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Abstract—The kinematics, dynamics, and control of a unicycle
moving without slipping on a plane has been extensively studied
in the literature of nonholonomic mechanical systems. However,
since planar motion can be seen as a limiting case of the motion
on a sphere, we focus our analysis on the more general spherical
case. This paper introduces a novel approach to path planning
for a unicycle rolling on a sphere while satisfying the non-slipping
constraint. Our method is based on a simple yet effective idea:
first, we model the system as a linear time-varying dynamic
system. Then, leveraging the fact that certain such systems can
be integrated under specific algebraic conditions, we derive a
closed-form expression for the control variables. This formulation
includes three free parameters, which can be tuned to generate a
path connecting any two configurations of the unicycle. Notably,
our approach requires no prior knowledge of nonholonomic
system analysis, making it accessible to a broader audience.

Index terms— Nonholonomic robots, nonholonomic joints,
linear time-varying systems, path planning.

I. INTRODUCTION

THERE are many examples of robotic systems with ve-
locity constraints that cannot be integrated to give con-

straints expressed solely in terms of configuration variables
(see, for example, the monographs [1, 2] and the references
therein). The most prominent example among these so-called
nonholonomic robots is the kinematic car, which is equivalent
to a unicycle moving on a plane [3, 4]. Driving a kinematic
car from an initial configuration to a target configuration is a
fundamental problem in robotics that has received significant
attention. This problem can be seen as a limiting case of
steering a unicycle on a sphere, where the sphere’s radius
tends to infinity. Although this generalization holds theoretical
significance on its own, the problem of controlling a unicycle
on a sphere —or, equivalently, the motion of a sphere in
contact with a freely rotating disk— also has practical rele-
vance in applications involving nonholonomic spherical joints
in parallel robots. The idea of using nonholonomic joints in
parallel robots was introduced in [5] as a generalization of the
nonholonomic wrist proposed in [6], or the parallel mobile
robot described in [7]. The analysis in [5] was later corrected
and extended in [8, 9]. Further developments can be found in
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Fig. 1. Nonholonomic spherical joint [13]. While the sphere can freely rotate
about the x− and the y−axis, its rotation about the z−axis is constrained
by the two freely rotating disks. By fixing the world reference frame to the
sphere rather that the base, the joint’s mobility becomes equivalent to that of
a monocycle on a sphere.

[10, 11, 12, 13]. A possible implementation of such a joint
is depicted in Fig. 1. The sphere cannot execute arbitrary
spherical motions but can attain any orientation by following
an appropriate path. A major drawback of robots using these
joints is the complexity of their control. Although simple
control strategies can be devised by alternating rotations about
the unconstrained axes (the x- and y-axes in Fig. 1) [6], this
approach leads to slow movements due to the presence of zero-
velocity configurations along the path. A first attempt to gen-
erate coordinated motions about the unconstrained axes was
presented in [10]. In this paper, we reformulate the problem
and provide a complete solution, including a characterization
of its singularities.

This paper addresses a point-to-point path planning problem
for a unicycle rolling on a sphere, focusing on generating a
path that leads the system to a desired final configuration.
In control-theoretic terms, this corresponds to a global stabi-
lization problem. The term global emphasizes that the target
configuration is not necessarily close to the initial one. The
solution to this problem must yield a kinematically feasible
path, ensuring perfect execution under nominal conditions.
A natural first approach is to extend existing methods used
for the analogous problem of a kinematic car on a plane.
While a comprehensive review of the literature on this topic
is beyond the scope of this paper, we provide a brief overview
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to contextualize our contribution.
Although intuition suggests that a unicycle —whether on

a plane or a sphere— is fully controllable, establishing this
property rigorously is nontrivial. A unicycle on a plane has
two control inputs (longitudinal velocity and steering angle)
to regulate three configuration variables (the Cartesian coor-
dinates of a reference point on the unicycle and its orien-
tation). However, a controllability analysis based on linear
approximations is insufficient. In fact, as shown in [14], a
necessary condition for controllability cannot be satisfied using
a smooth, time-invariant feedback. Consequently, researchers
have explored stabilizing controllers based on nonsmooth
and/or time-varying feedback control laws. In this context,
the identification of canonical forms for kinematic models of
nonholonomic robots has been crucial, as these forms facilitate
the design of time-varying feedback controllers. The most
widely used canonical structure is the chained form, which, in
the case of a unicycle on a plane, is mathematically equivalent
to the Chaplygin form and the power form. The introduc-
tion of differential flatness shifted interest away from these
canonical forms. Differential flatness implies the existence
of a dynamic state feedback transformation that converts the
system into a linear and decoupled structure composed of
input-output chains of integrators [15]. When it was proven
that the kinematic car model is differentially flat [16, 17],
many researchers considered the problem effectively solved,
leading to a decline in interest. Other approaches have also
yielded significant results [18, 19, 20], but the method based
on sinusoidal inputs [21] is particularly relevant to our study,
as our solution naturally results in sinusoidal inputs without
explicitly enforcing them.

Heuristic and ad hoc approaches have also played a sig-
nificant role in the development of path planners for car-like
robots due to their simplicity. The pioneering work of [22]
demonstrated that paths connecting two arbitrary configura-
tions of a car-like robot can be represented as a finite sequence
of two elementary components: circular arcs (with minimal
turning radius) and straight-line segments. Most practical
motion planners for such robots generate paths composed
of these elements. As a result, the paths are piecewise C2,
meaning they are C2 within each elementary segment but
exhibit curvature discontinuities at transition points [23]. To
navigate these discontinuities, the robot must stop to ensure
continuity in linear and angular velocities. To mitigate this
issue, a smoothing technique was introduced in [24], allowing
the generated paths to be C2 except at cusp points.

A simple kinematic inversion transforms the path planning
problem of a unicycle rolling on a sphere into that of reori-
enting a sphere using two controls [10]. Interestingly, despite
being more general than the planar case, this problem admits
a simpler formulation. The key distinction lies in dimensional
homogeneity: while the planar case involves both distances
and angles, the spherical case depends solely on angles. The
significance of the spherical case stems from its connection to
the planar case. Specifically, a solution for the spherical case
extends naturally to the planar case, as elements of the rigid
motion group in R2, SE(2), can be approximated by elements
of the rotation group in R3, SO(3), in much the same way

that elements of SE(3) can be approximated by elements of
SO(4) [25]. This perspective introduces a fundamentally new
approach to the path planning problem for a unicycle on a
sphere. Although the problem of controlling the motion of a
unicycle on a sphere can be shown to be differentially flat [26],
we found that existing algorithms for computing flat outputs
(see, for instance, [27]) lead to a system of partial differential
equations that cannot be solved analytically. This limitation
motivated our search for an alternative approach, ultimately
leading us to formulate the system as a time-varying system
that can be integrated.

This paper is organized as follows. In the next section, we
review the differential equations governing the motion of a uni-
cycle on a sphere in their standard form. We then demonstrate
how a simple shift in the world reference frame significantly
simplifies the formulation, allowing it to be expressed as a
linear time-varying system. This new formulation introduces
three constant matrices, whose properties are analyzed in Sec-
tion III. The path planning problem is addressed in Section IV.
To illustrate and validate the theoretical results, four examples
are presented in Section V. Finally, Section VI summarizes the
main contributions and highlights open problems that warrant
further investigation.

II. EQUATIONS OF MOTION

A. Standard approach: moving unicycle

In what follows, we denote the 4×4 identity and zero matrix
by I and 0, respectively.

Following the notation used in Fig. 2, the system equation
can be expressed as A(s)ṡ = 0. That is,1 0 0 − r

R

cos γ

cosψ

0 1 0 − r

R
sin γ



θ̇

ψ̇
γ̇

ϕ̇

 = 0, (1)

where s = (θ, ψ, γ, ϕ)T is the state vector (see [28] for
details).

Equation (1) is valid almost everywhere, except at the poles
where ψ = ±π/2. This is an important drawback. Moreover,
γ̇ should not be interpreted as the angular velocity of the disk
on the sphere, which is given by χ̇. They are actually related
through the following expression:

γ̇ = χ̇− r

R
cos γ tanψ ϕ̇. (2)

The formulation of a unicycle on a plane can be derived as a
limiting case of the spherical model. Specifically, as R→ ∞,
we approximate θ ≈ x/R cosψ and ψ ≈ y/R. Substituting
these expressions into (1) yields:

(
1 0 0 −r cos γ
0 1 0 −r sin γ

)
ẋ
ẏ
γ̇

ϕ̇

 = 0, (3)

where (x, y) denotes the Cartesian position of the robot, and
γ denotes the robot’s orientation with respect to the x-axis.
Furthermore, from (2), we obtain γ̇ = χ̇ in the limit as R →
∞.
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Fig. 2. To characterize the motion of a unicycle on a sphere using the standard
formulation, three reference frames are required: one for the sphere, one for
the unicycle, and a third with its origin at the point of contact between the
sphere and the unicycle. This results in a considerable amount of notation.

By applying the technique of the Lie bracket rank condition,
the systems described by (1) and (3) can be shown to be
controllable at any point (see [28] for the spherical case and
[29] for the planar case). Consequently, in the spherical case,
by independently varying the forward velocity rϕ̇ and the
angular velocity γ̇, the unicycle can be steered to any target
configuration.

Since the system is driftless with four states and two inputs,
the controllability of the system implies that it is differentially
flat [26]. However, as mentioned in the introduction, com-
puting the flat outputs using existing algorithms results in a
system of partial differential equations that cannot be solved
analytically.

B. Alternative approach: moving sphere

By fixing the location of the unicycle, we only need to
keep the reference frame centered at the sphere which is
now the moving object. To avoid representation singularities,
the orientation of the sphere can be described using Euler
parameters. If we arrange these parameters as the elements of
a quaternion, denoted by q, the rate of change of q is given
by the well-known equation (see e.g. [30, p.512] or [31]):

q̇ =
1

2


0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0

q

=
1

2
(Axωx +Ayωy +Azωz)q, (4)

where the scalar elements correspond to the angular velocity
vector components, i.e., ω = (ωx, ωy, ωz), and

Ax =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (5)

Ay =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , (6)

and

Az =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 . (7)

Now, analogously to what happens in Fig. 1, we can position
the unicycle in such a way that it imposes the constraint
ωz=0. This constraint corresponds to the unicycle’s non-
slipping condition, but with the sphere considered as the
moving object. As a result, the equation of motion of the
sphere is reduced to the standard equation of a time-varying
linear system q̇ = A(t)q with

A(t) =
1

2
(Axωx +Ayωy) . (8)

The resulting simplicity is remarkable when compared to the
standard formulation.

Before proceeding further, it is important to examine the
properties of the set of matrices given in (5)-(7).

III. PROPERTIES OF {Ax,Ay,Az}
Observe that Ax, Ay , and Az are both antisymmetric and

orthogonal. In other words, A = −AT and AAT = I. As a
consequence,

A2
x = A2

y = A2
z = −I. (9)

Moreover, it can be verified that

AxAyAz = −I. (10)

Equations (9) and (10) give enough information to derive the
following product table

I Ax Ay Az

I I Ax Ay Az

Ax Ax −I Az Ay

Ay Ay −Az −I −Ax

Az Az Ay −Ax −I

(11)

This is equivalent to the product table of the real unit and
the three imaginary units used to define a quaternion. This is
why equations (9) and (10) are referred to as the Hamiltonian
conditions. In [32], it is demonstrated that there are a total
of 48 distinct ordered sets of three 4×4 skew-symmetric
matrices and their signed permutations that, together with the
identity matrix, can serve as a basis for quaternion algebra.
{Ax,Ay,Az} is one of these sets.
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Now, let us consider an arbitrary linear combination of the
elements of {Ax,Ay,Az}. That is,

C =


0 −l1 −l2 −l3
l1 0 −l3 l2
l2 l3 0 −l1
l3 −l2 l1 0

 = l1Ax + l2Ay + l3Az. (12)

Then, it can be verified (see, for example, [33, p. 139]) that

eθC = cos θ I+ sinc θC, (13)

where sinc θ =
sin θ

θ
(i.e., the standard sinc function).

IV. PATH PLANNING

In the 1970s, M.-Y. Wu published a series of papers on the
solution, stability, and transformation of a class of linear time-
varying systems [34, 35, 36, 37]. Wu’s main result states that
the solution to the linear time-varying system q̇ = A(t)q can
be expressed as

q(t) = eA1teA2tq(0) (14)

if, and only if, there exists a constant matrix A1 which satisfies

A1A(t)−A(t)A1 = Ȧ(t), (15)

and A2 is a constant matrix obtained as follows:

A2 = A(0)−A1. (16)

The condition in (15) can only be satisfied by certain time-
varying systems. In 1993, Watkins and Yurkovich presented an
algorithm to find A1, if it exists, in their work [38]. However,
in our particular problem, the derivation of A1 can be greatly
simplified. In the appendix, we show that the only possible
solution must be of the form A1 = kAz , where k is a constant.
Thus, we can proceed by taking

A1 =
α

2
Az (17)

where the constant factor have been chosen to be α
2 for a

neat final result. To verify if (17) is indeed a valid solution,
we substitute (8) and (17) into (15). After some algebraic
manipulations, we obtain the condition

Ayαωx −Axαωy = Axω̇x +Ayω̇y. (18)

From this we conclude that

ω̇y = αωx,

ω̇x = −αωy,

whose integration leads to

ωx = a cos(αt+ α0),

ωy = a sin(αt+ α0).

Therefore, we have

A(t) =
a

2
[Ax cos(αt+ α0) +Ay sin(αt+ α0)] , (19)

and, consequently,

A2 =
1

2
(a cosα0Ax + a sinα0Ay − αAz) . (20)

Thus, A1 and A2, as given in (17) and (20), satisfy (15).
Consequently, by properly scaling time, the problem is reduced
to finding the constants a, α, and α0 satisfying the equation

q(1) = eA1eA2q(0), (21)

or, equivalently,

e−A1q(1) = eA2q(0). (22)

Hence, using (13), we have that

(cos θ1I− sinc θ1A1)q(1)= (cos θ2I+ sinc θ2A2)q(0).
(23)

where
θ1 =

1

2
α and θ2 =

1

2

√
a2 + α2. (24)

Thus,
α = 2θ1 and a = 2

√
θ22 − θ21. (25)

Without loss of generality, we can assume that the initial
orientation is q(0) = (1, 0, 0, 0) and the target orientation is
q(1) = (q1, q2, q3, q4). Substituting the expressions for A1 and
A2 from (17) and (20) into (23), and expanding the products
using the product table in (11), we obtain the following four
scalar equations:

q1 cos θ1 + q4 sin θ1 = cos θ2, (26)

q2 cos θ1 + q3 sin θ1 =
√
θ22 − θ21 sinc θ2 cosα0, (27)

q3 cos θ1 − q2 sin θ1 =
√
θ22 − θ21 sinc θ2 sinα0, (28)

q4 cos θ1 − q1 sin θ1 = −θ1sinc θ2. (29)

These four equations in three unknowns (θ1, θ2, and α0) are
not independent because q21 + q22 + q23 + q24 = 1.

Notice that α0 and θ2 can be readily expressed as a function
of θ1 as follows:

α0 = atan2 (q3 cos θ1−q2 sin θ1, q2 cos θ1+q3 sin θ1) , (30)
θ2 = arccos (q1 cos θ1+q4 sin θ1) . (31)

Moreover, from equation (29), we have that

θ2 = θ1
sin θ2

q1 sin θ1 − q4 cos θ1
. (32)

Then, since sin(arccosx) = +
√
1− x2, it follows that

θ2 = θ1

√
1− (q1 cos θ1 + q4 sin θ1)2

q1 sin θ1 − q4 cos θ1
. (33)

By equating the right hand sides of (31) and (33) and rear-
ranging terms, we conclude that

θ1 =
q1 sin θ1−q4 cos θ1√

1−(q1 cos θ1+q4 sin θ1)2
arccos (q1 cos θ1+q4 sin θ1) ,

which can be rewritten as

θ1 = g′(θ1)g(θ1) =
1

2
[g2(θ1)]

′, (34)

where the prime symbol denotes the derivative with respect to
θ1, and

g(θ1) = arccos (q1 cos θ1+q4 sin θ1)
= arccos (υ cos (θ1+ξ)) , (35)
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Fig. 3. Graphical analysis of equation (38). Left: plot of its lhs as a function of ψ (with ξ ∈ [−π, π] as parameter). Right: plot of its rhs as a function of υ
(with υ ∈ [−1, 1] as parameter). Given values for ξ and υ, the corresponding value of ψ is obtained by computing the intersection of the respective curves.
The solution is unique except when υ = 0, which introduces a singularity requiring special treatment (see Example II).

ψ

ξ

υ

Fig. 4. The values of ψ as a function of υ and ξ can be computed numerically.
As υ approaches 1 from the left (υ → 1−), ψ(υ, ξ) converges to a step
function. However, ψ(1, ξ) remains undefined.

with
υ =

√
q21 + q24 ∈ [0, 1] (36)

and
ξ = atan2(q1, q4) ∈ [−π, π] . (37)

Using the change of variable ψ = θ1 + ξ, we finally obtain:

ψ − ξ =
1

2
[arccos2(υ cosψ)]′. (38)

Since solving (38) for ψ in closed-form using simple functions
appears impossible, a numerical approach is used. To this
end, first observe that, while the right-hand side (rhs) of (38)

depends on υ, its left-hand side (lhs) depends on ξ. Thus we
can plot the lhs of (38) as a function of ψ, treating ξ as a
parameter. Similarly, we can plot the rhs as a function of ψ,
with υ as a parameter. The resulting plots are shown in Fig. 3.
Excluding the case where υ = 1, any curve in Fig. 3 (left)
intersects with any curve in Fig. 3 (right) at a single point.
This implies that a unique solution exists for ψ, except at the
singular case where υ = 1. Although the function ψ(υ, ξ)
cannot be expressed in terms of simple functions, ψ can be
obtained through interpolation over a sufficiently dense mesh
of points in the (υ, ξ) plane, as illustrated in Fig. 4.

The relevance of the above theoretical findings is better
appreciated through the following examples.

V. EXAMPLES

A. Example 1: Paths generated for a generic case

Let us consider driving the sphere from its initial orientation
q(0) = (1, 0, 0, 0) to the target orientation specified by

q(1) = (0.8695, 0.2037, 0.3039,−0.3319). (39)

For this orientation, (36) and (37) yield υ = 0.9307 and
ξ = −0.3646, respectively. Equation (38) is satisfied for ψ =
0.7541π [see Fig. 5(left)]. Consequently, θ1 = ψ−ξ = 2.0043
and, from (31), θ2 = 2.3002. Substituting these values of θ1
and θ2 into (30) and (25), gives:

α0 = −1.0240, α = 4.0087, a = 2.2571. (40)

These parameters, when substituted into (17) and (20), lead to

A1 =


0 0 0 −2.0043
0 0 −2.0043 0
0 2.0043 0 0

2.0043 0 0 0

 (41)
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Fig. 5. Plots of the lhs (red) and rhs (blue) of the expression in (38) for q(1) = (0.8695, 0.2037, 0.3039,−0.3319) (left) and q(1) =
(−0.8695,−0.2037,−0.3039, 0.3319) (right).

.

x

y

z

(b,+, f)

y′

z′

x

y

z

(b)

y′

z′

Fig. 6. Path connecting the configuration q(0) = (1, 0, 0, 0) to q(1) = (0.8695, 0.2037, 0.3039,−0.3319) (left), and to q(1) =
(−0.8695,−0.2037,−0.3039, 0.3319) (right). These paths are represented after the kinematic inversion that keeps the sphere fixed. They belong to distinct
homotopy classes, which remain invariant under small perturbations in the target orientation. While this holds for all generic configurations, the behavior
changes dramatically at singular configurations.

and

A2 =


0 −0.5868 0.9640 2.0043

0.5868 0 2.0043 −0.9640
−0.9640 −2.0043 0 −0.5868
−2.0043 0.9640 0.5868 0

, (42)

respectively.
Finally, the sphere’s path to the target orientation, while

satisfying the non-slipping constraint ωz = 0, is given by the
time-parameterized solution:

q(t) = etA1etA2q(0), t ∈ [0, 1]. (43)

Since our objective is to control the unicycle’s motion
relative to the sphere, we must apply a kinematic inversion.
The result of this transformation is illustrated in Fig. 6(left).

Euler parameters provide a double covering of SO(3),
meaning that a unit quaternion q and its negative
−q represent the same orientation. This motivates us

to also consider the antipodal configuration of (39),
i.e., q(1)=(−0.8695,−0.2037,−0.3039, 0.3319). For this
case, ξ=2.7769 and υ=0.9307. Then, ψ= − 3.0959 [see
Fig. 5(right)] and, proceeding as above, we have that θ1= −
0.3189 and θ2=2.7645. The resulting path of the unicycle’s
center —after kinematic inversion— is shown in Fig. 6(right).
Although both paths connect identical initial and final con-
figurations, they belong to distinct path homotopy classes.
Paths are central subjects of study in the branch of algebraic
topology called homotopy theory. A homotopy of paths makes
precise the notion of continuously deforming a path while
keeping its endpoints fixed.

In our mechanical system, any admissible path can be
decomposed into smooth sub-paths connected by cusps. These
components can be classified as follows:

• A subpath will be forward (f) or backwards (b) depending
on the sense of motion of the unicycle towards the target.
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Fig. 7. Path connecting the configuration q(0) = (1, 0, 0, 0) to q(1) = (−0.2037, 0.8695, 0.3319, 0.3039) (left), and to q(1) =
(0.2037,−0.8695,−0.3319,−0.3039) (right).

If the path implies a positive rotation about the unicycle
z′-axis, we will say that it is a forward path (backwards
otherwise).

• A cusp will be positive (+) or negative (-) depending
on the angle formed by the incoming and the outcoming
subpaths it connects. If this angle is positive, taken as the
angle rotated about an axis perpendicular to the sphere at
the point of contact with the unicycle, the cusp will be
said to be positive (negative otherwise).

Following this classification scheme, the paths shown in
Fig. 6 are characterized by the sequences (b,+, f) and (b),
respectively. Under small perturbations of the target config-
uration (either the original (39) or its negated counterpart),
the resulting path deforms continuously while maintaining its
homotopy class. However, the situation becomes much more
interesting in a singularity, which is analyzed in detail in
Section V-B.

To conclude this example, we observe an important symme-
try consideration: due to the disk’s rotational symmetry about
its x-axis, the target configuration q(1) could be considered as
kinematically equivalent to (0, 1, 0, 0)∗q(1), where ∗ denotes
quaternion product. The resulting paths, after applying this
transformation to our current example, are shown in Fig. 7.

B. Example 2: Paths generated for a singularity

Consider steering the sphere from its initial orienta-
tion q(0) = (1, 0, 0, 0) to the target orientation q(1) =
(cos π

4 , 0, 0,− sin π
4 ). For this target orientation, we find that

υ = 1 and ξ = −0.7854. Substituting these values into
(38) yields a singularity where no solution exists for ψ. This
scenario requires a special handling. Specifically, in this case,
equations (27) and (28) are satisfied only when sinc θ2 = 0,
which occurs if θ2 = nπ, n ∈ Z\{0}. Furthermore, α0 can
take any real value, implying that there are infinitely many
solution paths, each corresponding to a different value of α0.

The remaining equations, (26) and (29), simplify to a linear
system of the form:(

cos θ1 sin θ1
− sin θ1 cos θ1

)(
q1
q4

)
=

(
−1
0

)
, (44)

whose solution is q1 = − cos θ1 and q4 = − sin θ1. Therefore,

θ1 = atan2(−q4,−q1). (45)

In this example, we have that θ1 = atan2
(
sin π

4 ,− cos π
4

)
=

3
4π. From (25), we then find that α = 3

2π and a =
√

7
4π.

Therefore, it follows that:

A1 =
3π

4
Az, (46)

A2 =

√
7π

4
cosα0 Ax +

√
7π

4
sinα0 Ay −

3π

4
Az. (47)

The continuum of paths generated by varying α0 are repre-
sented in Fig. 8(left), demonstrating the one-parameter free-
dom characteristic of singular configurations. Mirroring our
analysis of generic cases, we must also consider the antipodal
solution family. The resulting family of paths is illustrated in
Fig. 8(right).

The path families shown in Fig. 8 exhibit distinct homotopy
classes, with class transitions occurring when cusps coincide
with path endpoints. Therefore, a homotopy class transition
occurs precisely when the unicycle’s linear velocity vanishes
at either boundary. Eight different homotopy classes can be
thus identified. One path belonging to each class is depicted in
Fig. 9, together with its homotopy class and the corresponding
value of α0.

As in the previous example, we now consider paths resulting
from incorporating an additional half-turn about the disk’s x′-
axis. The resulting final configurations are no longer singular.
The solution paths, shown in Fig. 10, take the form of
semicircular arcs. These characteristic patterns correspond to
what what in [28] are called “Hawaian necklaces".
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x
y

z

x
y

z

Fig. 8. Paths connecting the sphere’s configuration q(0) = (1, 0, 0, 0) to q(1)
(
cos π

4
, 0, 0,− sin π

4

)
(left), and to q(1) =

(
− cos π

4
, 0, 0, sin π

4

)
(right).

They are generated by varying α0 in the interval [−π, π) .

(b + f - b) (f - b + f)

(b) (f)

(b + f) (f - b)

(b - f) (f + b)

α0 = −π
4 α0 = − 3π

4
α0 = 3π

4
α0 = π

4

α0 = −π
4 α0 = − 3π

4
α0 = 3π

4
α0 = π

4

Fig. 9. Paths belonging to different homotopy classes that connect the sphere’s configuration (1, 0, 0, 0) to
(
cos π

4
, 0, 0,− sin π

4

)
(top row), and (1, 0, 0, 0)

to
(
− cos π

4
, 0, 0, sin π

4

)
(bottom row).
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x y

z

Fig. 10. The so-called “Hawaiian necklaces" originated when con-
necting the initial configuration (1, 0, 0, 0) to the target configurations(
0,±1, 0, 0) ∗ (cos nπ

5
, 0, 0,− sin nπ

5

)
for n = {1, 2, . . . , 9}.

C. Example 3: Random walks amidst obstacles

In the previous examples, the initial orientation is q(0) =
(1, 0, 0, 0). However, by changing the reference frame, we can
start from any arbitrary initial configuration. This flexibility
allows us to generate random walks on the sphere by itera-
tively connecting sequences of randomly chosen orientations.
Fig. 11(left) shows a random walk generated from a sequence
of 100 uniformly distributed configurations (points in S3) sam-
pled using the method described in [39]. The same approach
can be extended to environments with obstacles. When the disk
collides with an obstacle —e.g., one of the seven cylindrical
obstacles in Fig. 11(right)—, it stops and attempts to reach the
next randomly selected configuration in the sequence.

This example illustrates that the presented path planner
can be readily incorporated into broader motion planning
frameworks that account for obstacles, such as those described
in [40, 41].

D. Example 4: The unicycle on a plane as a limit case

When the unicycle’s motion relative to the sphere is con-
strained to a sufficiently small neighborhood of its initial
configuration, its kinematic behavior approximates planar mo-
tion. In this case, rotations about the x-axis remain possible,
but rotations about the y and z axes must be bounded (see
Fig. 12). If these bounds are sufficiently small, the motion
of the unicycle relative to the sphere will closely resemble
that of a unicycle on a plane. Moreover, recalling that two
consecutive rotations about arbitrary axes commute when the
rotated angles are small, the unicycle will remain within a
small region centered at its initial configuration provided that
the sphere follows a motion expressed by the quaternion

product

q(1) =
(
cos

φ

2
, sin

φ

2
, 0, 0

)
∗
(
cos

δx

2D
, 0, 0, sin

δx

2D

)
(48)

∗
(
cos

δy

2D
, 0, sin

δy
2D

, 0

)
≈

(
cos

φ

2
, sin

φ

2
, 0, 0

)
∗
(
1, 0,

δy
2D

,
δx
2D

)
(49)

where D acts as a scaling factor in the translations and is
chosen to be sufficiently large so that the errors of the linear
approximations of trigonometric functions become negligible.
A good lower bound for D comes from the fact that the
absolute errors in the computation of sin θ and cos θ, using
their linear approximations, remain below 5 · 10−5 whenever
|θ| < 0.01.

As an example, consider a unicycle on a plane, where its
configuration is defined by the coordinates of its center (x, y)
and its orientation φ. Without loss of generality, we assume
that φ = 0 when the unicycle is parallel to the δy−axis.
Now, suppose we want to drive the unicycle from the initial
configuration, given by (δx, δy) = (0, 0) and φ = 0, to the
configurations given by

(δx, δy) = (cosψ, sinψ) , (50)

for ψ = n π
12 , with n = 1, . . . , 24 (i.e., 24 evenly distributed

points on the unit circle), and

φ = π,
π

2
,
π

4
, 0. (51)

These configurations serve as planar approximations of the
spherical motions described by the quaternion product:

q(φ,ψ) =
(
cos

φ

2
, sin

φ

2
, 0, 0

)
∗
(
1, 0,

sinψ

100
,
cosψ

100

)
, (52)

where we have chosen D = 50. The obtained paths are shown
in Fig. 13 for the different values of φ and ψ. Notice how
these paths extend far beyond the approximation region as
the unicycle’s orientation angle approaches 0. For φ = 0
the obtained paths become impractical, as they circumvent
the sphere. To prevent this issue, intermediate configurations
with nonzero orientation angles could be introduced to keep
the paths within the approximation area. Moreover, when
φ = 0 and δy = 0, a singularity arises that must be handled
separately, as previously discussed.

VI. CONCLUSION

It is widely accepted that differential geometric methods
provide elegant formulations for many problems arising in
mechanics, including the path planning problem for car-like
robots. In fact, these methods are now considered instrumental
in understanding the structural properties of many mechanical
systems. However, in this paper, we diverge from this main-
stream approach to introduce a novel method for solving the
path planning problem of a unicycle rolling on a sphere. The
novelty lies in formulating the problem in terms of a time-
varying dynamic system whose integration requires no prior
knowledge of differential geometry or even nonholonomic
systems.
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xx

yy

zz

Fig. 11. Ramdom walks without obstacles (left) and with cylindrical obstacles (right). In both cases a sequence of 100 random configurations were used.

x

y

z

ϕ

δx

δy

Fig. 12. Planar translations along δx and δy axes can be approximated by
rotations in the z and y axes, respectively. The approximation error decreases
either increasing the radius of the sphere or, equivalently, scaling down the
planar translations.

Finally, it is worth highlighting a couple of points that de-
serve further attention. First, deriving an approximate closed-
form solution to (38) would be valuable. This reduces to
finding a bounded-error approximation of the surface in Fig. 4,
enabling the proposed method to be integrated into a control
loop for path tracking. Second, a detailed differential analysis
of the generated curves in S3 would be useful to determine
under what conditions they produce cusps when projected

onto S2. Extending this analysis to obtain the maximum and
minimum curvature of a given path could be particularly
relevant for integrating the proposed approach into a global
motion planner.
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APPENDIX

The value of A1 satisfying equation (15) can be obtained by
using Watkins and Yurkovich’s algorithm [38]. However, for
our specific problem, we do not need to rely on this algorithm.
Instead, by directly substituting (8) into (15) and expanding
the result, we can deduce that A1 must necessarily be a real
matrix of the form:

A1 =

 κ1 κ2 κ2 −κ3

−κ2 κ1 −κ3 κ2

−κ2 κ3 κ1 −κ2

κ3 −κ2 κ2 κ1

. (53)

Since A1 must be antisymmetric (A1 = −AT
1 ), it follows

that κ1 = 0. Moreover, since it must also be orthogonal
(AAT = I), we obtain the conditions κ2κ3 = 0 and
2κ22 + κ23 = 1. Thus, if we set κ3 = 0, then κ2 = ± 1√

2
.

Alternatively, if we set κ2 = 0, then κ3 = 1. Consequently,
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ϕ = π, ψ = n π
12 , n = 1, . . . , 24.

ϕ = π
2 , ψ = n π

12 , n = 1, . . . , 24.

ϕ = π
4 , ψ = n π

12 , n = 1, . . . , 24.

ϕ = 0, ψ = n π
12 , n = 1, . . . , 24.

Fig. 13. Paths families connecting q(0) = (1, 0, 0, 0) to q(1) =
(
cos φ

2
, sin φ

2
, 0, 0

)
∗
(
1, 0, 1

100
cosψ, 1

100
sinψ

)
(left column), and to corresponding

antipodal configurations (right column). While mathematically describing spherical paths, these trajectories can be regarded, from a practical point of view,
as paths followed by a unicycle on a plane.
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we have two candidates for A1, which, up to a scaling constant
to be determined, are: 0 1 1 0

−1 0 0 1
−1 0 0 −1
0 −1 1 0

 (54)

and 0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

, (55)

respectively.
Observe that, while (54) coincides with Ax + Ay , (55)

coincides with Az . To verify whether (54) is a valid solution,
we substitute A1 = k(Ax + Ay), along with (8), into (15).
After some algebraic manipulations, we conclude that ω̇x = 0,
ω̇y = 0, and ωx = −ωy , regardless of the chosen nonzero
value of k. Since this solution does not provide sufficient free
parameters to compute a path connecting arbitrary orientations,
we conclude that, if a valid solution exists, it must necessarily
be of the form A1 = kAz .
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