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Abstract This paper shows how the position analysis of mechanisms with coupling
number one can be solved by computing the fixed points of monotonic recurrent
formulas. This new approach is directly elaborated on the 3-RPR planar mechanism.
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1 Introduction

A myriad of papers have been written on the position analysis of serial and parallel
robots. Roughly speaking, general methods can be divided into numerical or alge-
braic.While numericalmethods directly compute these solutions froma set of closure
equations, algebraic methods are concerned with the derivation of a resultant poly-
nomial, of the lowest possible degree, from the mentioned closure equations whose
roots determine the sought solutions. Thus, it is essential to chose the right closure
conditions as they determine the complexity of the subsequent steps. Distance-based
closure conditions have emerged as a good alternative to closure conditions based
on kinematic loop equations. In this paper, we further investigate distance-based
closure conditions by formulating them in terms of monotonic recurrences (self-
maps). Then, the sought solutions are fixed points of these recurrences. Due to space
limitations, these ideas are mostly visually presented for a particular example: the
planar 3-RPR. Although they are applied to a particular example, it will be clear that
no particularity of this mechanism is used at any time, except the fact that its cou-
pling number is one. In other words, the presented approach can be directly applied
to all mechanisms whose position analysis can be reduced to perform a kinematic
inversion in a strip of tetrahedra (or triangles) [1].
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2 Computing unknown distances from known ones

The valid distances between a set of points depends on the dimension of the embed-
ding space. These valid distances can be characterized using the so-called Cayley-
Menger determinants [2]. The Cayley-Menger bi-determinant of two sets of points,
%81 , . . . , %8= and % 91 , . . . , % 9= , is defined as
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where B8, 9 = 32
8, 9

= %8% 9

2. If the two sets of points in (1) coincide, the resulting
determinant is said to be a Cayley-Menger determinant, which we will simply denote
as Π(81, . . . , 8=).
In R=, any Cayley-Menger determinant involving more than =+1 different points

vanishes. Therefore, given four points in R2, say %8 , % 9 , %: , and %; , we have that

Π(8, 9 , :, ;) = 0. (2)

This equation permits expressing any pairwise distance between these four points as
a function of the other pairwise distances. In particular, for B:,; , we have that

B±:,; (8, 9 , :, ;) = − 1
Π(8, 9)

(
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) ���
B:,;=0

±
√
Π(8, 9 , :) Π(8, 9 , ;)

)
, (3)

where the notation next to the right hand side of the bideterminant indicates that all
instances of B:,; = B;,: appearing in it must be set to zero. Due to the square root, we
have two possible values for B:,; corresponding to the two possible locations of points
%: and %; with respect to the line supporting %8% 9 . In what follows, B+:,; (8, 9 , :, ;)
and B−

:,;
(8, 9 , :, ;) will denote these two solutions.

3 Cayley spectrahedra

Let us consider four points in R2, say %1, %2, %3, and %4, where all except two
pairwise distances between them are known. Then, two situations arise up to index
permutations which are next analyzed in detail.
Consider the quadrilateral bar-and-joint framework in Fig. 1(left) where the nu-

merical values next to each bar stand for its squared length. Since this framework
is embedded in R2, the volume of the tetrahedron formed by the four joint centers
vanishes. That is, Π(1, 2, 3, 4) = 0, which implicitly defines the curve in the plane
of the unknown distances (B1,3, B2,4) (see Fig. 1(right)). In general, this curve has
branches that do not correspond to valid distances of B1,3 and B2,4 because they do not
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Fig. 1 Bar-and-joint framework (left) and its associated spectrahedron shown in yellow (right)
whose boundary corresponds to the valid lengths of the two dotted segments in the framework. Due
to the convexity of spectrahedra, this boundary determines four monotonic one-to-one mappings
between the lengths of the dotted segments in the framework.

satisfy the triangular inequalities. Only the boundaries of the oval region in yellow,
technically known as a Cayley spectrahedron [3], correspond to valid distances. The
orthotope tightly enclosing this spectrahedron can be easily computed as its bounds
correspond to configurations in which the bar-and-joint framework has three aligned
joints. According to the notation used in Fig. 1, it can be verified that these bounds
are:

B1,3 =
[
min(31,4 + 33,4, 31,2 + 32,3)

]2
= 219.5445,

B1,3 =
[
max(abs(31,2 − 32,3), abs(31,4 − 33,4))

]2
= 8.5786,

B2,4 =
[
min(31,4 + 31,2, 33,4 + 32,3)

]2
= 219.5445,

B2,4 =
[
max(abs(31,2 − 31,4), abs(32,3 − 33,4))

]2
= 8.5786.

Using expression (3), we can now express B2,4 as B+2,4 (1, 2, 3, 4) or B
−
2,4 (1, 2, 3, 4)

(that is, as a function of B1,3). On the way round, we can express B1,3 as B+1,3 (1, 2, 3, 4)
or B−1,3 (1, 2, 3, 4) (that is, as a function of B2,4). This allows us to subdivide the valid
ranges for both B1,3 and B2,4, by computing the images of B1,3, B1,3, B2,4, and B2,4,
, to end up with four one-to-one monotonic mappings between B1,3 and B2,4. Each
mapping will be identified using two signs, as shown in Fig. 1 (right).
Now, consider the bar-and-joint framework in Fig. 2 (left). In this case, the two

variable distances share the point %3. The corresponding spectahedron appears in
Fig. 2 (right). This case is simpler than the previous one because the resulting
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Fig. 2 Bar-and-joint framework (left) and its associated spectrahedron shown in yellow (right)
whose boundary corresponds to the valid lengths of the two dotted segments in the framework.
As in the case depicted in Fig. 1, this boundary determines four monotonic one-to-one mappings
between the lengths of the dotted segments in the framework.

spectahedron is an ellipsoid [4] whose bounds are:

B1,3 =
(
31,2 + 32,3

)2
= 219.5445,

B1,3 =
[
abs(31,2 − 32,3)

]2
= 0.4555,

B3,4 =
(
32,4 + 32,3

)2
= 219.5445,

B3,4 =
[
abs(32,4 − 32,3)

]2
= 0.4555.

As in the previous case, we can subdivide the valid ranges for B1,3 and B3,4 to
establish four one-to-one monotonic mappings between B1,3 and B2,4 which can be
identified with two signs, as shown in Fig. 2 (right).
We have seen how the relationship between two pairwise distances defined by a set

of four coplanar points can always be decomposed into four monotonic one-to-one
mappings. This is the fundamental result on which relies the approach presented in
this paper. It can actually be seen as a consequence of the convexity of spectrahedra
(for an introductory account of spectrahedra, the reader is addressed to [5]).

4 Distance recurrences and their fixed points

Consider the 3-RPR planar robot in Fig. 3. It consists of a moving platform, defined
by 4%4%5%5, connected to a fixed base, defined by 4%1%2%3, through the extensible
legs defined by %1%4, %2%5, and %3%6 [6].
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Fig. 3 Planar 3-RPR used as an example. The shown numerical values stand for the squared bar
lengths.
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Fig. 4 A recurrence for B1,5 of this 3-RPR planar robot can be obtained by expressing B3,5 as a
function of B1,5 (a), B2,6 as a function of B3,5 (b), B2,4 as a function of B2,6 (c), and, finally, B1,5 as a
function of B2,4.
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Fig. 5 There are 16 possible recurrences (self-mappings) for B1,5, depending on the chosen set of
signs identifying each monotonic branch of the spectahedra boundaries. Here we have applied the
recurrence (++, −−, +−, −−) to B (=)1,5 to obtain B

(=+1)
1,5 .

A recurrence for B1,5 of this planar robot can be obtained a follows: (1) since
Π(1, 2, 3, 5) = 0, we can express B3,5 as a function of B1,5; (2) sinceΠ(2, 3, 5, 6) = 0,
we can likewise express B2,6 as a function of B3,5; (3) since Π(2, 4, 5, 6) = 0, we can
in turn express B2,4 as a function of B2,6; and (4), to complete the recurrence, we can
express B1,5 as a function of B2,4 because Π(1, 2, 4, 6) = 0 (see Fig. 4).
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Fig. 6 Set of feasible recurrences. The valid interval domain for B1,5 for each recurrence appears
in red in its corresponding axis. The fixed points of these recurrences determine the parallelograms
depicted in blue.
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3 - - + + - + - - 182.3493 136.6145 740.9603 84.3431
4 - - - - + - + - 154.4996 413.0476 185.6334 98.6403

5 - + - + - + - + 240.5085 114.6584 742.4635 109.6414
6 - + - + + + + + 132.8833 207.0809 321.0968 153.4463

Fig. 7 Solutions to the forward kinematics of the analyzed parallel mechanism obtained as fixed
points of distance recurrences.

Using the values given in Fig. 3 for the known bar lengths, we can obtain the
corresponding four spectrahedra which can be arranged on a plane divided into four
quadrants, as shown in Fig. 5, so that the coordinate axes correspond to B1,5, B3,5,
B2,6, and B2,4.
After decomposing the boundary of each spectrahedron into four monotonic

branches, we can readily observe that the domain of one branch and the range of a
previous branch in a given recurrence are, in some cases, disjoint. This implies that
this recurrence is unfeasible. For example, the domain of B1,5 for the +− branch in
the first quadrant and the range of B1,5 for the +− branch in the fourth quadrant are
disjoint. This implies that all recurrences involving these two branches are unfeasible.
To identify all unfeasible recurrences, we can propagate the initial domain for B1,5,
clockwise and/or counterclockwise, over all possible a priori recurrences. Then, if
the result for a particular recurrence is the empty interval, we can conclude that
it is unfeasible. This can be trivially implemented thanks to the monoticity of all
branches. Fig. 6 shows the resulting six feasible recurrences and the domains of
B1,5 for each of them. Once we have identified the set of feasible recurrences and
the domains for each variable, the problem consists in finding their fixed points.
Nevertheless, they can be obtained by iterating the propagation of the valid intervals
for B1,5 over each recurrence. Indeed, let us take one of these recurrences and let
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B1,5 denote the upper bound of the valid domain of B1,5 for this recurrence. Let
us also suppose that this upper bound is propagated counterclockwise. If the result
is lower than B1,5, the recurrence is contractive at this point and the upper bound
can be reduced accordingly. If the result is the same, we have identified a fixed
point. If it is higher, the recurrence is expansive at this point, but this means that
its inverse is contractive. As a consequence, this upper bound could also be reduced
by changing the sense of the propagation. A similar reasoning can be applied to the
lower bound. If this strategy is used in our example, we obtain the six fixed points
given in Fig. 7. Observe that the relative orientation of 4%4%5%5 with respect to that
of 4%1%2%3 is different in the first four solutions than in the other two. It can be
proved that each recurrence determines the relative orientations for all the involved
triangles. Therefore, we can choose beforehand those recurrences that lead to the
desired orientations.

5 Conclusion

Given a planar rigid bar-and-joint framework with coupling number one, we have
presented a way to derive monotonic distance recurrences and their variable domains
so that their fixed points correspond to the valid framework configurations. We have
used a particular mechanism to present some preliminary results using this new
approach which obviously deserve a deeper mathematical analysis. Our current
efforts concentrate on this latter point.
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