dataset (SDD)
scenes were not only scaled but also manually segmented into
refined semantic classes. All scenes were uniformly scaled to
a resolution of 0.4 meters per pixel. Given that our network
operates on map crops of fixed size (64x64 pixels), we adopted
a strategy of decomposing the larger input images from the
SDD into 500 random crops of appropriate size (like in [2]).
Each crop in the training data is augmented 5 times by rotating
and mirroring. The final distribution p(s) for state s was
reconstructed by averaging the predicted occupancy values of
s across all crops containing that state. This approach, as stated
in [2], enhances the robustness of our model’s predictions
by addressing potential artefacts associated with neighbouring
crops.

To enhance prediction accuracy, we extend the semantic
classes beyond those considered by Rudenko et al. [2]. In
the paper, the authors use 9 semantic classes: pedestrian
area, vehicle road, bicycle road, grass, tree foliage, building,
entrance, obstacle and parking. We choose to add 4 more



TABLE I
QUANTITATIVE EVALUATION OF 9 SEMANTIC CLASSES

KL-div rKL-div EMD

semapp 0.66± 0.15 2.50± 1.51 40.18± 26.55
semapp2 0.49± 0.15 2.15± 1.20 34.24± 26.47

TABLE II
QUANTITATIVE EVALUATION OF 13 SEMANTIC CLASSES

KL-div rKL-div EMD

semapp 0.58± 0.14 2.43± 1.24 41.16± 26.98
semapp2 0.46± 0.16 2.19± 1.50 27.65± 19.89

classes: sitting area, stairs, shaded area and intersection zone,
reaching a total of 13 semantic classes. We find that using
semantic classes that heavily influence human motion greatly
affects the accuracy of the predictions. In Table I we compare
the use of the 9 classes (pedestrian area, vehicle road, bicycle
road, grass, tree foliage, building, entrance, obstacle and
parking) and in Table II the complete model with all 13 classes
(adding stairs, shaded area, intersection zone and sitting areas).
Notably, semapp2 already exhibits notable advancements in

prediction accuracy compared to semapp when restricted to
the original 9 semantic classes, as evidenced by the metrics
in Table I. In Table II, semapp2 consistently performs better
than semapp across all evaluation metrics. The addition of
the 4 new semantic classes refines the semantic understanding
and contributes to improved accuracy in predicting occupancy
distribution priors. This observation aligns with our goal of
enhancing the model’s capability to capture nuances in human-
centric environments.

C. Proposed Vision Transformer architecture

The proposed semapp2 consists of a ViT autoencoder
designed to generate a prior prediction image from the input
semantic map with multiple channels, each corresponding to
different semantic classes (see Figure 1). We use a simple
autoencoder architecture, where an encoder maps the observed
signal (semantic map) to a latent representation, and a decoder
predicts the prior from the latent representation.

In Figure 2 we provide a visual representation of the
MAE-semapp2, an architecture variation of the semapp2
that uses a MAE autoencoder, with 75% masking ratio.
Note that the two architectures are the same: if we set a
masking ratio of 0% on the MAE-semapp2, we obtain the
same behaviour of a ViT-based semapp2. For simplicity, we
will refer to a semapp2 with a masking ratio of 75% as
MAE-semapp2 from now on.

Encoder: The encoder employs the ViT architecture, cus-
tomized for semantic map processing. The input semantic map,
with multiple channels representing various semantic classes,
undergoes a linear projection with added positional embed-
dings. Subsequently, the resulting set of tokens is processed
through a series of Transformer blocks. In the MAEs variation,

Fig. 1. The semapp2 architecture.

Fig. 2. semapp2 variation using a MAE autoencoder.

the encoder is identical to the ViT encoder, but it handles only
the subset of unmasked patches of the semantic map.

Decoder: The decoder takes the full set of tokens consisting
of encoded visible patches, and mask tokens. Each semantic
class in the map is represented by a learned vector, and
positional embeddings are added to all tokens in the set for
reconstruction purposes. The decoder consists of a series of
Transformer blocks designed to reconstruct the prior prediction
image. Notably, the decoder architecture is independent of the
encoder’s design, providing flexibility.

D. Training and Evaluation

Our primary objective is predicting prior occupancy distri-
bution based on semantic information, encompassing stop dis-
tribution and velocities heat map prediction. This task expands
previous works, such as Rudenko et al.’s [2], which focus on
occupancy distribution prediction only. We compare two main
models in our study: our novel framework semapp2, which
is based on ViTs, and Rudenko et al.’s semapp, based on
CNNs. Additionally, we provide a concise comparison with a
variation of our semapp2, based on the Masked Autoencoder.

The training process spans 100 epochs, employing the
AdamW optimizer. We employ a mean squared error (MSE)
loss per patch to calculate the prediction error. The training
halts if the loss on the validation set shows no improvement
for at least 15 consecutive epochs. A warmup cosine schedule



is utilized for the learning rate, with a warmup period of 20
epochs. The base learning rate (base lr) is set to 1×10−4, and
the absolute learning rate (absolute lr) is calculated using the
formula

absolute lr = base lr × total batch size

256
.

A weight decay of 0.3 is applied to the optimizer. Moreover,
the training is conducted on two NVIDIA RTX A5000 GPUs
using PyTorch’s ”Distributed Data Parallel” to leverage dis-
tributed training. This configuration enhances the scalability
and speed of our training process.

For cross-validation, we employ a leave-one-out strategy
with semantic maps. Our dataset is divided into training and
validation maps using an 80/20 split. During each iteration,
we exclude one map and train the model on the training set,
validating on the validation set and evaluating on the withheld
map for assessment. This process is repeated for each map
in the dataset. This strategy helps assess the generalization
capability of our model across different semantic maps. Ad-
ditionally, we experiment with various patches and crop sizes
to identify optimal configurations.

IV. ABLATION STUDY

In order to methodically examine the effects of various
elements in the suggested Semantic Map-Aware Pedestrian
Prediction 2 (semapp2) model, we carry out an ablation
study in this section. Our objective is to comprehend the role
that each component plays in the overall performance and to
choose the best performing model structure. To measure the
impact of each ablation, we employ quantitative metrics such
as KL divergence, reverse KL divergence and Earth Mover’s
Distance. These distances provide insights into the model’s
ability to accurately predict priors in semantic maps.

A. Architectural Components

To gauge the significance of specific architectural compo-
nents, we conducted a series of experiments, systematically
tweaking key elements within our semapp2 model based
on Vision Transformer (ViT). First of all we need to choose
the backbone for the architecture between ViT-Base, ViT-
Large and ViT-Huge [11]. Then we explore variations on
patch dimensions and crop size with the overarching goal of
pinpointing the optimal configuration that strikes a balance
between model complexity and predictive accuracy.

1) Backbone: We start by investigating the impact of dif-
ferent backbones on the MAE-semapp2 model, whose results
are detailed in Table III. During the ablation tests, we keep un-
changed the mask ratio of 75%, crop size of 64×64 pixels and
patch size of 8× 8 pixels. Our investigation revealed that the
ViT-Huge backbone achieved the best results, demonstrating
lower values across KL-divergence, reverse KL-divergence,
and EMD metrics. Despite this superior performance, we opt
for utilizing the ViT-Large backbone for practical consider-
ations. The increment in performance with ViT-Huge is not
significant, and it does not justify the significantly longer
training times associated with its use. Thus, ViT-Large, being

TABLE III
IMPACT OF THE BACKBONE ON semapp2 MODEL

Backbone KL-div rKL-div EMD

ViT-Base 0.42± 0.13 2.52± 1.88 54.53± 30.80
ViT-Large 0.34± 0.21 2.19± 1.84 45.77± 30.74
ViT-Huge 0.31± 0.15 1.69± 1.11 39.64± 30.16

TABLE IV
IMPACT OF THE CROP SIZE ON semapp2 MODEL

Crop Size KL-div rKL-div EMD

32 0.62± 0.18 3.74± 1.13 54.56± 29.84
64 0.34± 0.21 2.19± 1.84 45.77± 30.74
100 0.56± 0.19 3.60± 1.77 117.38± 93.33

both proficient and quicker to train, emerges as the pragmatic
choice for our MAE-semapp2 model. Moreover, as stated
in [16], a single-block decoder can perform strongly and speed
up training, for this reason we use a modified version of the
ViT-Large changing the decoder layers depth to 1.

2) Crop Size: Delving into the impact of varying the size
of the analyzed crop of the semantic map in our semapp2
model, we systematically adjusted the crop size, resulting the
64 the most promising (see IV).

3) Patch size: Examining the influence of patch size on
the semapp2 model, we conducted experiments to observe
variations in performance. Table V shows how a patch size of
8 fits the paper needs.

4) MAE Masking Percentage: To investigate the impact
of different masking percentages on the performance of the
semapp2 model, we conducted ablation experiments by
varying the masking percentage during training obtaining the
results of Table VI. The masking percentage determines the
proportion of patches excluded during the training process,
influencing the model’s ability to capture underlying patterns
in the data.

V. RESULTS AND DISCUSSION

The evaluation metric involves computing the Kullback-
Leibler (KL) divergence, Reverse KL divergence and Earth
Mover’s Distance (EMD) for all the leave-one-out maps,
resulting in a mean metric value along with standard devia-
tion, providing insights into the model’s generalization across
various semantic maps.

We present a qualitative comparative analysis in Figure 3
between semapp and semapp2. The top-left section de-
picts the semantic map and the top-right section represents
the corresponding ground-truth occupancy distribution. In the
bottom-left, predictions from semapp, while the bottom-
centre and the bottom-right show predictions from semapp2
and MAE-semapp2. Moreover, in Figure 4, we compare the
quality of the predictions of the model semapp2 using 9
semantic labels, shown on the left in the figure, or using 13
semantic labels, on the right. Visually the difference is barely



TABLE V
IMPACT OF THE PATCH SIZE ON semapp2 MODEL

Patch Size KL-div rKL-div EMD

8 0.34± 0.21 2.19± 1.84 45.77± 30.74
16 0.52± 0.10 2.43± 1.02 53.02± 34.39
32 0.60± 0.20 4.57± 1.79 46.69± 30.03

TABLE VI
IMPACT OF MASKING PERCENTAGE ON semapp2 MODEL

Masking Ratio KL-div rKL-div EMD

0% 0.46± 0.16 2.19± 1.50 27.65± 19.89
25% 0.45± 0.17 2.32± 1.66 38.78± 31.72
50% 0.41± 0.11 2.36± 1.44 49.30± 29.92
75% 0.34± 0.21 2.19± 1.84 45.77± 30.74

noticeable, but quantitatively we have a slight improvement,
as reported in Tables I and II.

A. Quantitative Evaluation

We provide in Table VII the mean and standard deviations
of KL-divergences, reverse KL-divergences and EMDs for all
three models (semapp, semapp2, MAE-semapp2) applied
to the Stanford Drone Dataset using a cross-validation ap-
proach, as described in Section III-B. In the Stanford Drone
Dataset, semapp2 shows competitive performance compared
to semapp. This main comparison provides insights into the
effectiveness of ViT in predicting occupancy priors based on
semantic information.

semapp2 vs. MAE-semapp2: The four images in Fig 5
showcase different aspects of the prediction process using the
MAE-based semapp2. The first semantics image represents
the original crop of the semantic map, while the second
masked image displays the same crop after the masking
process, emphasizing the regions of interest during the model’s
inference. The original image presents the ground truth of the
occupancy distribution, providing a reference for the expected
outcome. Finally, the prediction image depicts the result of the
MAE-based semapp2, illustrating the model’s capability to
anticipate and reproduce the occupancy distribution based on
the masked semantic input.

The MAE-based semapp2 exhibits a notable level of
generalization ability compared to the ViT-based semapp2.
In [16], the authors demonstrate that masking patches in MAEs
does not result in a decremental impact on reconstruction and
classification, underscoring the significant data redundancy
present in vision tasks. This observation suggests that the
MAE model might be well-suited for learning underlying laws
of social motion. Indeed, in Table VII, the MAE-semapp2
variation shows slightly worse performance over the EMD
metric compared to both semapp and semapp2. However,
from a qualitative evaluation, the model seems to predict
extremely well local variations of the occupancy distribu-
tion. Two examples are shown in Figure 6: the MAE-based
semapp2 is clearly superior at predicting the distribution.

Fig. 3. Qualitative comparison of results in the Stanford Drone Dataset. Our
ViT-based model showcases competitive performance compared to semapp
(Rudenko et al. [2]), demonstrating the effectiveness of Vision Transformers
in predicting occupancy priors. Top left: presents the original semantic map
highlighting different classes, Top right: displays the ground-truth distribution
of occupancies. Bottom left, Bottom middle and Bottom right showcase the
predictions generated by semapp, semapp2 and MAE-semapp2, respec-
tively.

Fig. 4. Qualitative comparison between using 9 semantic classes (Left) and
13 semantic classes (Right)

The low metric values could be due to a lack of trajectories
in the timespan analysed in the SDD video. For this reason,
the generalization ability of the MAE, especially in complex
scenarios, warrants further exploration and investigation in
future works. To assess the quality of the prediction, it could
be necessary to collect more data on a specific location at
different times in order to converge to a global probability
distribution of the human occupancy, rather than the time-
variant distribution that we obtain from the SDD videos.

B. Predicting Stops and Velocities

Furthermore, we delve into assessing the network’s profi-
ciency in predicting stops and velocities—priors that have been
relatively underexplored in existing literature. This unique
investigation holds significant implications for the field of



TABLE VII
QUANTITATIVE EVALUATION IN THE STANFORD DRONE DATASET

Method Average KL-Div Average rKL-Div Average EMD

semapp 0.58± 0.14 2.43± 1.24 41.16± 26.98
semapp2 0.46± 0.16 2.19± 1.50 27.65± 19.89
MAE-semapp2 0.34± 0.21 2.19± 1.84 45.77± 30.74

Fig. 5. Example of prediction using the MAE-based semapp2.

mobility, where accurately anticipating stops and velocities
could be crucial for enhancing planning tasks. Our exploration
of these nuanced prediction tasks adds valuable insights to
the broader understanding of Vision Transformers’ capabil-
ities in addressing complex aspects of occupancy prediction,
particularly in real-world mobility scenarios. Figures 7 present
the prediction of the velocity profile distribution and the stop
distribution. Additionally, Table VIII provides a quantitative
evaluation of the predictions of velocities and stops.

VI. CONCLUSION

The analysis of human occupancy of the different areas
of an environment is essential to enable safe and efficient
navigation of mobile robots. The past literature has shown
that the use of semantic maps can significantly speed up
the reconstruction of this information by breaking down the
environment into several smaller parcels. The price to pay
is a potential limitation of the accuracy due to the use of
local information. We have proposed a solution that holds the
promise to mitigate this problem by the use of a ViT backbone.
Indeed the use of transformers allows the network to learn the
spatial relation between nearby areas, hence reconstructing a
global view of the environment. The results show that our
solution significantly improves the prediction accuracy with a
limited impact on the computation time, which remains accept-
able for real–time applications of the solution. Many problems
remain open and are reserved for future research activities. The
first activity will be to test our method on a more complete
dataset than the Stanford Drone dataset used for this paper,
which contains more trajectories per map, to better evaluate
the generalisation ability of the models. A second activity
will be the integration of the module into a robot navigation
framework. Third, we are considering a possible extension
of the approach to predicting the motion of bicycles or cars,
which would open other interesting application opportunities
(i.e., autonomous driving). Finally, we are actually working to
extend the same idea to cobots in production cells for product
quality control and reworking of defected working pieces.

TABLE VIII
QUANTITATIVE EVALUATION OF VELOCITIES AND STOPS

KL-div rKL-div EMD

Velocities 0.47± 0.15 2.50± 1.51 40.18± 26.55
Stops 0.63± 0.15 2.15± 1.20 52.88± 27.94
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