Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
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Figure 1. Uncertainty-aware, unified and interpretable approach for trajectory modeling in multi-agent scenarios. U2Diff is a
diffusion-based model capable of performing trajectory completion tasks such as forecasting, imputation or inferring totally unseen agents,
while also jointly estimating state-wise uncertainty. RankNN is a post-processing operation that infers an error probability for each
generated mode under the same prior observations, which is strongly correlated with the error related to the ground truth.

Abstract

Multi-agent trajectory modeling has primarily focused on
forecasting future states, often overlooking broader tasks
like trajectory completion, which are crucial for real-world
applications such as correcting tracking data. Existing
methods also generally predict agents’ states without offer-
ing any state-wise measure of uncertainty. Moreover, popu-
lar multi-modal sampling methods lack any error probabil-
ity estimates for each generated scene under the same prior
observations, making it difficult to rank the predictions dur-
ing inference time. We introduce U2DIff, a unified diffu-
sion model designed to handle trajectory completion while
providing state-wise uncertainty estimates jointly. This un-
certainty estimation is achieved by augmenting the simple
denoising loss with the negative log-likelihood of the pre-
dicted noise and propagating latent space uncertainty to
the real state space. Additionally, we incorporate a Rank
Neural Network in post-processing to enable error prob-
ability estimation for each generated mode, demonstrat-
ing a strong correlation with the error relative to ground
truth. Our method outperforms the state-of-the-art solu-
tions in trajectory completion and forecasting across four
challenging sports datasets (NBA, Basketball-U, Football-
U, Soccer-U), highlighting the effectiveness of uncertainty
and error probability estimation. video

1. Introduction

Modeling trajectories in multi-agent settings is crucial for
capturing stochastic human behaviors in various domains,
including pedestrian motion prediction [2, 5, 18, 22, 30, 41,
42,49, 51, 59], human pose estimation [1, 9, 17, 21, 27, 36,
37, 39], and sports analytics [4, 10, 25, 38, 45, 61, 65, 67].

Multi-modal generative approaches primarily focus on
forecasting future states based on past trajectories, uti-
lizing models such as Generative Adversarial Networks
(GANSs) [13, 22], Conditional Variational Auto-Encoders
(CVAEs) [57, 64], and, more recently, Denoising Diffusion
Probabilistic Models (DDPM) [23]. DDPM have shown
particular success in trajectory forecasting for applications
like pedestrian and sports modeling [20, 38]. However, their
evaluation is often limited to agent-wise metrics, overlook-
ing scene-level dynamics that are crucial for multi-agent
contexts. Additionally, these methods generally require
fixed temporal window dimensions, which restricts their
adaptability across diverse task settings and scenarios.

The task of trajectory completion has emerged as a key
advancement beyond traditional forecasting, enabling mod-
els to infer trajectories by leveraging both past and/or fu-
ture observations [34, 47, 61]. This task also seeks to pre-
dict totally unobserved agents using only the motions of the
surrounding observable ones [11, 29, 60]. This capability
is especially relevant in sports, where complex multi-agent
interactions require models to accurately capture both indi-
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vidual and coordinated team tactical behaviors within fixed

spatial coordinates.

However, current state-of-the-art methods in both tra-
jectory forecasting and completion focus primarily on pre-
dicting locations without estimating the uncertainty associ-
ated with each predicted state. This limitation highlights
the need for a state-wise uncertainty estimation approach
to quantify each state prediction’s closeness to the ground
truth. Additionally, this gap presents a further challenge in
developing methods to extract a scene-level uncertainty or
error probability capable of ranking the reliability of multi-
ple generated modes under the same prior.

In this study, we propose a Unified Uncertainty-aware
Diffusion (U2Diff) aimed at tackling the general task of
multi-agent trajectory completion while predicting per-state
uncertainty with a novel variance propagation technique
from latent to real space (see our pipeline in Fig. 1). Our
method estimates global uncertainty by averaging the vari-
ances of each predicted agent’s state. We show that this
global uncertainty has certain correlation with the scene-
level error across modes within the same prior, providing an
unsupervised measure of confidence in the generated trajec-
tories. To further refine the model’s interpretability, we pro-
pose a supervised Rank Neural Network (RankNN) in order
to rank modes based on their proximity to ground truth val-
ues, providing error probabilities and achieving high Spear-
man correlation values, with medians around 0.58 and 0.78.

We validate the effectiveness of our overall approach us-
ing four real-world sports datasets: two of basketball, one
of football, and another of soccer; demonstrating substantial
improvements over competing methods in scene-level met-
rics for forecasting and trajectory completion tasks. This
work contributes a novel uncertainty-aware approach to tra-
jectory modeling that enhances the reliability of generated
trajectories in complex interactive environments like sports.
The key contributions are summarized as:

* We propose a diffusion-based approach for general trajec-
tory completion in multi-agent domain, achieving state-
of-the-art performance.

* We introduce a simple loss augmentation in diffusion
framework that enables direct uncertainty estimation for
each predicted state. It ensures consistency across
timesteps and moderate correlation with ground truth er-
ror, while enhancing prediction robustness.

* We devise a post-processing supervised architecture
(RankNN) providing error probability estimates for each
generated mode under a shared prior, enabling high-
correlation with ground truth error.

2. Related Work

We next review the most related work dealing with trajec-
tory modeling, diffusion models and uncertainty estimation.
Trajectory Modeling. Multi-modal agent trajectory mod-

eling has traditionally focused on predicting future posi-
tions from past observations. Early methods used Vari-
ational Recurrent Neural Networks (VRNNs) to capture
stochasticity in human long term movement prediction [16,
54, 63, 65, 67]. As the field evolved, GANs [13, 15, 22,
26, 50] and CVAEs [32, 35, 51, 57, 64] enabled more di-
verse and realistic future predictions by leveraging varia-
tional inference. Recently, diffusion models have demon-
strated significant potential in generating diverse plausible
futures [7, 20, 28, 33, 38, 48, 62], surpassing previous meth-
ods in forecasting tasks. However, these approaches are of-
ten limited by fixed time horizons. Other methods, such
as Graph Variational Neural Networks (GVRNNSs) [44, 61]
and non-autoregressive techniques [34], have been devel-
oped for trajectory imputation tasks. Building on these
foundations, our work introduces a diffusion-based archi-
tecture that integrates forecasting and imputation in a uni-
fied framework, adaptable to multi-agent scenarios without
predefined agent or time dimension constraints.

Unified diffusion models. Time-series diffusion models
have emerged as a viable alternative to Gaussian processes
for probabilistic modeling [3, 55]. Our U2Diff architecture
is inspired by CSDI [55], which we adapted for multi-agent
2D trajectory modeling by employing a bidirectional ver-
sion of MambaSSM [19] to enhance temporal processing,
replacing Transformer Encoder [56] focused on temporal
dynamics processing. The sequential natural processing of
MambaSSM allows to remove the temporal positional en-
coding while obtaining better performance.

Uncertainty-aware. Traditional models predict positions
but overlook state-level uncertainty. Recent work intro-
duced global uncertainty measures by aggregating individ-
ual agent uncertainties [38], but these lack the granularity
needed to adapt diverse tasks such as trajectory completion.
Inspired by pixel-wise uncertainty method in image genera-
tion [31], our model extends this to multi-agent trajectories,
providing state-wise uncertainty, enabling finer-grained in-
terpretability at state-level predictions.

Probability estimation. In multi-modal trajectory gener-
ation, probability estimation for each mode remains rela-
tively unexplored. Existing methods assign probabilities
using predefined trajectory anchors [12, 46, 52] or post-
process the predicted trajectory [66]; however, they primar-
ily focus on ego-agent scenarios. Latent sequential mod-
els [18, 51] introduce the estimation of probabilities at the
scene-level requiring a fixed number of modes. To address
this and adapt to sampling-based approaches like U2Diff,
we propose RankNN, which estimates error probabilities
for each scene-mode using all agents’ trajectories and un-
certainties. Unlike prior methods, RankNN supports a vari-
able number of modes under a shared prior, acting as a post-
processing network which provides ranked error probability
estimates.



3. Revisiting Diffusion Models

We next review DDPM [23] that will be later employed to
describe our method for uncertainty-aware multi-agent tra-
jectory completion. They work by gradually adding random
Gaussian noise to the original data in a forward diffusion
process through a series of S steps and then, learning to re-
move it in a reverse denoising one where original data is
generated from the noise. To this end, let Xy be a data
point from a real data distribution ¢(X) where X is the in-
put data. Some Gaussian noise with variance 35 € (0, 1)
can be added to X;_1, obtaining a new latent variable X
with distribution ¢(X; | Xs_1) as:

A(Xe | Xomt) = N (X /T BXoon, B) . (D
S

¢(Xi.s | Xo) = ] a(Xs [ Xsm1), )
s=1

where I denotes an identity matrix, i.e., the distribution is
always represented by a diagonal matrix of variances. As-
suming a sufficiently large S, Xg ~ N(0,I). X, can be
sampled at any arbitrary time step from the distribution:

4(Xs | Xo) = N(Xs; V@ Xo, (1 - a)I),  (3)

where ooy = 1 — 35 and &, = [[;_; ;. Then, X, is ex-
pressed as:

X, = V@ Xo + /1 — dse, 4)

where € ~ N (0,I). Here 1 — d indicates the variance of
the noise for an arbitrary time step, i.e., that could equiva-
lently be used to define the noise schedule instead of j;.

In the reverse diffusion process, a neural model is trained
to infer the original data by reversing the previous noising
process. Estimating ¢(Xs_1 | X) is a hard task as it de-
pends on the entire data distribution and, therefore, a neural
network pg(-) is used to learn the 6 diffusion parameters by
parameterizing both mean and variance as:

pQ(Xs—l | Xs) = N(Xs—l; IJ’G(XS7 5)7 UG(st 5)21)? (5)
s
po(Xo:s) = p(Xs) [ [ po(Xsm1 | Xo), ©6)
s=1
where p(Xs) = N (Xs;0,1) and pp(-) and o (-)>I repre-
sent mean and covariance matrix, respectively.
The mean in Eq. (5) can be obtained by considering the
predicted noise €4(Xs, s) at s step as:

1 Bs
\/OTS <Xs - ﬁee(xa 3)) , (D

where €y is a trainable denoising function. In general, to
infer the covariance matrix, the variance is assumed to be

H@(Xs’ 5) =

06(Xs,8)% = %ﬁs, i.e., it does not depend on the pre-
dicted noise. This parametrization is equivalent to rescaled
score model for score-based generative models. Then, the

reverse process can be trained by minimizing the function:

‘Csimple = EXme,s”E - €9<Xsa 5)”%7 (8)

where € is a random but known noise. Later, Nichol et
al. [43] found that learning the variance og(Xs,s)? im-
proved the log-likelihood in images, as we will do in this
work.

4. Multi-Agent Trajectory modeling by diffu-
sion models

In this section we describe how to exploit probabilis-
tic diffusion models to sort out trajectory completion in
multi-agent scenarios. Our work is inspired by [55] that
used a diffusion probabilistic framework for handling one-
dimensional multivariate time-series imputation, exploiting
visible observations to infer the non-visible ones. In con-
trast, in this work we present a unified approach for two-
dimensional scenarios, where the relation between agents is
richer and complex to capture.

4.1. Problem Statement
Let us consider a set of N € N agent observations in a given
time instant ¢, denoted as x; = {x}'} withn = {1,..., N},

where each observation contains the (x,y) locations. We
can now collect 7" observations along time for every agent,
defining a scene tensor X where all X} witht = {1,...,T}
are considered. Trajectory completion aims at inferring
missing or unobserved entries of a data structure based on
the visible ones. Given a tensor of partial observations de-
fined as X and a T" x N binary conditioning mask M
to encode by 1 the visible observations and by O the unob-
served ones, the goal is to find a function f(-) to infer the
full observations such that:

X = f(X, M), ©)

Particularly, in this paper we propose to model multi-
agent trajectories by leveraging per-observation uncertainty
estimation as:

p(X | X M) = N(X;f“(XCO,M),ff’Z(XCO,M)), (10)

where f#(-) and f o? (+) denote the function to extract mean
and covariance matrix, respectively. As we propose to em-
ploy a generative model to handle the previous problem, at
inference time the method obtains X € N modes or scenes
according to the same prior observations such that:

p(X¥| X M) Vke{l,...,K}. (11)

Once the trajectory completion problem is addressed,
we propose estimating an error probability for each mode,
which must be correlated with the ground truth locations.



4.2. Unified Uncertainty-aware Diffusion

We now present our Unified Uncertainty-aware Diffusion
approach, denoted as U2Diff, to infer the set of distribu-
tions in Eq. (11). Our method can capture the uncertainty
associated with each predicted agent state, obtaining both
mean and variance of the predicted noise at each denoising
step s.

Existing variance-learning approaches in image process-
ing [43] minimize the variational lower bound by reducing
the KL divergence between the predefined true posterior
q(+) which follows a scheduled variance S (see Section 3),
and the model-predicted distribution py(-). In contrast, our
method directly maximizes the likelihood of the noise in-
jected during the forward diffusion pass €, by modeling the
distribution €y (e | X, s, X) as:

N (e €y (Xs, 5,X°), €5 (Xs, 5, X°)T),  (12)

where €} (X, s, X) and €] (X, s, X) are [T' x N x 2]
predicted mean and standard deviation noise, respectively.
Particularly, a diagonal covariance matrix across = and y
noise components for each agent’s state is assumed.

We propose a novel loss term Lyr1, that minimizes the
Negative Log-Likelihood (NLL) of the noise distribution as:

o o e—el(X4,5,XE0)||2
Crir, = log (V2reg (X, 5, X)) + I ehXen XiIE
(13)
This regularizer is added to the objective in Eq. (8), obtain-

ing the total loss function:
£total = Esimple + )\ﬁNLLa (14)

where A is a weight factor (typically within the range 0.01
to 0.001) that balances the influence of L1, without over-
whelming the primary learning objective. Following the ap-
proach in [43], we apply a stop-gradient to the predicted
noise, €}y (X, s, Xg°), so that Lxr1, focuses solely on learn-
ing the standard deviation €f (X, s, X”). This approach
enables the model to represent both expected behavior and
the associated uncertainties of agents’ trajectories.

4.2.1. Variance propagation

During sampling, variance propagation of the predicted
noise to the states (z,y) is key. To achieve that, we con-
sider the deterministic Denoising Diffusion Implicit Model
(DDIM) [53] with ( as the fixed skipping interval:

Xs¢ = dész + <as,g - H%%) €5 (X, s, X),
15)
where as = /1 — &. Following the variance rule and sim-

ilar to [31], we approximate the corresponding Var(X_)
as:

(:YS

2
%Var(xs) + (as—( - L as) Ez(X&SvXCO)Qa

10
Basketball-U (completion)
&4 — TFootball-U (completion)
—— Soccer-U (completion)
64 — NBA (forecasting)
= J
5 4
Z.
24
0
—24
50 40 30 20 10

§
Figure 2. Evaluation of the NLL over the predicted distribution
states in function of the starting denoising step § in which the
variance starts propagating.

where Var(-) denotes the variance operator. The variance is
initialized as a null tensor in the first denoising step S, i.e.
Var(Xg) = 0. The covariance term can be approximated
as null to avoid high computational cost and potential insta-
bilities without compromising performance.

Our analysis further reveals that beginning variance
propagation at a smaller denoising step $ than S, yields op-
timal performance across the datasets. This suggest that as-
suming Var(X;) = 0 for s € [$, S] mitigates the effects
of limited data expressivity in the early denoising steps,
where the model lacks sufficient information to estimate the
meaningful variance. Figure 2 presents the NLL of the pre-
dicted state distribution as a function of the starting step
§ for variance propagation across the four datasets. With
a total of S = 50 denoising steps and a skip interval of
¢ = 10 denoising steps, we find that optimal variance prop-
agation consistently starts at diffusion step s = 30 across
all datasets, ensuring robust generalization.

4.2.2. Architecture

Inspired by [55], we introduce our architecture for multi-
agent trajectory completion, designed to integrate uncer-
tainty estimation seamlessly. To do so, some modifications
are incorporated to enhance performance and adapt to our
multi-agent domain. We next present the main ingredients
in our contribution.

Input embedding. Initially, the observed trajectories X°
collected in a tensor with dimensions 7" x [N x 2, which con-
tain zero values (0, 0) for unobserved states, are concate-
nated with the noised sample X of the same dimensionally,
producing a combined tensor with dimensions 7' x N x 4.
This tensor is then transformed into an embedding tensor J
through a linear layer followed by a ReLU activation, re-
sulting in dimensions 7" x N x 256. That embedding is
subsequently processed sequentially through two identical
residual denoising blocks.
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Figure 3. U2Diff architecture. Top: Decoupled temporal and
social processing in each residual block. Bottom: Multi-scene
attention processing and projection with Linear+ReLU+Softmax
operations in RankNN to obtain the K error probabilities e.

Residual denoising block. Each residual block comprises
two main components. First, temporal processing is per-
formed independently for each agent using a bidirectional
version of the original MambaSSM [19], which we term
Temporal Mamba. In this step, we compute two separate
embeddings for each agent coming from the forward and re-
verse pass through the MambaSSM. These two embeddings
are then summed to capture both past and future tempo-
ral information. Second, social processing is conducted to
capture interactions between agents at each timestep using
a Transformer Encoder [14, 56], termed the Social Trans-
former. This decoupling of temporal and social processing
is illustrated in Fig. 3-top, giving the ability to infer scenes
with variable timesteps and agents without fixing the tem-
poral and social dimensions.

Within each residual block, the binary mask M is used

to specify observed and unobserved states, facilitating ac-
curate trajectory completion. Each block outputs a refined
tensor J with the same dimensions as its input, along with
a skip-connection output Jyip, which is stored from each
of the two blocks for later use. Additional details on the
implementation of these residual blocks are provided in the
supplementary material.
Output tensor. The output tensor is derived by summing
the skip-connection outputs from the two residual blocks,
resulting in a tensor of dimensions 7" x [N x 256. This tensor
is then passed through a linear layer with ReL U activation,
producing a tensor of shape T'x N x 4. Finally, that result is
split to produce the predicted noise, €} (X, s, X(”), while
the other tensor component is passed through a sigmoid
function to generate the standard deviation €j (X, s, Xg")
with each value bounded in (0, 1).

4.3. Rank Neural Network

To compute scene-level uncertainty, we use a simple ap-
proach which averages the predicted standard deviations
Var(X) across all agents and timesteps in a scene. We
denote this operation as AvgUcty.
For a given scene prior observations and its K gener-

ated modes, ideally the set of AvgUcty per-mode values and
the set of corresponding their error values would correlate
positively. In other words, higher AvgUcty values correlate
with higher error values. The chosen scene-level metric for
the error is the Scene Average Displacement Error (SADE)
which is defined as:

N T Sn n n
Done1 Dt IXF = %7l (1 —my)
Yni1 Yy (1 —my)

where X}' and x}' are the estimation and the corresponding
ground truth, respectively, and m} is the value of M indi-
cating if the n-th agent at timestep ¢ is observed or not.

While AvgUcty provides a straightforward estimation of
scene-level uncertainty, it may not fully capture its corre-
lation with SADE. To address this, we introduce a novel
learning-based approach that assigns an error probabil-
ity score, e, to each mode, summing to 1 across the K
modes. These error probabilities are expected to show
a stronger correlation with SADE values compared to
AvgUcty. Specifically, we propose a RankNN model, which
takes the K generated modes, along with their predicted
means and variances, and outputs logits that align with the
SADE.

The objective function to maximize is the Spearman cor-
relation coefficient (p) between the SADE values and the es-
timated e values across all K modes. This coefficient evalu-
ates the monotonic relationship between these two sets. Let
e® and SADE” represent the error probability estimation
and the SADE, respectively, for the mode k € {1,..., K}.
This coefficient, defined as the Pearson correlation between
rank variables, is computed by first converting each pair (¥,
SADEF ) for all K modes into differentiable ranks, denoted
(R[€e*], R[SADE*]), with R[-] being the differentiable rank
operator [8]. Therefore we can express p as:

E: R[e]) - (R[SADE"] ~

K ||R R[em || R[SADE"] —
where the terms Rle] and R[SADE] are the mean values
over the K generated modes. This correlation the normal-

ization in the denominator ensures that is bounded within
the interval (—1,1).

SADE = . (16)

R[SADE))
R[SADE]||

4.3.1. Architecture

The architecture takes as input the mean X, concatenated
with its variance Var(Xy) for each state, creating a K X
T x N x 4 tensor. This is then extended to K x T'x N x 5
by appending the binary mask M, repeated K times.

The resulting tensor is embedded to a dimension of 64
and processed through a Temporal Mamba block to capture
individual agent dynamics, with operations repeated across
K x N. After that, a Social Transformer models social in-
teractions for each timestep, performing operations across



K x T. After temporal and social processing, the tensor
with dimensions K x T' x N x 64 is averaged across the
timesteps and agents axis, resulting in scene-level embed-
ding tensor K x 64. This tensor is then passed through a
Transformer Encoder to perform attention operation across
the K scenes, facilitating an efficient ranking. We refer
this operation as Multi-scene Transformer and is depicted
in Fig. 3-bottom. Finally, a linear layer with ReLU ac-
tivation produces a vector of length K, which is normal-
ized with a softmax function to yield the error probabilities
{e,...,ef}. Notably, like our U2Diff, this architecture is
flexible as it does not require a fixed number of timesteps
T, agents N, or generated modes K (see supplementary).

5. Experimental results
5.1. Datasets

For trajectory completion, we evaluate on three team sports
datasets [60]: Basketball-U, Football-U, and Soccer-U.
Basketball-U derives from NBA dataset [65] with 93,490
training and 11,543 testing sequences, each spanning 50
frames (8 seconds) capturing (x, y) coordinates for 10 play-
ers and the ball. Football-U, based on the NFL Big-Data-
Bowl! dataset, contains 10,762 training and 2,624 test-
ing sequences of 50 frames, tracking (z,y) locations for
22 players and the ball. Soccer-U, built from Soccer-
Track” dataset, provides 9,882 training and 2,448 testing
sequences, each also 50 frames, recording (z,y) positions
for 22 players and the ball. In [60], five masking strategies
are defined for trajectory completion, including forecasting
futures, imputing in-between states, and inferring the state
of over five fully unobserved agents.

For trajectory forecasting, we use the NBA SportVU
dataset (NBA) [40], with the same splits and normalization
procedure as in LED [38]. The dataset records 30 frames (6
seconds) of (z, y) positions for 10 players and the ball. The
prediction task is to observe the first 2 seconds (10 frames)
and forecast the subsequent 4 seconds (20 frames).

5.2. Implementation details

In our U2Diff, we use S = 50 diffusion steps during train-
ing, with \ values set to 0.001 for Basketball-U dataset and
0.01 for the other three datasets. The diffusion noise sched-
uler starts with an initial value of By = 10~* and ends
with Sg = 0.5, following a quadratic function. Sampling
is performed using DDIM, with a fixed skipping interval
of ( = 10 denoising steps, reducing the reverse process
to only six denoising steps: s € {50,40,30,20,10,1}.
Optimal variance propagation starts at § = 30. The final
step (s = 1) follows the standard DDPM sampling and
the variance is set as Var(Xy) = Var(X;). The Temporal

Uhttps://github.com/nfl-football-ops/Big-Data-Bowl
Zhttps://github.com/AtomScott/SportsLabKit

Mamba’s forward and reverse blocks are configured with a
hidden size of 256, matching the configuration of the Social
Transformer, which uses a 1024-dimensional feedforward
layer and 8 attention heads. RankNN training involves gen-
erating 20 modes per scene online using the trained U2Diff
with frozen weights. These generated samples are used to
compute rankings based on their proximity to ground truth
values. Additional implementation details are provided in
the supplementary material.

5.3. Evaluation metrics

The first set of metrics are the commonly used the agent-
wise metrics: minADEg as the minimum average dis-
placement error, and minFDE g as the minimum final dis-
placement error, both calculated over K generated agent-
modes. However, these metrics focus only on individual
agent modes, lacking a full assessment of inter-agent scene
dynamics. To address that, we include scene-level met-
rics: minSADEg as the minimum SADE (see Eq. (16)),
and minSFDE g as minimum scene final displacement error,
both calculated over K generated scene-modes [ 18, 42].
We also adopt the metric used by [60] in trajectory com-
pletion evaluation, here referred to as minADE i [60]. The
Spearman correlation coefficient p (see Eq. (17)) is used to
assess AvgUcty and RankNN operations. Finally, the Ac-
curacy Rate (AccRate) metric evaluates uncertainty quality
by measuring the percentage of ground-truth states that fall
within the predicted distribution with 95% confidence.

5.4. Comparison in trajectory modeling

In this section, we compare our approach with several state-
of-the-art methods in trajectory completion and trajectory
forecasting tasks.

In Table 1, we present the results for the minADE2([60]
and, for UniTraj [60] and our baselines, the minSADEy
metric (shown in parentheses). Our method outperforms
UniTraj, the strongest competing method, across all three
completion datasets, achieving over 31% and 42% improve-
ments in minADEg[60] on the Football-U and Soccer-U
datasets, respectively. When the number of agents is re-
duced, as in Basketball-U, we also obtain superior results,
with a 27% improvement in minSADEs,. The table fur-
ther includes an ablation study analyzing the impact of loss
augmentation (A = 0). The results indicate that omit-
ting the loss augmentation does not degrade performance
in terms of minSADEyy. Moreover, when evaluated using
the minADE[60] metric, loss augmentation leads to im-
provements across all three datasets.

For the trajectory forecasting task, Table 2 presents the
NBA dataset results. Our unified approach ranks sec-
ond in agent-wise metrics minADEyy/minFDEs,, while
achieving state-of-the-art performance in scene-level met-
rics minSADEyo/minSFDEsyq, surpassing the diffusion-



Method Basketball-U (Feet) Football-U (Yards) Soccer-U (Pixels)
Mean 14.58 14.18 417.68
Median 14.56 14.23 418.06
Linear Fit 13.54 12.66 398.34
LSTM [24] 7.10 7.20 186.93
Transformer [56] 6.71 6.84 170.94
MAT [65] 6.68 6.36 170.46
Naomi [34] 6.52 6.77 145.20
INAM [47] 6.53 5.80 134.86
SSSD [3] 6.18 5.08 118.71
GC-VRNN [61] 5.81 4.95 105.87
UniTraj [60] 4.77 (4.29) 3.55(4.03) 94.59 (100.48)
U2Diff (A = 0) 4.68 (3.10) 2.53 (2.37) 54.41 (51.27)
U2Diff 4.65/(3.13) 2.42 (2.35) 53.93 (51.14)

Table 1. Evaluation in trajectory completion. We compare
our U2Diff with baseline methods in trajectory completion across
three datasets. The metrics used are minADE2o[60]], and in
parentheses, we report the minSADEsq for both our U2Diff and
the UniTraj baseline, computed using their original code and pub-
licly available trained model.

Method NBA (Meters)

minADEjy, / minFDEs; |  minSADEyq / minSFDEy, |
MemoNet [58] 1.15/1.57
NPSN [6] 1.25/1.47 -
GroupNet [57]X 0.94/1.22 2.12/3.72
AutoBots [18]% 1.19/1.55 1.75/2.73
MID [20] 0.96/1.27 -
LED [38] 0.81/1.10 1.63/2.99
U2Diff (A = 0) 0.86/1.11 1.50/2.70
U2Diff 0.85/1.11 1.48/2.68

Table 2. Evaluation in trajectory forecasting. We compare our
U2Diff with baseline methods in trajectory forecasting on NBA
dataset. We report four metrics, two agent-wise and two scene-
level metrics. X means a new pretrained model from their codebase
is used, with better results than the reported in the original work.
¥ means trained using their original code.

based LED [38] method by over 9%. The sequential la-
tent variable model AutoBots [18] also delivers competitive
minSFDEy( results. This table includes the same ablation
as in Table 1, showing improvement with our proposed loss.
Figure 4 illustrates examples for trajectory completion
and forecasting. The depicted trajectories are the modes
with the minSADEy. We compare in tajectory completion
against the UniTraj [60], where our method delivers more
accurate reconstructions and plausible predictions. For
NBA forecasting, our model shows generally better future
predictions—especially for ball trajectories—compared to
LED [38], highlighting the effectiveness of scene-level met-
rics. Also note that our model is able to estimate variance
in both tasks and reconstruct the observed states. Please re-
fer to the supplementary material for additional qualitative
results and an ablation study on the U2Diff architecture.

5.5. Uncertainty and error probability estimation

As previously mentioned, in Fig. 4 we present the predicted
uncertainty for each state based on a 95% confidence inter-
val. For trajectory completion, the ground-truth states fall

UniTraj Ours

Figure 4. Qualitative comparisons in trajectory completion
(top) and forecasting (bottom). Our U2Diff is compared with
UniTraj [60] for trajectory completion and LED [38] for trajectory
forecasting. Ground truth player locations are shown in bright blue
and pink, and the ball in green. Model input observations are in
white. The predicted mode with the best minSADEy is shown,
with players in dark blue and pink, and the ball in yellow.

Sampling Basketball-U  Football-U Soccer-U NBA
Mean 82.11/-1.24 92.06/-2.16 94.27/-2.51 76.99/-0.94
Top-1 e 84.01/-1.41 92.82/-224 94.75/-2.57 79.19/-1.03

Top-1 SADE  86.77/-1.76  93.95/-2.39 95.63/-2.66 85.70/-1.31

Table 3. Uncertainty evaluation using the % of AccRate? /
NLL/] metrics. Results are depicted for all datasets.

within the predicted variance in nearly all cases, indicating
robust uncertainty estimation. In contrast, NBA forecasting
remains more challenging due to the difficulty in maintain-
ing high confidence over longer prediction horizons.

To evaluate uncertainty quality, we first use Accuracy
Rate (AccRate) and the Negative Log-Likelihood (NLL) in
Table 3. We compute these metrics across three sampling
strategies, depicted in each row: (Mean) average over all
K generated modes, (Top-1 e) mode with the lowest error
probability e predicted using RankNN, and (Top-1 SADE)
mode with the minimum SADE. Football-U and Soccer-
U datasets achieve AccRate values over 92%, indicating
strong variance estimation. However, Basketball-U exhibits
slightly lower AccRate and higher NLL values, reflecting
the increased dynamics of the sport and the challenge of
predicting trajectories for five or more fully unseen agents.
The NBA dataset, which involves long-horizon forecasting,
naturally exhibits lower AccRate and higher NLL. Notably,
Top-1 e selection outperforms Mean sampling, achieving
higher AccRate and lower NLL, with results approaching
Top-1 SADE. This demonstrates the RankNN’s effective-
ness in identifying reliable modes.

Another key metric is the Spearman correlation p be-
tween the ranked K = 20 modes and SADE under the
same prior. Ranking can be based on either AvgUcty (pre-
dicted uncertainty, relative to § in our method) or e (error
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Figure 5. Qualitative evaluation of the error correlation. Top: In orange, the AvgUcty versus SADE across the 20 generated modes of a
test scene example. In blue, the error probability e versus SADE. Bottom: Distribution of Spearman correlation coefficients p for all four
test datasets, using AvgUcty in orange and RankNN predicting e in blue.

Method Rank §  Basketball-U Football-U  Soccer-U NBA
AvgUcty 0.09/0.10
AutoBots [18] P 0.37/0.44
50 0.14/0.15 0.12/0.13 021/022 0.19/0.21
40 0.22/024 025/026 0.22/0.24 0.30/0.35
U2Dift AvgUcty 30 0.27/029 0.28/0.31 023/025 0.30/0.35
20 029/031 0.28/0.31 025/027 0.30/0.35
10 0.29/031 0.26/028 0.25/0.28 0.29/0.33
e - 0.56/0.63 0.59/0.65 0.72/0.78 0.51/0.58

Table 4. Evaluation of the correlation with error. The results
are the Mean / Median of Spearman correlation (p 1) between the
uncertainty or error probability estimations and the SADE.

probabilities). The mean and median values of p for each
scene across all datasets are shown in Table 4, with com-
parisons to AutoBots [18]. Notably, our predicted uncer-
tainty and the estimated error probabilities achieve higher
correlations in the NBA dataset. Note that the AvgUcty op-
eration alone yields moderate correlations when § = 30,
with median values ranging from 0.25 to 0.35. This corre-
lation improves further when using the RankNN approach.
To illustrate this, Fig. 5-top shows four examples where we
compare the AvgUcty operation and the error probabilities
(e) against the SADE for each modes under the same prior.
The blue dots corresponding to error probabilities demon-
strate better rankings compared to the AvgUcty approach.
The distribution of Spearman correlations across the entire
test sets is presented in Fig. 5-bottom. See supplementary
for the ablation analysis of RankINN inputs and components.

Finally, Table 5 shows results for different ranking strate-
gies to select the Top-k modes from a set of 20 and then
compute the minSADE;, for these selected modes. It is im-
portant to note that Top-20 is equivalent to minSADEq.
The ranking methods considered include Random, AvgUcty
(when the model outputs variance) using § = 30 in our
framework, and e ranking. We present results for the
sampling-based LED [38] generative method as well as Au-
toBots [18], which can infer state-wise uncertainty and er-
ror probabilities for the generated modes. Our results show

Method Rank NBA (Meters)
Top-1 Top-3 Top-5 Top-10 Top-20

LED [38] Random  3.80  2.17 1.92 1.73 1.63
Random  2.76 2.17 2.02 1.88 1.75
AutoBots [18]  AvgUcty 237 219  2.09 1.94 1.75
e 240  2.08 1.98 1.86 1.75
Random  2.01 1.75 1.66 1.56 1.48
U2Diff AvgUcty 191 1.71 1.63 1.55 1.48
e 1.82 166 1.60 1.54 1.48

Table 5. Evaluation of the rank techniques and baselines com-
parisons. From 20 generated modes for each method, the Top-
k best ones according the ranking method are selected, then the
minSADE,, | is computed over this subset.

that, by using AvgUcty and the probabilities from RankNN,
our method consistently outperforms the others, demon-
strating a clear improvement in forecasting accuracy.

6. Conclusion

In this paper, we present U2Diff, a unified uncertainty-
aware diffusion framework for general trajectory comple-
tion tasks. U2Diff not only outperforms state-of-the-art
forecasting baselines in scene-level metrics but also sets
a new benchmark in trajectory completion. We demon-
strated its effectiveness in estimating state-wise uncertainty
via a novel loss augmentation, without sacrificing the ac-
curacy of state predictions. Our experiments reveal that
U2Diff’s uncertainty estimations exhibit a stronger corre-
lation with ground truth errors compared to the scene-level
state-of-the-art method. Additionally, we proposed a novel
post-processing supervised RankNN model that infers er-
ror probability estimates for each mode, achieving a strong
correlation with ground truth errors and also surpassing the
scene-level based method.
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