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Abstract— We introduce a novel framework for assistive
urban navigation for individuals with low vision. Utilizing a
smart glasses platform developed by Biel Glasses, which provide
a continuous stream of stereo images and GPS fixes, we generate
an Event Map based on key semantic elements extracted by
carefully prompted visual question-answering (VQA) models.
For individuals with blurry or reduced fields of vision (low
vision), traversing city streets poses a variety of challenges; they
may struggle to perceive construction work, potholes, crowded
sidewalks, and other ambiguous obstacles obstructing their
paths. Some tasks, such as distinguishing traffic light signals,
are nigh impossible without assistance from a companion or
city infrastructure aimed towards accessibility. Although the
majority of these problems may be solved with individually
tailored traditional computer vision algorithms, developing and
running a suite of these algorithms is challenging and resource
demanding. Therefore, our proposed solution capitalizes on a
single underlying implementation that need only be extended
by adding queries. We validate our approach using a custom
dataset of over 1,300 annotated images from various locations
around Barcelona, reporting performance across different ur-
ban navigation tasks. We demonstrate the performance of the
end to end system on a run of data collected by the Biel Glasses
platform.

I. INTRODUCTION

Wearable devices like phones and glasses are increasingly
playing a key role in helping people navigate urban envi-
ronments. In the case of individuals with low vision, these
devices are crucial for detecting both static and dynamic
elements in their surroundings and help them to move
safely through city streets. Detecting stairs, crossings, other
pedestrians, obstacles or any other unexpected hazard is
critical for guiding them with clear directions. Moreover,
these detections must be performed efficiently, using limited
resources, to keep these devices lightweight and to maximize
their battery life.

To date, various solutions have been attempted to address
these challenges, including the integration of separate com-
puter vision algorithms in path planning tasks [1], where
these algorithms are activated or deactivated as needed
to optimize computational power and battery consumption.
However, this approach is still sub-optimal due to several
drawbacks: 1) the need for separate training for each type
of detection, 2) the complexity of tailoring algorithms to
specific detections, such as identifying steps using vanishing
lines [2], and 3) the inability to anticipate which objects or
obstacles will need to be detected.

Fig. 1: This figure illustrates that, given images captured by the
Biel Glasses platform, the proposed system answers questions about
the environment and generates event labels which are then used to
provide meaningful feedback to the user.

Recently introduced visual question answering (VQA)
models [3], [4], [5], which take an image and a related ques-
tion as inputs and output an answer with a confidence score,
offer a promising alternative for object detection without the
need to train a model for specific objects. These models
leverage Natural Language Models (LLMs) to generalize
across a wide range of questions and texts, making them
well-suited for identifying objects or events on the fly. In
this manner, by formulating the right set of questions about
an image, these models can uncover high-level concepts [6],
[7] and events, which can then be utilized for navigation
purposes.

We propose to use a VQA model to create a high-level
event map, a scene graph, with critical events needed to
improve the navigation system of a pair of glasses developed
by Biel Glasses 1, see Figure 1. Using these glasses that
are equipped with a stereo-camera and a GPS unit, we are
able to construct a scene graph that contains detected events
needed by the path planning or safety avoidance algorithms
to give directions and warnings to low vision people. These
event detections are made using a VQA model [3] with pre-
trained questions chosen to discover critic events relevant
for the navigation. Some of these events include: identifying
crosswalk lights, street crossings, construction, obstacles on
the road or sidewalk, crowdedness of a sidewalk, and types of
shops within view. Each event is stored with its GPS location
and VQA model embedding in a frontend-backend structure
to optimize storage and computational resources.

1https://bielglasses.com



To validate the proposed approach we collect more than
3,000 images of the city of Barcelona from distinct neigh-
borhoods to ensure a diversity of event types and how they
manifest in the city. For each detection, we perform a prompt
optimization from several questions that later are tested to
evaluate the best performing one and ensure a high reliable
score to the event detection. The VQA model is compared
with other state-of-the-art models, and a through out study
of the detections are made for all dataset.

The main contributions of our proposed method are: 1)
use a VQA model to discover relevant events for safety
navigation through the city, 2) a frontend-backend framework
to create a scene graph that can store and remove these events
and, 3) a dataset with images and their locations within the
city of Barcelona.

II. RELATED WORK

A. Pedestrian Navigation

Pedestrian navigation is a dynamic area of research, with
a primary focus on path planning and safety. Whether it’s
a robot or a person moving through urban environments,
key challenges include detecting dynamic objects and iden-
tifying correctly the sidewalks to navigate various locations
effectively. Consequently, detecting other pedestrians [8],
[9], recognizing sidewalk boundaries [10], and enhancing
self-localization [11] are essential components for ensuring
safe and efficient navigation. Additionally, navigation can
be further enhanced through the use of augmented reality
[12], landmarks [13], and route optimization based on user
preferences [14]. In the particular case of of individuals
who are blind or have low vision, navigation is even more
challenging as even detecting a door shops [15] can be
a problematic, and guidance during navigation must be
preferably expressed in a natural language manner [16].
While developing all these solutions contribute significantly
to improving navigation, the aforementioned methods still
fall short in addressing the uncertainties inherent in urban
environments. Streets can be obstructed by construction
barriers, potholes, or other unpredictable obstacles, making
it difficult to develop a system that accounts for every
possible element. This complexity highlights the need for
an algorithm capable of generalizing and extracting relevant
information from an image of the environment. To address
these challenges, we propose leveraging a Visual Question
Answering (VQA) model, which can provide answers to any
questions about the environment based on a visual input.

B. Visual Question Answering (VQA)

VQA models are a specialized subset of Vision-Language
Models (VLMs), which aim to integrate flexible language
understanding with image analysis. For example, CLIP [17]
achieves this by projecting the embeddings from language
and visual encoders into a shared embedding space using
contrastive learning. This approach enables users to interact
with both language prompts and images by comparing the
similarity of the generated embeddings. VQA models, such
as Vision-Language Transformers (ViLT) [3] and similar

models [18], [19], [4], [5], build on this concept by generat-
ing textual responses based on an input image and a given
textual prompt, offering a more context-aware analysis of
visual data. This kind of models can generalize to any kind
of question, eliminating the need to train individual image
detectors, and are used in many kind of applications such as
unknown object detection [20], [21], [22], visual grounding
[23], [24] and interactive environments [25]. These capabili-
ties have also been exploited by numerous robot applications
in navigation tasks. Given natural language instructions,
these models can detect relevant objects on a scene [26],
extract landmarks to facilitate navigation tasks [27] and
understand high level concepts to construct navigation maps
[16]. While navigation maps that identify obstacles, cross-
walks, traffic lights, and other critical elements are essential
for safe route planning and guidance, current VQA models
have yet to be applied in constructing such maps. So far,
no existing work has leveraged VQA models to create these
detailed, real-time navigation aids detecting these mentioned
elements.

C. Scene Representation

The most common approach to representing a scene is
through the use of scene graphs. Scene graphs are structured
representations of visual environments, capturing the rela-
tionships between objects in a scene. In the context of nav-
igation, scene graphs can provide a comprehensive map of
an environment by identifying and categorizing objects like
obstacles, pathways, and landmarks, along with their spatial
relationships. This allows for more effective navigation, as
systems can better understand the layout and dynamics of an
environment, enabling safer and more efficient path planning.
The scene graphs ability to represent semantic concepts and
compress environmental information makes them ideal for
use in navigation algorithms. The majority of works use
scene graphs for indoor environments, providing semantic
guidance [28], planning and finding objects in rooms [7]
or constructing such graphs from other points of view [29]
rather than the common frontal view. Scene graphs also have
the potential to encode dynamic objects like elements that
can be in different places (i.e. a cup of coffee) and store the
information on the graph for later localization of the object
[30]. These graphs can also be combined with language
models like GPT-3.5 to perform queries about the elements
of the graph. This allows the system to access data encoded
in specific nodes that may not have been relevant initially but
become important in the current context [6]. Unlike previous
works that use scene graphs for querying, detecting dynamic
objects, or navigating primarily in indoor environments,
our approach extends these concepts to outdoor settings.
Additionally, since our representations do not require the
full complexity of traditional scene graphs, we employ a
simplified version, namely event maps. These event maps
store all detected events during navigation, and we enable
querying and detection of dynamic objects by adding or
removing elements from these event maps, while encoding
image data to optimize spatial representation. This approach



Fig. 2: This diagram illustrates the proposed end to end system that is used to produce Event Maps. The Biel Glasses platform collects
GPS data and produces an image stream that is processed by ViLT (or some other VQA model) to produce embeddings and event labels.
These are used to incrementally add nodes to the embedding store and the event layer, resulting in a full Event Map.

is particularly useful for navigation, as it allows us to store
large-scale maps and relevant elements, which are crucial
for guiding people with low vision through complex urban
environments.

III. METHOD

A. Research Questions

This work aims to investigate the practical application
of VQA models for assistive navigation tasks in urban
environments for individuals with low vision, with a specific
focus on evaluation in the city of Barcelona. The study
compares the accuracy, recall, specificity, and F1 scores of
VQA models on targeted binary perception tasks using a
dataset of images collected and manually labeled to perform
the evaluation.

The urban pedestrian navigation tasks investigated in this
paper are specifically designed to assist in orienting and
guiding individuals with low vision. These tasks include:

1) Distinguishing Crosswalk Signal
2) Stair Detection
3) Generic Obstacle Detection
4) Building front Identification
For each task, VQA models are queried with a set of se-

mantically similar question prompts that would allow a user
to accomplish the desired task. For example, to accomplish
stair detection, the models may be queried with questions like
“Are there stairs in this image?” and ”Is there a step in front
of the camera?” For each of these tasks there is a ”common
sense” prompt that is used to determine a baseline to compare
across models. The purpose of this prompt is to emulate a
person proposing a question that should allow another person
or the model to accomplish the task, without attempting to
prompt engineer for performance. The set of semantically
similar questions are evaluated collectively to determine how
sensitive each model is to prompt engineering on each task,
and determine in which ways model performances can be
improved.

B. Models

To compare VQA models of varying complexities and
sizes, ViLT [3], BLIP [4], and BLIP-2 [5] were evaluated.
Models were evaluated by providing the previous research
questions as a set of semantically similar prompts and then
comparing the model output against a desired answer. For
each question, there is a “positive” set of images where
the model is expected to provide the desired answer and
a “negative” set where the model is expected to provide
anything except for the desired answer. For example, in the
case of “Is this crosswalk light red or green?,” the desired
answer may be set as “red,” with the positive set being
images of red crosswalk lights and the negative set being
images of green crosswalk lights.

ViLT accepts an image and a textual question as inputs,
and it returns k candidate responses ranked in order of
likelihood, along with their logits. In this way, scores can
be assigned to each response. ViLT is evaluated both by
taking the top answer regardless of score, as few differences
were noticed with strict confidence cutoffs. BLIP accepts
an image and a textual question as inputs, and returns a
generated response. There is only one candidate and no
logits, so this response is directly used as the answer. BLIP-
2 takes an image and a prompt in the form of “Question:
Is the crosswalk light red or green? Answer:” and returns
a generated sentence or phrase in response. Rather than
directly comparing the response to the desired answer, the
response is checked to see if it contains the desired response.

C. Event Maps

In addition to using VQA models to query images, VQA
models outputs can be incorporated into persistent scene
representations for the purposes of semantic mapping. In
the process of generating a response to an image and a
textual prompt, these VQA models first encode images
into visual embeddings, which are smaller than the input
images. These embeddings can be re-queried against new



textual prompts without reprocessing the original image. The
embedding for a 720p image is 1/4th of the size of the
image itself, motivating the storage of embeddings rather
than the images themselves. To ground these embeddings
and any observations derived from them in the real world,
and to connect this work to previous works on scene graphs,
we introduce the concept of an Embedding Store, an Event
Layer, and an Event Map.

An embedding store is a map representation that takes
the visual embedding from processing an image with a
VQA model, and stores it with the associated GPS coor-
dinates of where that image was taken. This structure allows
for querying multiple embeddings at the same time, and
reconstructing a map of a scene with answers evaluated
across different prompts. Although images are collected and
processed in series on the platform, these models allow
for batch processing that makes offline inference across
the whole scene much faster. Similarly, using the saved
visual embeddings, each image can be queried with multiple
questions concurrently offline, allowing for more semantic
information to be extracted without collecting more data.

An event layer is built on top of an embedding store,
and allows users to provide specific semantic labels and
descriptions to embedding store nodes. Each node in the
embedding store is assigned one or more “event labels,”
explicitly indicating useful information in the scene that has
been extracted from a VQA model. For instance, if the image
a node is generated from shows a car in a crosswalk, two
events might be generated and associated with that node: one
event indicating a crosswalk, and another event indicating an
obstacle blocking the user’s path. The implementer defines
the priority of event types and what information is shared
with the user first. An event is defined by a label or class
(traffic, obstacle, etc) and an optional textual description
(generated or assigned). Whereas these VQA models can
provide open-set responses to input questions, events are
discrete and defined by the implementer. For evaluation in
this paper, we define 4 event types:

1) Obstacle - Something is blocking the presumed path
of the user

2) Traffic - There is a crosswalk or road directly in front
of the user

3) Anomaly - There is a long term change in the environ-
ment, such as construction

4) Unknown / Generic - None of the above, indicating a
“clear” path

As will be shown in the experiments, Event Map data was
collected on the Biel Glasses platform and processed offline.
ViLT was chosen as the VQA model for generating these
maps because it is the most lightweight model and the most
feasible to implement on the platform online in the future.

IV. EXPERIMENTAL RESULTS

A. Data Collection

All data for these experiments were collected manually.
The images for the VQA task analysis were collected with a

Fig. 3: Example images from the positive and negative splits for
each task. The left column represents all of the positive class
images, and the right column represents all the negative. The labels
on the left hand side of each row indicate which task those images
were evaluated for.

Canon EOS 6D at 720p, and the image stream and GPS data
for the event layer analysis was collected on the Biel Glasses
platform. Data collections involved continuously taking pho-
tos while on pre-planned walks of various neighborhoods in
Barcelona, capturing natural urban navigation scenes.

Data was hand labeled by splitting images that were con-
textually relevant to each task into “positive” and “negative”
folders. For instance, for crosswalk traversal, only images
collected at crosswalks were filtered into a “red crosswalk
light” folder or a “green crosswalk light” folder. Along a
similar vein, for building front identification, only images of
the fronts of buildings were included in either the positive or
negative sets. 923 pictures were collected of sidewalk scenes,
encompassing obstacle and stair related tasks, 239 photos
were collected at crosswalks, and 220 photos were collected
of building fronts.

B. VQA Model Evaluation on Common Sense Prompts

In Table I, VQA model accuracy, recall, precision, and F1
score metrics are presented on various assistance tasks using
naive, common sense prompts. For the task of distinguishing
crosswalk signals, images of either red or green crosswalk
lights were queried for the color of the light, with pictures
with red lights in the positive set and pictures with green



Fig. 4: Example Event Map generated with ground truth GPS fix points and labels. An example of each event label is provided to the left
and right of the Event Map, demonstrating the types of images and generated descriptions that are associated with each event label type.

Common Sense Prompts
Model Acc Recall Precision Specificity F1

Is the crosswalk signal red or green? (red)
ViLT 0.80 0.95 0.78 0.57 0.85
BLIP 0.77 0.94 0.75 0.51 0.83
BLIP-2 0.40 0.01 0.67 0.99 0.03

Are there stairs in this image?
ViLT 0.82 0.60 0.84 0.94 0.70
BLIP 0.92 0.88 0.88 0.94 0.88
BLIP-2 0.83 0.97 0.69 0.76 0.80

Is there something blocking the sidewalk?
ViLT 0.49 0.75 0.45 0.29 0.56
BLIP 0.73 0.79 0.65 0.68 0.71
BLIP-2 0.59 0.11 0.67 0.96 0.19

Is this an image of a restaurant?
ViLT 0.64 0.94 0.45 0.51 0.60
BLIP 0.81 0.94 0.62 0.76 0.75
BLIP-2 0.85 0.95 0.68 0.81 0.79

TABLE I: Analysis of model performances across all tasks for
each ”common sense” prompt. The tasks consist of distinguishing
crosswalk signal, detecting stairs, detecting generic obstacles on
the sidewalk, and identifying restaurants. The accuracy, recall,
precision, specificity, and F1 score are reported for each model
on each prompt.

lights in the negative set. For the stair detection task, images
with steps, stairs, or staircases were queried for the presence
of stairs, with images of stairs in the positive set and images
of sidewalks without stairs or obstacles as the negative
class. For the general object detection task. the positive set
consisted of images of poles, benches, and other objects
that could block a person’s path, and the negative set was
the same as the negative set for the stairs task. For the
building front identification task, images of building fronts
were queried to determine if they were establishments where
one could buy food, with restaurants and cafes in the positive
set and apartment building fronts, garages, and non-food
related shops were included in the negative set.

We observe that each model has varying performance
across tasks, resulting in different optimal models for each
task. At the same time, it is clear that the average BLIP F1
score was significantly higher than that of the other models,

outperforming both ViLT and BLIP-2 (0.79 vs 0.68 and 0.45,
respectively).

C. Model Prompt Sensitivity Analysis

In Table II, VQA model F1 scores are presented on the
assistive tasks across a broader set of semantically similar
prompts, with the goal of determining the importance of
prompt engineering for each task. Although some of the
new prompts may semantically indicate something subtly
different than the intended task, the same labels and splits
are used for evaluation to determine which prompt inputs
generate the best results for the intended task.

We observe a general tendency that, other than the restau-
rant identification task, BLIP-2 experienced the least con-
sistent results. At the same time, we can observe that BLIP,
ignoring the one outlier in the generic obstacle detection task,
performed the most consistently across prompts.

These findings in combination with the findings from
Section IV-B seem to show, on a surface level, that BLIP
provides the best assistive navigation performance out of the
evaluated models. This suggests that for the Biel Glasses
platform, it would perform well as a VQA model for general
pedestrian navigation tasks, and that it would additionally
perform well at live question-answering, wherein the users
asks questions that are not already being processed by the
system (for example: ”Is there a bus in front of me at this bus
stop?”). Unlike BLIP which is much more consistent, BLIP-
2 performance is very dependent on prompt engineering and
benefits from grounding questions in the scene, particularly
for tasks that are more visual in nature than semantic (such
as distinguishing the crosswalk light color).

D. Real World Mapping with Event Layer

Evaluation of real world performance can be seen in
Figure 5. Data was collected using the Biel Glasses platform
of a short walk around each of the sidewalks around an
intersection, resulting in 15293 images, which were then
down-sampled to 25 images by taking each 600th image



Fig. 5: Event Map generated offline using images and GPS data from the Biel Glasses platform. Examples of each event label from the
captured data are shown on the sides of the map, with an example of an image with multiple event labels in the bottom right.

Prompt Sets per Task

Question Model F1 Scores
ViLT BLIP BLIP-2

Distinguishing Crosswalk Signal
Is the crosswalk light red or green? 0.85 0.83 0.03
Is the walk light red or green? 0.84 0.85 0.22
Is the pedestrian light red or green? 0.86 0.83 0.11
Is the crosswalk light on the pole red or
green?

0.83 0.85 0.55

Is the walk light on the pole red or green? 0.82 0.86 0.66
Detecting Stairs

Are these stairs? 0.62 0.89 0.58
Are there stairs in this image? 0.70 0.88 0.80
Is this an image of stairs? 0.64 0.89 0.89
Are there steps in this image? 0.77 0.86 0.87
Are there stair steps in this image? 0.76 0.77 0.83

Detecting Generic Obstacles
Is this an obstacle? 0.22 0.07 0.19
Is there something on the sidewalk? 0.60 0.63 0.52
Is there something blocking the sidewalk? 0.56 0.71 0.19
Is there something on the sidewalk blocking
people from walking?

0.49 0.66 0.21

Is there something really close to the camera
on the ground?

0.69 0.61 0.53

Identifying Restaurants
Is this a restaurant? 0.60 0.75 0.79
Is this an image of a restaurant? 0.54 0.74 0.70
Is this a picture of a restaurant? 0.59 0.73 0.69
Is this the outside of a restaurant? 0.49 0.62 0.69
Is the outside of a restaurant in the middle of
this image?

0.57 0.62 0.60

TABLE II: Comparison of F1 Scores of each model on a set of 5
prompts per task. The best model score for each task is bolded.

at regular intervals. These images were then hand labeled
to each include one or more of the various event labels.
The system to generate these event labels was then run
on the 25 sampled and labeled images, and accuracy was
calculated by comparing the number of correctly matched
event labels per node to total event labels. The GPS data to
ground these embeddings was directly taken without post-
processing, resulting in trajectories that are a bit misaligned
with the underlying OSM map.

We observe that the system achieves 71.4% accuracy (20
labels out of 28) over the Event Map. We see an accuracy of
56.3% on unknown (generic) events, 100% for traffic events,

and 80% for obstacle events (no anomalies were present nor
detected in this data collection). As can be gleaned from the
map, the system tends to detect crosswalks much earlier than
the user approaches them, and occasionally ”hallucinates”
obstacles. Although early detection of crosswalks is less
problematic because it can be rectified with the underlying
street map, precise obstacle detection is an important target.

V. CONCLUSIONS

In the presented work, we explored how pretrained VQA
models can be leveraged in assistive technology to aid urban
navigation for pedestrians with low vision. We evaluated
three pretrained VQA models, ViLT, BLIT and BLIP-2,
on four key urban navigation tasks: recognizing crosswalk
signals, detecting stairs, identifying generic obstacles, and
recognizing building fronts. Our results showed that while
VQA models can effectively handle these tasks, they struggle
with the open-ended nature of detecting generic obstacles,
and that in the majority of cases prompt engineering is ben-
eficial to improve performance. Additionally, we introduced
a Event Map framework for representing environments that
users have traveled through. This framework allows users to
manually define events detectable by VQA models, which
can then process the resulting image embeddings either
online or offline to identify and explicitly represent those
events within a scene. We tested our end to end system on
data collected with the Biel Glasses platform and were able
to demonstrate a proof of concept. Although they require
further tuning, modern VQA models provide an exciting
avenue for further assistive robotics applications.
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