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Abstract

We study an aerodynamic model describing the interaction between cloth
and air, with applications to dynamic textile manipulation by robots. After
introducing the model, we investigate its theoretical implications by using
an analytically solvable system: the damped pendulum. We deduce that
aerodynamic forces in the model manifest themselves as a lifting force, more
pronounced when the cloth transitions from rest to dynamic motion. The
resulting aerodynamic model is simple, with no additional computational
cost. The model is validated by comparing cloth simulations to real-world
data as captured by a Motion Capture System: the results demonstrate
errors of less than 1 cm even for size A2 textiles. Furthermore, we develop
an a priori formula for estimating the parameters of the model for various
textiles without further optimization. This formula allows us to present a
challenging robotics application: a dynamic flattening motion is designed
in simulation and then successfully executed by a robot without any fine-
tuning or modification. The outcome, a smooth and rapid laying of the real
textiles, demonstrates the minimal sim-to-real gap of our model even when
aerodynamics plays a leading role.
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1. Introduction

The manipulation of cloth is currently a frontier problem in robotics [1].
It encompasses household and hospitality tasks, for which there is signifi-
cant demand for automatization, such as folding and storing laundry, setting
linens on beds and tables [2], as well as industrial tasks like wrapping, seal-
ing with tape, and managing textile components in machinery ranging from
sailboats to small unmanned aerial vehicles [3]. The problem owes its fron-
tier status to the distinct complexity of cloth dynamics. When modeled as a
surface, a piece of cloth has an infinite-dimensional space of possible states,
whose topological analysis encompasses significant aspects of knot theory [4].

One possible path to overcome such difficulties for robotic applications is
through the use of cloth simulators [5]. The strategy is in principle simple:
given a cloth model (usually a set of ordinary differential equations) either
use it for designing optimal control trajectories [6] or for generating data
that then can be used to train any learning algorithm [7]. The main problem
that is usually faced by this approach is the so called sim-to-real gap: often
what is learned or designed in simulation does not translate to well to the
real robot. There are many reasons why this happens, but the main culprit
is usually the (lack of) realism of the chosen simulator [8].

1.1. Inextensibe cloth model

While the local structure of textiles suggests modeling them as elastic
thin shells [9], this approach is limited due to the tendency of cloth to buckle
(or wrinkle) under even minimal compression [10]. In previous works [11, 12],
the authors developed a mechanical model treating cloth as an inextensible
surface that bends freely (in [11]) and implemented a cloth simulator based on
this model, incorporating friction, collisions, and self-collisions (in [12]). The
model was shown to be realistic by comparing simulations of manipulation
tasks, including shaking, spreading a piece of cloth flat on a table, and hitting
a piece of cloth with a stick, with real-world recordings of these tasks.

This comparison between real-life robotic manipulation of cloth and its
simulation demonstrated that aerodynamic effects are critical factors in-
fluencing cloth motion. Even at the modest speeds typical of human ma-
nipulation in domestic settings, incorporating aerodynamic forces into the
mechanical model of cloth is necessary to achieve simulations with a margin
of error of approximately 1 cm when comparing the simulated and actual
positions of points of interest on the cloth.
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1.2. A practical aerodynamic model for textiles

The science of aerodynamics applies fluid mechanics to model the inter-
action between a moving object and its surrounding atmosphere [13]. For
textiles, this interaction becomes particularly complex as the motion of the
garment’s edges and the surrounding air turbulences form a coupled problem
[14]. This coupling significantly increases the computational cost of simula-
tions. Thus, simulating aerodynamic forces using fluid mechanics becomes
unfeasible for its use in robotic cloth manipulation, e.g. in the development
of efficient control strategies. Fast simulations are also crucial for generating
the vast amounts of data needed to train learning algorithms, such as neural
networks. Therefore, the use of a practical, yet realistic aerodynamic model
for cloth simulation becomes of critical importance for robotic applications.

In this work, we analyze analytically and empirically the solution pro-
posed by the authors for the first time in [11] to the dilemma of velocity
versus accuracy in simulating aerodynamic effects on cloth motion. This is
achieved with a simple computational modification: decoupling the inertial
and gravitational masses of the cloth. Assigning a smaller gravitational mass
to the garment turns out to be equivalent to assuming the presence of a lift-
ing force, akin to the buoyant force that would be experienced if the cloth
were immersed in a fluid. Our lifting force correction tries to reflect the effect
of turbulences, similar to friction, that the motion of the cloth generates and
exerts on itself. Our inclusion of aerodynamics in the mechanical model of
cloth, as a correction to the gravitational mass, incurs no computational cost
and can be applied with coarse meshings, enabling fast simulations. Since
this correction factor represents the resistance of the surrounding air to the
motion of the cloth, its optimal value is expected to depend on the specific
structure and density of the cloth, the speed of its motion, and the size of
the garment.

1.3. Contributions

In this work, we report for the first time our analysis of this dependence
and identify default values for the mass correction factor. These default
values, which serve as an approximation for the aerodynamic effects in the
simulation of various robotic manipulation tasks, achieve a margin of error
of 1 cm when comparing the position of key points in simulation with real
recordings of the tasks. To the best of our knowledge, this is the first com-
prehensive study in literature that examines how size, speed, and material
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properties affect the aerodynamics of textiles in such a way that is relevant
for robotic applications. Moreover, we show that physically, the proposed
solution is a practical model in which aerodynamic forces are represented by
a lifting force, which becomes more pronounced as the cloth starts moving
from a resting position. Finally, we give a non-trivial robotic application
of having an accurate model that can predict the future behavior of cloth,
proving that the sim-to-real gap of our cloth model with the aerodynamic
correction is minimal, i.e. that what we plan in simulation can be executed
by a real robot with essentially the same results. The original contributions
of this work are:

1. A theoretical understanding of the gravitational mass correction in the
aerodynamic model.

2. An extensive study of the aerodynamic effects on textiles, analyzing
the dependency of the model on fabric type, size, and speed.

3. A formula for determining a-priori the values of the physical parameters
in the model without any optimization.

4. A non-trivial robotic application demonstrating the minimal sim-to-
real-gap of the aerodynamic model.

1.4. Organization

The structure of the article is as follows: after a discussion of prior work
on the aerodynamics of cloth motion in §2, we present our inextensible cloth
model in §3, including its aerodynamic-motivated correction to the gravi-
tational mass factor. In §4, we discuss a theoretical justification for this
simplified aerodynamic correction. §5 describes our experiments with var-
ious robotic cloth manipulation tasks, including the determination of the
aerodynamic parameter through comparisons between the experiments and
their simulations, as well as the margin of error introduced by using a default
value of the parameter based solely on the type of cloth. In §6, we highlight
the application of our model to a task where aerodynamics plays a decisive
role: dynamically flattening a piece of cloth on a table with a robot. Finally,
in §7, we summarize the conclusions drawn from our analysis.
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2. Related work

The effect of aerodynamics on the motion of textiles is a relatively under-
developed field of study. Although some simplified models exist, e.g. [15],
modeling aerodynamic forces acting on a deformable object submerged in a
fluid is highly challenging (see [14] and [16]), particularly near the bound-
aries of the cloth. This difficulty arises, in part, because non-trivial motions
induce turbulence, and the non-rigid response of cloth to such turbulence
is highly unpredictable [17]. Historically, this lack of research stems from
the fact that the foundational problems of aerodynamics were focused on
rigid or, at most, elastic bodies in an airflow (see [13, 18]). On the other
hand, textile engineering has primarly studied the behavior of cloth during
the manufacturing process, where it is subject to high tension and largely
unaffected by airflow (see [10]).

The effect of wind, or fluid flows in general, on flags, sails, and mem-
branes can be studied using elasticity theory, modeling the surfaces as thin
shells ([19–21]; see also references reviewed in the last source). These studies
primarily focus on 2-dimensional cross-sections of the flow due to the com-
putational challenges posed by the coupling between the shape of the flag
and the turbulence it generates in the surrounding air motion. Furthermore,
cloth buckles immediately under even slight compression, a characteristic
that limits the applicability of elasticity theory for its analysis.

Another approach has been the attempt to model explicitly the complex
coupling between airflow and fabric motion using high-fidelity simulations,
primarily based on immersed boundary (IB) methods and fluid–structure
interaction (FSI) models. These methods have provided insights into cloth-
like dynamics, by simulating flapping flags [22], parachutes [23], and flex-
ible filaments [24]. IB methods avoid the need for deformable meshes by
embedding the deformable object in a Cartesian grid, enforcing interaction
forces through additional momentum terms [25]. This allows for flexible
geometries but still demands significant computational resources, particu-
larly for 3D simulations. Traditional FSI approaches, such as Arbitrary La-
grangian–Eulerian (ALE) frameworks, provide more accurate coupling but
require dynamic remeshing, iterative solvers, and extensive memory use, fur-
ther limiting their feasibility for fast computation. Overall both methods
are computationally expensive, requiring high-resolution grids, small time
steps, and often large-scale parallel computing, making them impractical
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for robotics applications [22, 23]. Given these constraints, other researchers
in the community are exploring reduced-order models and data-driven ap-
proaches to approximate cloth aerodynamics while maintaining computa-
tional efficiency [26]. Recent efforts, such as spectral submanifold reductions
and proper orthogonal decomposition, aim to capture the dominant dynam-
ics with significantly fewer degrees of freedom. While promising, these tech-
niques are still under development and are often very case-specific.

Finally, in the context of cloth simulation in computer graphics, Ling,
Damodaran and Gay [27] (see also ch. 7 of [28] for a more detailed descrip-
tion) conducted an in-depth analysis of the behavior of textiles in an airflow,
going beyond the study of cross-sections and suitable for cloth simulation.
Drawing from aerodynamics research, the authors in [27] model air as an
incompressible, inviscid fluid governed by the Bernouilli equation. A piece of
cloth in this fluid is treated as a moving boundary condition, which can only
be studied numerically because of its deformability. Meshing the cloth en-
ables the application of the Panel Method with ring vortexes of the flow (see
[18]) to model the interaction between the airflow and the deformation of the
garment. While this method has been successfully applied to simulate cloth
motion, it has a significant drawback: its high computational cost. This is
mainly due to the fact that it requires a fine meshing of the garment, which
increases computation costs across all aspects of the cloth simulation. This
high cost precludes its use for real-time simulation, and even for generating
the vast amount of data required to train (deep) learning algorithms.

3. Inextensible cloth model and aerodynamics

In this section we give a self-contained presentation of the intextensible
cloth model developed in [11] so that we can later discuss how to incorporate
aerodynamics into the equations.

We assume that the cloth S has been discretized into a triangular or
quadrilateral mesh and the position of all its N vertices or nodes (denoted
by pi(t) = (xi(t), yi(t), zi(t)) ∈ R3) at time t ≥ 0 is given by φ(t) =
(x(t),y(t), z(t))⊺ ∈ R3N , where x(t),y(t), z(t) denote the x-coordinates
(resp. y and z) of all the nodes of the discrete surface in RN at time t.

Then, the inextensible cloth model without collisions consists in the fol-
lowing set of ordinary differential equations (ODEs):
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{
ρMφ̈ = fρ − κKφ−Dφ̇−∇C(φ)⊺λ

C(φ) = 0
(1)

where the meaning of each term and parameter is:

1. ρ > 0 is the density of the cloth (which we are assuming to be homo-
geneous), M is the augmented mass matrix, fρ = −ρMg is the force of
gravity and g = (0, . . . , 0|0, . . . , 0|g, . . . , g)⊺ where g = 9.8m/s2,

2. the stiffness matrix (we are using the isometric bending model described
in [29]) is K = L⊺ML where L is an approximation of the point-wise
Laplacian and κ > 0 is a bending constant,

3. we have added Rayleigh damping: D = αM+ βK, where α and β are
positive parameters dampening slow and fast oscillations respectively
[30],

4. and finally λ(t) are the Lagrange multipliers ensuring inextensibility
(to be described next) and other possible positional constraints, such
as manipulating the textile by prescribing the position of its corners.

Besides further positional constraints introduced by manipulation, the
smooth function C : R3N → RnC is responsible for modeling the inexten-
sibility of the textile through the satisfaction of the equality constraints
C(φ) = 0. Each constraint Ci(φ(t)) = 0, i = 1, . . . , nC is in fact a quadratic
function of its argument and we have nC of them, depending on the number
of nodes N of the discretization.

Indeed, for each interior (non-boundary) node index k ∈ Int(S) of the
discretized surface S, we have three constraints given by Ek(t) − Ek(0) = 0
or Fk(t)− Fk(0) = 0 or Gk(t)−Gk(0) = 0, where

Ek(t) =
1

mk

N∑
i,j=1

⟨pi(t), pj(t)⟩ ·
∫
S

Nk∂ξNi∂ξNjdA,

Fk(t) =
1

mk

N∑
i,j=1

⟨pi(t), pj(t)⟩ ·
∫
S

Nk∂ξNi∂ηNjdA,

Gk(t) =
1

mk

N∑
i,j=1

⟨pi(t), pj(t)⟩ ·
∫
S

Nk∂ηNi∂ηNjdA.

(2)
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Here mk > 0 is one third the sum of the areas of all incident triangles (one
fourth in the case of quadrilaterals) to the kth node pk of the surface and
Ni : S → R are piece-wise smooth continuous indicator functions (also called
a Lagrange basis or hat functions) such that Ni(pj) = δij is the Kronecker
delta. See [11] for more details and an efficient algorithm to evaluate these
constraints.

Remark 3.1 (Preservation of the metric of the surface). Assume that S ⊂ R3

is a smooth surface moving through space, such that its motion is given by
a family of surfaces {St}t≥0 isometric to S = S0. Then, it can be seen that
Equations (2) are obtained by discretizing with finite elements the following
system of partial differential equations:

⟨φξ, φξ⟩(t) = E0, ⟨φξ, φη⟩(t) = F0, ⟨φη, φη⟩(t) = G0 for t ≥ 0, (3)

where φt : R → St is a smooth parametrization of St, R is an open set of the
plane and (ξ, η) ∈ R, t ≥ 0 represents time, E0, F0, G0 are the coefficients
of the first fundamental form or metric of S that are constant in time (but
not necessarily in R), and φξ(t) = ∂ξφ

t denotes partial differentiation with
respect to the variable ξ.

3.1. Modeling of aerodynamics through virtual mass

Finally, as mentioned in the introduction, in order to model the aerody-
namic effects of air resistance on cloth we allow inertial and gravitational
mass to be different. Hence we write fδ = −δMg, setting δ ≤ ρ as a new
parameter to be fitted. We call δ > 0 virtual mass. Therefore the equations
of motion become:{

ρMφ̈ = −δMg− κKφ− (αM+ βK)φ̇−∇C(φ)⊺λ

C(φ) = 0,
(4)

where the meaning of all parameters of the model is summarized in Table 1.

Remark 3.2 (Computational cost). Observe that the introduction of the
virtual mass parameter δ incurs in no extra computational cost, since it only
modifies the gravitational force calculation. This means the simulations run
as fast as the underlying cloth simulator itself – a significant advantage over
fluid-coupled methods, where air is simulated independently.
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Parameter Meaning

ρ Density (inertial mass)
δ Virtual (gravitational) mass
κ Bending/stiffness
α Damping of slow oscillations
β Damping of fast oscillations

Table 1: Physical parameters of the inextensible model and their meaning.

Remark 3.3 (Relationship with a lifting force). Notice that since we assume
that δ ≤ ρ, we have that

−δMg = −ρMg+ γMg

where γ = ρ − δ ≥ 0. Hence, by allowing the inertial and gravitational
masses to be different, we are actually introducing (a constant) force opposing
gravity. This may be viewed as incorporating into our model the upwards
component of the aerodynamic forces (such as lift and drag) to which an
object moving through air is subject.

4. Theoretical consequences of introducing the virtual mass pa-
rameter

The goal of this section is to understand theoretically the consequences
of the introduction of the virtual mass parameter δ > 0. Notice that solving
analytically system (4) is impossible even for the simplest motions and cloth
topologies. For that reason we study a very well known and simpler system
whose analytical solutions are easy to calculate: the damped pendulum. The
goal of this section is to study what happens to the solutions of the damped
pendulum when we introduce a virtual mass into its equations. The the-
oretical analysis using the damped pendulum model will demonstrate that
reducing δ relative to the inertial mass leads to lower initial velocities, effec-
tively capturing the impact of air resistance when the cloth transitions from
rest to motion.

Consider the motion of a damped pendulum of length l > 0 and inertial
mass ρ. Then (e.g. using Lagrangian mechanics) its equations of motion can
be described by

ρl2θ̈(t) = −δglθ(t)− βθ̇(t) (5)
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where θ = θ(t) is the angle that the pendulum makes w.r.t the equilibrium
position, i.e. its Cartesian coordinates are given by x = l sin θ and y =
−l cos θ, β > 0 is a damping parameter and we have made the small angle
approximation sin θ ≈ θ. Notice that we have already introduced the virtual
mass parameter 0 < δ < ρ into the equation. Then, manipulating the
equation algebraically we obtain

θ̈ + 2bθ̇ + ω2θ = 0, b = β
2ρl2

, ω2 = δg
ρl
. (6)

As usual, to find the solutions we look for (possibly complex) functions
of the form θ(t) = ert. Substituting our Ansatz into (6) we find that r =
−b±

√
b2 − ω2. Thus, if b ̸= w the general solution is of the form

θ(t) = c1e
r1t + c2e

r2t,

where r1 = −b+
√
b2 − ω2, r2 = −b−

√
b2 − ω2 and c1, c2 are determined by

the initial conditions θ(0) = θ0 and θ̇(0) = θ̇0. Notice that when ω > b we
are actually computing the complex exponential, but we can always recover
the real solutions by using Euler’s formula.

Now we wish to study the effect that δ < ρ has on the speed θ̇(t) for
small t > 0 when we start from θ(0) = θ0 < 0 and θ̇(0) = 0. Physically,
this means releasing the pendulum from the ‘left’. It is not difficult to see,
that for these initial conditions to be satisfied, we need c1 = − θ0r2

r1−r2
and

c2 = + θ0r1
r1−r2

. Hence the velocity of the pendulum becomes:

θ̇(t) =
r1r2

r1 − r2
θ0

(
er2t − er1t

)
. (7)

Next, on the one hand we have that r1r2
r1−r2

= ω2

2
√
b2−ω2 and on the other,

using Taylor expansions for the exponentials we get

er2t − er1t ≈ (r2 − r1)t+ (r22 − r21)
t2

2
= −2

√
b2 − ω2t+ 2b

√
b2 − ω2t2.

Therefore

θ̇(t) ≈ ω2θ0(bt
2 − t) = δg

ρl
θ0(bt

2 − t), for t small. (8)

Notice how the damping parameter b = β
2ρl2

only affects the terms of
order 2, so it is negligible near t = 0. Thus, by taking δ < ρ we are actually
making the initial velocities θ̇(t) smaller than what they otherwise would be
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if δ = ρ. Notice that this effect can not be achieved by having a larger b. We
can interpret this as adding air resistance, which (akin to static vs dynamic
friction) is larger when the pendulum is not moving.

Remark 4.1 (Critically damped case b = ω). It can be checked that when
b = ω, the general solution of (6) is of the form θ(t) = (c1t+c2)e

−bt. Imposing
θ(0) = θ0 < 0 and θ̇(0) = 0, we get c2 = ω and c1 = θ0ω. Thus,

θ̇(t) = −ω2θ0te
−bt ≈ −ω2θ0t(1− bt) = ω2θ0(bt

2 − t),

so we arrive to the same result.

We summarize the previous discussion in the following proposition.

Proposition 1. Consider the equations of motion of a damped pendulum
of length l > 0 and inertial mass ρ:

ρl2θ̈(t) = −δglθ(t)− βθ̇(t),

where we have introduced the virtual mass δ < ρ and made the small angle
approximation sin θ ≈ θ. If we assume the initial conditions θ(0) = θ0 < 0
and θ̇(0) = 0, then denoting b = β

2ρl2
we have that

θ̇(t) ≈ δg
ρl
θ0(bt

2 − t), for t small. (9)

5. Validation of the aerodynamic model with real recordings

In this section, we seek to study how the speed and size of textiles affect
their motion and the optimal value ot their physical parameters within the
cloth model. We will see that the aerodynamics model can capture very accu-
rately dynamic recordings of the textiles under different circumstances, but
at the cost of making the parameters depend on size and speed of movement.
Hence we will develop a predictive and a priori formula for the value of the
cloth’s physical parameters, based on the fabric, its size and an estimation
of the speed at which it will move.

5.1. Cloth’s materials and recording setting

We employ four cloth materials (see Figure 1) and two different sizes:
DIN A3 (0.297 x 0.420 m with area 0.1247 m2) and DIN A2 (0.42 x 0.594 m
with area 0.2495 m2). Before performing the experiments they were ironed

11



to remove all considerations of plasticity from the validation process. In the
table of Figure 1 we can also see the density of all the fabrics and some typ-
ical examples of garments made from them.

Fabric Density (kg ·m−2) Examples

Polyester 0.1042 Silk-like
Wool 0.1804 Formal suit
Denim 0.3046 Jeans
Stiff-cotton 0.3046 Sack

Figure 1: Density and examples of all the materials used in the experiments. In the picture
we can see all the fabrics (size A3 and A2) employed. From left to right we have: polyester,
denim, cotton and wool.

To record the motion of the textiles we use Motion Capture Technology,
i.e. a system of cameras detects and tracks reflective markers that are hooked
on the cloth. These markers, with a diameter of 3 mm and a weight of 0.013
g reflect infrared light, so the cameras are able to follow their motion through
space. We use hardware and software from the manufacturer NaturalPoint
Inc: five Optitrack Flex 13 cameras surround the scene we wish to record
and afterwards the recordings are processed with the software Motive. This
combination of software and hardware offers sub-millimeter marker precision,
in most applications less than 0.10 mm according to the manufacturers. For
more details on the recording setting, see [31].

Remark 5.1 (Recorded coordinates of the fabrics). For the A2 textiles we
use 20 reflective markers, whereas for the A3 ones 12 are used. In both
cases, the makers are placed equidistantly in order to obtain a faithful rep-
resentation of the dynamics of the fabrics. Notice that the positions of the
markers define a natural meshing of the recorded fabric. We denote the se-
quence of positions given by following the reflective markers with a frame
every ∆t = 0.01 seconds of the recorded fabric’s nodes by {ϕ0,ϕ1, . . . ,ϕm}.
Thus, ϕn ∈ R12×3 (for A3) or ϕn ∈ R20×3 (for A2).

5.2. Cloth movements: shaking and twisting

The fabrics are recorded while being manipulated by a human and hence
every movement will have its own unique variabilities. Every motion was
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recorded twice on different days: repetition I with a special hanger and
repetition II with bare hands. We record 2 types of motion:

1. Shaking: the cloth is held by its 2 upper corners and shaken back and
forwards (approximately 15 to 20 cm) with respect to the x-axis (see
Figure 2a).

2. Twisting: the cloth is also held by its 2 upper corners and rotated
multiple times (approximately 30 degrees) with respect to the z-axis
(see Figure 2b).

(a) Shaking motion (left to right): the cloth is
shaken back and forwards.

(b) Twisting motion (left to right): the cloth
is rotated with respect to the z-axis back and
forth.

Figure 2: Schematic motion sequences for the shaking and twisting movements.

Each motion lasts approximately 15 seconds (with a frame every ∆t =
0.01 seconds) and is performed at two different speeds: slow and fast. In
Table 2 we can see some values of average speeds (m · s−1) comparing fast
and slow motions for the twisting movement of the A2 textiles. We can of
course observe some variability but overall the speeds are maintained pretty
consistently.

Since we record the motion of eight (four size A3 and four size A2) textiles,
the fabrics are shaken and twisted at two different speeds and we carry out
two repetitions for each recording (hanger vs bare-hands), we end up with a
total of 64 different recordings. For access to the raw recordings, see [31].

5.3. Parameter fitting methodology

Not all physical parameters are equally influential in the recorded motions
described in this section (see [32]), therefore we will be adjusting only 2
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Material Slow I Fast I Slow II Fast II

Polyester 0.081 0.250 0.090 0.247
Wool 0.093 0.228 0.085 0.256
Denim 0.092 0.308 0.090 0.292
Stiff-cotton 0.091 0.218 0.107 0.246

Table 2: Average velocities (m · s−1) for the twisting motion of the A2 textiles. We display
the speeds for the first repetition (with a hanger) and for the second (with bare hands).

parameters: the damping parameter α and the virtual mass δ. All other
physical parameters (e.g. bending) are set to 0 except for the cloth density ρ
which is set to its corresponding value of Table 1. For a justification of this
choice of parameters, see [11].

In order to compare recordings and simulations, we integrate numerically
Equation (1) using the recorded trajectories of the two upper corners (i.e.
the two markers placed at the top corners), and get a simulated sequence
{φ0(δ, α),φ1(δ, α), . . . ,φm(δ, α)} (where φ0 = ϕ0) for each value of the two
parameters δ and α. For more details on how this numerical integration is
performed, see [11]. Moreover, for the simulations we consider a refinement
of the initial meshes given by the markers: for the A3 case we employ a 5×7
meshing and for the A2 case a 7×9 one. In order to obtain the optimal value
of α and δ, we minimize the mean along time of the absolute error:

ē(δ, α) = 1
m

m∑
n=1

en(δ, α) =
1
m

m∑
n=1

√
||φn(δ, α)− ϕn||2M, (10)

where ||·||M is the norm induced by the mass matrixM, i.e. ||x||2M = x⊺·M·x.
The use of the mass matrix M gives a greater weight to error in nodes
limiting larger elements, and a smaller weight to error in nodes limiting
smaller elements. From a mathematical viewpoint, we are estimating the
integral of the error function en over the piece of cloth as its Riemann sum
defined by the selected meshing.

As metrics to evaluate the fitting of the model, we use the previously
introduced absolute error:

en(δ, α) =
√

||φn(δ, α)− ϕn||2M, (11)

and the following spatial standard deviation:
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sn(δ, α) =
√

Var (||pni (δ, α)− p̂ni ||R3), (12)

where pni (δ, α, µ) (resp. p̂
n
i ) is the position at time tn = n∆t of the ith node

of the simulated cloth (resp. recorded textile) and the variance is taken along
all the nodes i = 1, . . . , N of the mesh. This metric gives us an idea of the
spatial distribution of the errors on the mesh.

Remark 5.2. As a consequence of fast and abrupt movements, some of the
markers in the recorded vector ϕn disappear for small amounts of time, in
those cases, they are simply excluded from the computation of the errors
(no interpolation is performed). In the case that a marker k was missing
for a given frame n, we just omit its corresponding coordinate from the
computation of the norm || · ||M for that given frame, i.e. we use a reduced
diagonal sub-matrix ofM by removing the kth row and column. On the other
hand, since the simulated cloth has a finer resolution than the recording, we
must only use the subsample of the simulated nodes that coincide with the
recorded ones to compute the error metrics.

5.4. Optimization results

To find the optimal value of the parameters, we minimize the average on
time of the absolute error (10) by performing a sweep search on the space
(δ, α) ∈ [0, ρ] × [0, 4ρ]. The lower and upper limits are selected based on
physical (they have to be positive) and empirical (if they are too large they
drag the clothes too much, as if they were underwater) considerations. We
found this optimization method to be faster and more robust that other more
sophisticated minimization algorithms used e.g. in [11]. This is likely due to
the fact that the function we are trying to minimize is not completely smooth
(see Figure 3) and hence has many local minima.

The optimal value of the parameters for repetition I (with a special
hanger), together with the defined error metrics can be seen in Table 3.
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Figure 3: Surface plot of the error function ē(δ, α) for the fast shaking motion of A2 wool
(left) and a close-up near the detected minimum (right). Notice the presence of noise in
the close-up. The maximum corresponds to the non-physical case of a very low value of
δ, i.e. no gravity.

Table 3: Summary of results of the parameter fitting for the first repetition (with hanger)
of the recordings. For all the 32 recordings we display the characteristics of the recording
(fabric, size, motion and speed), and the optimal value of the fitted parameters along with
their associated absolute error and spatial standard deviation.
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Moreover, the optimal value of the parameters for repetition II (with
bare-hands), together with the defined error metrics can be seen in Table 4.

Table 4: Summary of results of the parameter fitting for the second repetition (with bare-
hands) of the recordings. For all the 32 recordings we display the characteristics of the
recording (fabric, size, motion and speed), and the optimal value of the fitted parameters
along with their associated absolute error and spatial standard deviation.

To get a better grasp of the results, in Table 5 we can see the mean
absolute error and the mean standard deviation averaged over: material,
size, type of movement and speed for the first repetition of recordings. From
the table, we can deduce that for the cloth model, the most challenging
material to modelize is polyester. This is somehow to be expected because
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its silk-like properties make the aerodynamic effects of air more prevalent.

Repetition I ē (cm) s̄ (cm)

Polyester 0.67 1.09
Wool 0.51 0.97
Denim 0.50 1.00
Stiff-cotton 0.38 0.74
A2 0.71 1.08
A3 0.33 0.83
Shake 0.57 1.01
Twist 0.47 0.89
Slow 0.40 0.80
Fast 0.63 1.11
Global 0.51 0.96

Table 5: Mean absolute error ē and the mean standard deviation s̄ with the optimal value
of the parameters averaged over: fabric’s material, size (A2 or A3), type of movement and
speed for the first repetition of the recordings.

On the other hand, the errors are generally larger for the bigger textiles,
this is again reasonable since they have double the area. The fast motions
have larger errors, this is likely due to the fact that in that case aerodynamics
are harder to model. Furthermore, we can see that both the shaking and
twisting motions have comparable errors.

Finally, to get a sense of the goodness of the fitting for particular record-
ings, in Figure 4, 5 and the supplementary video 1, where we can see a
visual comparison between two specific recordings of repetition I and their
simulation with the optimal value of the parameters.

5.5. A priori forecast of α and δ

As we can see in Tables 3 and 4 , the values of α and δ that minimize
the absolute error ē vary substantially with respect to material, size and
speed. This is fine if we only wish to validate the expressive capabilities of
the model, but it becomes a problem if we want to use the model to forecast
cloth behavior, e.g. in robotic applications.

Thus, we would like to find an a priori formula that we can use to fore-
cast the value of these parameters without minimizing ē(α, δ). Apart from
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Figure 4: Three frames comparing the recorded fast twisting of A2 polyester (left) with its
inextensible simulation (right). The error at the three depicted frames from left to right is
1.82, 1.73 and 1.36 cm respectively; being the average error of the whole simulation 1.15
cm.

Figure 5: Three frames comparing the recorded fast shaking of A2 denim (left) with its
inextensible simulation (right). The error at the three depicted frames from left to right
is 0.63, 0.92 and 1.001 cm respectively; being the average error of the whole simulation
0.84 cm.

intrinsic properties of the textile (the density ρ and its size), this formula will
also depend on the speed of motion of the cloth. We look then for formulas
of the form:

δ̂ = δ0 + δ1S + δ2V + δ3ρ, α̂ = α0 + α1S + α2V + α3ρ, (13)

where S is a measure of size and V a measure of velocity. We have found
that for our purposes using as S a normalized area of the cloth (1 for size
A3 and 2 for A2) and as [V ] = m2 · s−2 the average (in time and over all the
nodes) of 50% of the highest squared velocities gives the best results.

Now, in order to find the optimal values of {δk, αk} we minimize the
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function given by:

R(δ0, . . . , δ3, α0, . . . , α3) =
1

32

32∑
r=1

ē(δ̂, α̂)r, (14)

where ē(δ̂, α̂)r corresponds to the absolute error (10) of the r-recording of
either repetition I or II obtained using the values δ̂, α̂ given by Equation
(13). Thus, in order to evaluate R for either repetition I or II, we need to
perform 32 simulations. To minimize this function we employ this time the
Nelder-Mead Simplex Method, which is a derivative-free algorithm.

We denote byR∗ function (14) evaluated at the optimal values of {δk, αk}.
For comparison let E∗ be the mean of the optimal errors found in the previous
subsection (which will be by definition smaller), i.e. the mean of the errors
displayed in Table 3 or 4.

Repetition I Repetition II

δ0 -0.0223 -0.0359
δ1 -0.0178 -0.0117
δ2 0.0714 0.0780
δ3 0.7664 0.7890
α0 0.2082 0.2155
α1 -0.1481 -0.1711
α2 1.1804 1.4410
α3 1.7440 1.9387
R∗ 0.578 cm 0.646 cm
E∗ 0.516 cm 0.560 cm

Table 6: Optimal values of the parameters δk, αk for both repetition I (with hanger) and
II (with bare hands) obtained by minimizing the function R.

In Table 6 we can see the optimal values of the parameters {δk, αk} along
with the mean absolute errors averaged over all recordings for both repeti-
tion I (with hanger) and II (with bare hands). Notice that the error R∗ is
comparable to E∗ and hence the fitting is quite accurate. Moreover, both sets
of parameters are estimated independently for the two repetitions and have
very similar values and the same signs, which shows that they are significant
and have a consistent meaning.
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5.6. Prediction of the behavior of cloth in an unseen scenario

In this subsection we test the previously found a priori formulas with out
of sample (i.e. unseen) recordings. This means that the recordings we will
use have not been used to estimate the formula coefficients, i.e. we do not
perform any optimization and just compute the value of the cloth parameters
with the formulas

δ̂ = −0.0223− 0.0178S + 0.0714V + 0.7664ρ,

α̂ = +0.2082− 0.1481S + 1.1804V + 1.7440ρ,
(15)

where, as before, ρ is the density of the cloth, S is a normalized area measure
(in this scenario it will be always 2), V is the average (in time and over all the
nodes) of 50% of the highest squared velocities. We have used the coefficients
of the first repetition in Table 6.

Now we describe briefly the new recordings. For more details and how to
simulate this scenario with our cloth model, see [12].

Figure 6: the cloth is held by its two upper corners and then is hit repeatedly with a long
thin stick.

Hitting recordings : the A2 cloths were grasped by two corners, and held
suspended in the air with the long sides perpendicular to the floor. Then,
they were hit repeatedly with a long thin stick. Each textile is hit four times
at various locations of the cloth with varied strengths and speeds as shown
in Figure 6. The recordings lasted between 12 and 18 seconds. The stick
has a length of 75 cm and a diameter of 1.5 cm. Apart from the 20 markers
already attached to the A2 cloths, two new markers are put at both ends of
the stick to record its trajectory. In total, we have 4 recordings, one for each
material.
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In Table 7 we show a comparison of the estimated parameters δ̂, α̂ using
formulas (15), with the optimal ones δ∗, α∗ taken from [12]. Their respective
absolute errors are also displayed.

Material δ̂ δ∗ α̂ α∗ ê (cm) e∗ (cm)

Polyester 0.032 0.025 0.26 0.28 1.59 1.44
Wool 0.099 0.078 0.54 0.50 1.96 1.39
Denim 0.198 0.127 0.82 0.67 1.76 0.98
Stiff-cotton 0.203 0.165 0.90 0.89 1.34 1.07

Table 7: Comparison of the parameters δ̂, α̂ obtained with the formulas (15) with the
optimal ones δ∗, α∗ (taken from [12]) along with their respective mean absolute errors.

We can see that, in general, the formula gives a very reasonable estimation
of the parameters (especially for α), but it always overestimates δ and this
causes the errors ê to be somehow larger. Still the results are very accurate
considering how challenging this scenario is and that the parameters are
computed with an a priori equation without any optimization at all.

5.7. Discussion of the results

Our previous work [11] already indicated that the inextensible model to-
gether with the virtual mass parameter was capable of reproducing faithfully
the shaking motion of A3 textiles. This work establishes more firmly this
proposition: we have evaluated a varied, more exhaustive set of recordings
than in our prior work. We have enlarged the set of motions by adding a
new twisting movement and a larger cloth size (A2). This has resulted in a
significant resource for validating any aerodynamic model for cloth motion:
two sets of 32 recordings (each cloth being recorded two times on different
days: with a special hanger or bare hands) each lasting approximately 15 sec-
onds. We have estimated the optimal values of the physical parameters and
the model has achieved very low mean errors (less than 1 cm) and standard
deviations (see Tables 3, 4 and 5), even for the A2 textiles and fast motions.

Notice that our experimental results validate the introduction of the vir-
tual mass parameter δ: for each textile and motion, the optimal value of δ
identified from the motion capture data is lower than the corresponding ρ for
the particular fabric, indicating that a lift force is indeed opposing gravity,
exactly as the theory predicts.
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Finally, we have found a predictive formula in order to obtain a priori
estimates for the values of the parameters α and δ of the model. This formula
depends on the density of the textile, its size and more importantly its speed.
The formula was found to yield values for the parameters which in turn still
give rise to very low absolute errors. As an immediate application, we made
use of this a priori formula to test its accuracy with an unseen collision
scenario. This was done with very satisfactory results (see Table 7) by using
(15) to compute an estimate of the physical parameters of the clothes without
performing any optimization at all.

6. Dynamic flattening of the A2 cloths with a robot

In this section we give a non-trivial robotic application (a dynamic flat-
tening task) of having an accurate model that can predict the future behavior
of cloth. We also show that the sim-to-real gap of our cloth model is small,
meaning that what we plan in simulation can be executed by a real robot
with essentially the same results. This success indicates that the theoret-
ical model not only aligns with the experimental data but also effectively
bridges the sim-to-real gap, confirming the validity of our aerodynamic cor-
rection. All real and simulated videos described in this section are shown in
the supplementary video 2 to this manuscript.

The task we consider is that of laying the A2 clothes flat onto a table in
a dynamic fashion. The fabrics are grasped by their two upper corners, and
held suspended in the air with their short sides perpendicular to the table.
In order to lay them down dynamically, we designed a trajectory –see Figure
7, we only control the 2 upper corners– which has the following parts:
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Figure 7: Trajectory used for the dynamic flattening of the textiles. The two upper corners
are controlled in the following way: they are moved back in a line a distance d and then
forward a distance d/2. Afterwards, they are moved downwards diagonally until they
reach the table with a certain angle θ. Finally, the 2 corners are moved forward parallel
to the table 5 cm.

1. The corners are moved back in a straight line (parallel to the table) a
certain distance d.

2. Then, the corners are moved forward in a straight line (again parallel
to the table), this time a distance d/2.

3. Next, the corners are moved downward until the table is reached in a
diagonal straight line with a certain angle θ with respect to the table
plane.

4. Finally, the 2 corners are moved forward parallel to the table 5 cm.

We remark that the two trajectories for the upper corners are identical
up to translation.

Remark 6.1 (Parametrization of the trajectories). We parametrize all straight
segments with equations of the form:

γ(t) = q0 + τ(t)w⃗, τ(t) = −4
3

v
T 2 t

3 + 2 v
T
t2, (16)
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where w⃗ is a unit vector, v is parameter controlling the maximum velocity
at which we wish to move, T = 3

2
d
v
and d is the length of the parametrized

segment. Notice that the C∞ parametrization (16) has the following two
desirable properties: (i) ||γ(T )−γ(0)|| = d since γ(0) = q0 and γ(T ) = q0+dw⃗
and (ii) ||γ′(t)|| = τ ′(t), t ∈ [0, T ] is a parabola with maximum value v at
T/2 such that ||γ′(0)|| = ||γ′(T )|| = 0. This parametrization allows easy
control of the length d and velocity v at which we go along the segment,
while at the same time being robot-friendly since it is smooth and starts and
ends with zero velocity.

To simulate the collision between the cloths and the table we follow the
method described in [12]. Moreover, the real table is covered with a tablecloth
so that the friction between the textiles and the table is very high. Then,
in order to execute the trajectories shown in Figure 7 with the simulator,
we only need an initial mesh for each textile (cotton, denim, polyester and
wool) and the value of its physical parameters shown in Table 1. The initial
mesh is simply taken from the first frame of the recordings described in the
previous section, whereas for the physical parameters of the cloths we use
the a priori formulas (15). Thus, ρ is set to its corresponding value according
to Figure 1, S = 2 (since we are only dealing with the A2 textiles) and V is
computed using the full planned trajectory of the 2 upper corners (i.e. we
compute it as the average in time and between the two corners of 50% of their
highest squared velocities). For each of the 4 textiles we select reasonable but
different values of d (around 35cm) and θ (around 135 degrees) that result
in successful flattening motions in simulation. Each motion lasts 3 seconds
and is indeed very dynamic, with peak velocities of 0.9 m · s−1.
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Figure 8: Equally spaced frames of the simulation for the denim sample using the trajectory
shown in Figure 7. For the physical parameters of the cloth we use the a priori formulas
(15).

In Figure 8 we show 15 equally spaced frames of the simulation for the
denim sample using the trajectory shown in Figure 7. As we can see in the
Figure (and in the supplementary video), the motion results in a successful
flattening of the simulated textile.
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Figure 9: Equally spaced frames taken from a video recording of the WAM robotic arm
performing a dynamic laying of the real A2 denim textile onto the table. The trajectory
of the end-effector is exactly the same of that used in the simulation. Comparing visually
with the simulated frames of Figure 8 we can observe that the qualitative state of the
cloth is very similar in both the real and simulated frames.
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Next, we reproduce the exact same trajectory of the two upper corners
with a robotic arm and the real textile. In order to do so, we use a Barrett
WAM robot arm with a hanger (see Figure 9). We simply average the planned
trajectory of the 2 upper corners and then we compute the inverse kinematics
so that the end-effector of the WAM follows precisely this averaged curve. In
order to have the same initial conditions as in the simulated environment, we
must only set the robotic arm so that the textile is at the same height with
respect to the table as in the simulation. The result (shown in 15 equally
spaced frames in Figure 9) is also a successful and smooth dynamic laying
of the real A2 denim textile onto the table. Notice that even though we did
not perform any fine-tuning or optimization whatsoever, if we compare the
simulated frames with the real ones, the qualitative state of the cloth is very
similar in both the real and simulated frames.

In Figure 10 we display the final state of the cloths for all 4 materials
and 3 independent trials performed with the robot. As we can see in the
figure, all trials achieve a successful flattening of the textiles (see also the
supplementary video for one recording with each real fabric) with the excep-
tion of the polyester sample. This fabric presents (different, somehow small)
wrinkles in all 3 trials.

Figure 10: Final state of the cloths for all 4 materials and 3 independent trials performed
with the robot. All trials (with the exception of polyester) achieve a successful full flat-
tening of the textiles without any wrinkles.

28



Figure 11: Equally spaced frames taken from a video recording of the WAM robotic arm
performing a dynamic laying of the real A2 polyester textile onto the table. The material
is so light (25 grams) that the motions at these speeds are already turbulent near the
boundaries (see the 8th and 9th frame). Moreover, when the fabric approaches the table,
a chamber of air is created between the cloth and the table which causes the cloth to
‘spring’ forwards.
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In order to understand what is happening, in Figure 11 we display 15
equally spaced frames of the whole motion with the real polyester textile. Our
best guess is that the polyester material is so light (the A2 sample weights
25 grams) that the motions at these speeds are already turbulent (see the
8th and 9th frame of Figure 11). Moreover, when the fabric approaches the
table, a chamber of air is created between the cloth and the table which
then causes the cloth to ‘jump’ forwards (this can be very clearly seen in the
video).

Figure 12: Equally spaced frames of the simulation for the polyester sample using the
trajectory shown in Figure 7. Although the states of the real polyester sample are followed
quite faithfully (see Figure 12), all the fine aerodynamic details are not being simulated
with the same level of detail and hence the final result of the simulation differs from that
of the real fabric.
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Finally, in Figure 12 we display 15 frames of the corresponding simulation.
There we can see that, although the states of the polyester are followed quite
faithfully, all the fine aerodynamic details are not being simulated properly
and hence the final result differs. This was also somehow expectable since
polyester was the hardest material to simulate with the cloth model (see
Table 5).

6.1. Discussion of the results

In this section we have given a non-trivial robotic application of many of
the ideas presented in this work. Using the cloth model described in Section
3, we were able to design successful dynamic trajectories to flatten the four
real A2 textiles shown in Figure 1. The trajectories were first benchmarked
in simulation (see Figure 7) and then executed without any fine-tuning with
a real robot. In order to do so, we used the aerodynamic formulas (15), which
allowed us to estimate the values of the physical parameters α > 0 and δ > 0
of each individual fabric without performing any optimization; just by using
its density, its size and an estimation of the speed at which it was going to
move. The sim-to-real transfer of our simulator for this scenario was proven
to be very small, since what happened in simulation also took place in real
life (see Figure 10). The main exception to this was the polyester sample:
being the lightest textile it was the most affected by aerodynamic forces. For
this material our cloth model was not able to properly simulate all the fine
aerodynamic details needed to flatten the fabric 100% without any wrinkles
(compare Figure 11 with Figure 12). Still, the final result is quite satisfactory
(see Figure 11) taking into consideration how challenging the motion of this
textile can be for any cloth simulator since aerodynamics and friction play
leading roles.

7. Conclusions

In this work we have analyzed a simple and practical method to account
for the effect of aerodynamic forces on the motion of a piece of cloth at low
speeds, i.e. speeds at which air can be approximated as an incompressible,
inviscid fluid. This method, justified by the study of a dampened pendulum
(see Proposition 1), consists in replacing the cloth density ρ with a correction
factor δ ≤ ρ. This correction is applied to compute the gravitational force
acting on the cloth, rescaling its weight by the factor δ/ρ ≤ 1. This aerody-
namic correction factor, δ, can be applied to any mechanical model of cloth
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to account for aerodynamic forces in the simulation of cloth motion. It has
no additional computational cost if the mechanical model already involves
calculating the weight of the cloth. Hence, it is an ideal candidate to be used
for real-time simulation and control, making it well suited for robotics appli-
cations where efficiency is key. The parameter δ reflects the friction between
the moving cloth and the surrounding air. As a result, it depends on the
local structure of the cloth, such as its constituent fabric and density, as well
as two global characteristics: the size of the cloth and its speed relative to
its surrounding air.

We have applied this aerodynamic correction factor to the inextensible
cloth model developed in [11, 12]. To validate the aerodynamics model and
the value of the parameter δ, two different tasks involving cloth motion are
recorded with a Motion Capture System. Each task is performed multiple
times with cloth pieces varying in fabric type, density, size and speed of
motion, totaling 64 recordings of about 15 seconds each. For each motion,
the positions of key points on the cloth are recorded throughout the task’s
execution. The resulting dataset is then compared to simulations of the
same tasks using the inextensible cloth model incorporating the aerodynamic
correction parameter δ. By minimizing the error between the simulated and
real positions of the cloth, the optimal value of δ is identified. This best-fit
results in a mean absolute error of less than 1 cm in the comparison between
the simulated and the actual positions of the cloth’s key points. Moreover,
we analyze for the first time how the resulting parameter δ depends on fabric
type, garment size, and speed of motion.

As a final validation of the proposed aerodynamic correction and the in-
extensible cloth model, we used the model to simulate a task in which aero-
dynamic and friction forces play a dominant role in controlling the motion of
cloth: dynamically flattening size A2 textiles onto a table. The simulations
are performed using the default parameter values determined in the previous
tasks, with no fine-tuning. The resulting simulation is then used to directly
control a robotic arm, which successfully executes the flattening task with
the real textiles. The final validation also serves as a demonstration of the
suitability of the inextensible cloth model proposed in [11, 12], combined
with the simple aerodynamic correction δ, for robotic cloth manipulation.
This includes its use as a real-time control mechanism and as a generator of
simulations for training learning algorithms. The authors plan to extend the
application of the model after further exploration of parameter values across
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a broader range of cloth types.
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