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Dynamics of Mental Models:
Objective vs. Subjective User Understanding of a
Robot 1n the Wild

Ferran Gebelli', Anafs Garell?, Séverin Lemaignan® and Raquel Ros?

Abstract—In Human-Robot Interaction research, assessing
how humans understand the robots they interact with is crucial,
particularly when studying the impact of explainability and
transparency. Some studies evaluate objective understanding by
analysing the accuracy of users’ mental models, while others
rely on perceived, self-reported levels of subjective understanding.
We hypothesise that both dimensions of understanding may
diverge, thus being complementary methods to assess the effects
of explainability on users. In our study, we track the weekly
progression of the users’ understanding of an autonomous robot
operating in a healthcare centre over five weeks. Our results
reveal a notable mismatch between objective and subjective
understanding. In areas where participants lacked sufficient
information, the perception of understanding, i.e. subjective
understanding, raised with increased contact with the system
while their actual understanding, objective understanding, did
not. We attribute these results to inaccurate mental models that
persist due to limited feedback from the system. Future research
should clarify how both objective and subjective dimensions
of understanding can be influenced by explainability measures,
and how these two dimensions of understanding affect other
desiderata such as trust or usability.

Index Terms—Social HRI, Long term Interaction, Human-
Centered Robotics

I. INTRODUCTION

NE of the main goals of designing explainable robots
is to improve the understanding of users about the
robots’ decisions and behaviours. In turn, this will contribute to
achieving other desiderata, such as raising users’ satisfaction,
usability or trust when interacting with these robots [1]], [2].
In the Human-Robot Interaction (HRI) field, the Theory of
Mind (ToM) approach assumes that users build an internal
Mental Model (MM) about the robot, which helps them to pre-
dict the robot’s decisions and behaviour [3]]. The evaluation of
the user’s understanding of the robot is often done by analysing
those mental models [4]. The literature review on human-
centred eXplainable AI (XAI) [5] identifies two types of
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Fig. 1. Evaluation of understanding with part of the nursing staff right after
the tutorial session and before any usage of the system.

understanding that can be evaluated. Objective understanding
is the actual comprehension of the system, usually measured
as the accuracy of the user’s mental model of the system in a
proxy task. Subjective understanding is the user-perceived and
self-rated level of understanding, considered as the confidence
that users have about their objective understanding, and is
usually measured through questionnaires. Most of the previous
XAI works assess either objective or subjective understanding,
but not both [5]], sometimes using subjective understanding as
a replacement for objective understanding [2]]. However, pre-
vious literature has not yet explored the relationship between
the two types of understanding in HRI, which is a gap that
we address in this work. We believe that both metrics should
be analysed separately, since other desiderata, such as trust,
usability or performance, might be affected differently by each
type of understanding.

Analysing the evolution through time of objective and
subjective understanding requires multiple engagements over
extended periods with the same users [6]. However, the
evaluation of understanding is typically conducted after very
short-term interactions with the robot, which often overlooks
the novelty effect adequately [7]. Those study settings are
not realistic, being often in-lab experiments [8]]. Although the
dynamics of mental models over time have been studied in
XAl e.g. with recommender systems [9], up to the authors’
knowledge, long-term studies of user understanding in the wild
have not been addressed in HRIL

In this work, we conduct a user study (Fig. [T)) where a robot
is deployed in the wild for 5 weeks in the geriatric unit of an
intermediate care centre. The robot assists the nursing staff
in identifying potentially hazardous situations for patients. We
address two research questions:
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o« RQI1: What is the relationship between objective and
subjective understanding?

e« RQ2: How does the user’s understanding of an au-
tonomous robot in the wild evolve with increased ex-
posure and interaction?

This work is organised as follows. Sec. 2 reviews the related
work. Sec. 3 details the study design, and Sec. 4 presents the
results. A discussion of the outcomes is presented in Sec. 5.
Finally, Sec. 6 concludes the paper.

II. RELATED WORK

In this section, we will first review why understanding is
a key aspect of measuring the effects of explainability. Then,
we survey objective and subjective understanding assessments,
and the evaluation of understanding’s dynamics over time.

A. Explainability and understanding

The review work on XAI metrics [4] proposes three stages
in XAI evaluation: (1) an assessment of the explanation
goodness and user satisfaction, (2) a test of comprehension
(or understanding) which measures the mental model and (3)
the measuremnt of other metrics like performance or trust
which are affected by understanding. Later, the work in [
further generalises this process, stating that the primary goal of
explainability is facilitating understanding, which in turn will
affect other desiderata such as trust, performance, usability or
satisfaction.

The review works in XAI [2]], [5], and in eXplainable HRI
(XHRI) [[10] also acknowledge the major role of understand-
ing. In the next subsection, we explore how understanding has
been measured, together with current limitations.

B. Objective understanding

Mental models, which have their origins in psychology
research, are internal representations that people use to un-
derstand, explain and predict the real world [11]], [[12]. Mental
models have been used to model shared understanding between
users [13]], [[14]], to design intelligent systems [9], [15]], and to
design [3]], [16] and evaluate [2], [4], [10] XHRI.

The obtained mental models are usually analysed by com-
paring them with the true decision-making and behaviour of
the system [4], [[10]. By assessing the accuracy of the users’
mental models, objective understanding can be measured. A
key aspect in evaluating objective understanding is choosing
an appropriate proxy task. According to [17], the selected task
should “maintain the essence of the target application”. One of
the most widely recognised proxy tasks is forward simulation
[17], 18], which involves requiring participants to simulate or
predict what the system would do.

C. Subjective understanding

In other cases, the perceived, subjective understanding, has
been used as a way to estimate objective understanding.
However, it has been argued that subjective understanding
might not reflect objective understanding, since participants

might have unjustified beliefs [2]. Research in social sciences
evidences that people tend to have a wrong perception of their
understanding [[19]. Some user studies have supported the idea
that the subjective level of understanding is initially high but
gradually declines as time progresses [20], [21], while other
works [9] report the opposite, i.e. that subjective understanding
begins at a lower level and then increases over time.

D. Objective vs subjective understanding

Some works have measured both objective and subjective
understanding, but they have not included its comparison as
a major research question. For example, [22] measures them
jointly with 7 other metrics, such as cognitive load, trust,
or explanation preference. Despite the noteworthy differences
between the two understanding metrics, such distinction is
not properly addressed, and the metrics are merely used as
complementary ways to measure the significance under test
conditions.

This pattern is present in many other works [23[, [9],
[24], [25]. Only [_25] presents a short comparison of both
understanding metrics, but it is solely a sentence stating that
“participants tend to overestimate their understandability [...]
the relationship between subjective and objective understand-
ability is an interesting topic for future work”.

Other works have compared objective and subjective metrics
which are related to explainability, but do not explicitly
measure understanding. For example, in terms of subjective
metrics, in [26] the participants rate how satisfied users are
with explanations, while [27]] defines a set of questions to mea-
sure not only understandability but “explainability” as a whole,
including the “simulatability, transparency, and usability” of
the explanations. Then, [28]] includes the same “explainability”
subjective metric from [27] while introducing an explicit self-
reported subjective understanding as a secondary outcome,
which confirms that the subjective metric from [27] does
not exclusively map to understanding. Nevertheless, results
are mixed: in [27], there is a positive correlation between
the two types of metrics, while in [28], the relation is, on
average, negative, with different results across user groups with
different expertise.

In this work, we explicitly focus on the relation between
objective and subjective understanding while investigating its
dynamics, as we review in the next subsection.

E. Dynamics of understanding over time

Some works have studied the progression of understanding
over time for users of XAl non-embodied intelligent systems
191, (151, [29].

It has been argued that mental models are relatively per-
sistent over time [9], [15]], that is, people tend to adhere
to their initial beliefs and explainability measures cannot
always modify them. However, these works concede that the
information provided was probably too short and basic, and
that other types of explainability measures might lead to other
results. The work in [9]] reports that receiving extra information
correlates with a higher understanding, but in [15]], [[30]] this
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claim does not hold. This contradiction further confirms that
the type and nature of the provided explanations play a major
role in the evolution of understanding with time. Moreover,
these works do include the time dimension when measuring
understanding, but do not explicitly consider the comparison
of objective and subjective understanding.

Although some theoretical works treat the evolution of
mental models, e.g. concerning robot anthropomorphism [31]],
up to the authors’ knowledge, there is a lack of user studies
in HRI that evaluate the dynamics of understanding (objective
and subjective) in the long run. In this work, we aim to cover
such a research gap.

III. STUDY DESIGN
A. Environment and task

The study took place in the rehabilitation unit of an in-
termediate healthcare facility, which primarily serves elderly
patients undergoing medium- to long-term rehabilitation, typ-
ically lasting from weeks to months. The robot’s functionality
was defined through a 7-month co-design process with the staff
[32]. The robot was tasked with patrolling patients’ rooms and
alerting the nursing staff in case of potential hazards (Fig. ).
These alerts included detecting a person lying on the floor
(indicating a fall), a person standing alone in the room, or a
room door being closed when it was expected to remain open.

The main users of the system are the nursing staff, who
are in charge of configuring the robot patrolling routines and
addressing the alerts raised by the system via a mobile app
available on each of the staff member’s phones. Moreover,
the robot has a screen on the chest and LEDs on the base to
display its status (e.g., patrolling, idle, low battery, etc.).

Users can schedule patrolling rounds indicating the rooms
to monitor at specific times. They can also specify the rooms
where the standing patient and closed-door alarms should be
active. Users can always view, edit or delete the active and
scheduled routines.

When the robot triggers an alert, all phones start vibrating
and emitting a sound that depends on the alert’s severity. The
screen of the phone will show the location and type of alert,
as well as an image of the scene taken by the robot’s camera,
as shown in Fig. 2] (right). At that point, any user can press
a button to stop the alert on all other phones. The user who
pressed the button should address the incident and specify if
it was a true or false alert. Besides the alerts corresponding to
risk situations for the patients, alerts related to robot failures
are also present: when the robot gets lost, when its path is
fully blocked, a motor overheats, or the emergency button has
been pressed. When any of these alerts are triggered, the user
receives instructions on how to fix the problem. When any of
those alerts are active, an optional “explain me more” button
will appear to receive additional explanations regarding the
event. Explanations are fetched in a dictionary-based approach,
indexed by the alert type. They are delivered on-demand
for two reasons: on the one hand, to avoid overwhelming
users with non-priority information, and on the other hand,
to explicitly measure when an explanation has actually been
requested.

Fig. 2. The robot autonomously returns to its charging station after completing
a patrol round (left) and user interface displaying a fall alert actioned from
the robot sensors (right).

Some examples of daily interactions between the users and
the robot are: (a) the robot raises a standing person alarm,
a nurse goes to that room to assist the patient; (b) the robot
cannot move because it is obstructed, a staff member assists
the robot by clearing the space around it; (c) a staff member
enters a room and negotiates the shared space with the robot.

B. Apparatus

We used a TIAGo LITE robot from PAL Robotics, a mobile
platform with a touch screen on the chest. It runs Ubuntu
20.04 LTS with ROS Noetic middleware on an Intel Core i7-
10700 CPU @ 2.90GHz. It uses the ROS navigation stack to
navigate autonomously using a LIDAR and RGBD camera. It
is also equipped with a thermal camera, which, along with the
RGBD camera, is used to identify the potential risk situations
described above.

Each participant had a phone with a dedicated app to interact
with the robot. The app automatically logs out the current user
in every shift change, forcing the next shift to log in. By doing
s0, we can separately track the interactions of each user with
the system through the app.

C. Farticipants

Participants were recruited from the nursing staff of the
rehabilitation unit. A total of NV = 31 participants took part
in the study, comprising 27 females and 4 males, including
9 nurses and 22 nursing assistants. Of the participants in the
study, only two had been actively involved in the participatory
design process, while the rest were unfamiliar with the system
prior to the study. The nursing staff operates in four shifts:
morning, afternoon, and two alternating night shifts, with 7-
8, 4-5, and 3-4 members working simultaneously during each
respective shift. Over the course of the study, we recruited a
total of 12 morning-shift, 5 afternoon-shift, and 14 night-shift
staff members. All participants provided written consent for
their voluntary participation after receiving a detailed briefing
about the study.

D. Procedure

After participants had signed the consent fornﬂ they filled
in the understanding questionnaire described in the next sec-
tion, prior to any contact with the system. Next, we conducted

The ethical committee from the hospital where the study was performed
(BSA) allowed the study’s execution (March 2024).
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a hands-on tutorial session for the whole shift to explain the
usage and main features of the system. The robot was present
in the session and each participant experimented with the
system. Right after the tutorial, participants answered the same
understanding questionnaire, and then the deployment of the
robot started. The procedure was repeated for every shift.

From this point on, the system worked autonomously 24
hours, 7/7 days throughout the study period, and the re-
searchers went to the facility only to fix an autonomous
navigation issue during the first weeks and to collect the
weekly questionnaires until the end of the pilot.

An additional tutorial session took place in the middle of
the study, addressed to those participants who joined a shift to
cover the holiday breaks of the permanent staff. The timeline’s
summary is shown in Fig. 3]

week O week 1 week 2 week 3 week 4 week 5
quest. quest. quest. quest. quest.
deployment I I I I
T T T T T >
A time

introductory

re-tutorial introducto ost-tutorial
P P tutorial for new staff

quest. tutorial quest.

Fig. 3. Timeline of the tutorial, questionnaires (as in Fig. EI) and deployment.

E. Dependent variables

In this section, we specify the understanding questionnaires
and metrics. The questionnaire (Fig. @) included 7 question
blocks, QO to Q6, and was always answered individually in
the presence of a researcher in a “think-aloud” manner to
avoid question misunderstandings and cover missing response
options. QO provided a 1-to-7 Likert scale to rate the general
subjective understanding, similar to [20]. The following 6
question blocks are composed of three sub-questions:

1) The question itself, with 5 single-choice answer options.
This question was used to evaluate the predictive capa-
bilities and, therefore, the objective understanding.

2) A 1 to 7 Likert scale to rate the level of understanding
of each specific topic, similar to what has been done
when analysing understandability in [24] (in Section IV
we validate that we are effectively measuring subjective
understanding by correlating the results to QO).

3) A multi-choice question to specify the reasoning why
participants believe they know the answer.

To compute the objective understanding score, each of the
single-choice answers received a mark according to its cor-
rectness (0 or 1). Similarly, for the subjective understanding,
the response was normalised between O and 1. These values
can be averaged for all questions or across a particular subset.

This normalisation of both the objective and subjective
understanding to 0 and 1 is inspired by previous works [33],
[22]. However, a direct comparison between them should be
carefully considered because they are obtained differently.
However, since both of them are assessed based on the same
robot features, we consider that comparing their trends (e.g.
an increase in only one of them) is a fair comparison.

F. Independent variables

The following independent variables have been considered:

QO- My level of understanding of the robot s ...

1 2 3 4 5 6 7
@] @] @] @] @] @] O

verylow very high

Q1 - What happens after someone presses the “l handle it” button?

O A: Therobot pauses

O B: The robot goes to the charging dock

O C:The alarm stopsin all phones

(O D:lgetareal-time image of what the robot has detected

(O E:None of the above ] 2 3 4 5 6 7
0 0O 0o o o o o

verylittle very much

I know this answer thanks to ...

O A: The introductory tutorial

O B: Using the robot

O C: Pressing the “explain me more” button

O D: Someone else telling me

OE:lguessit

| am sure about this answer ...

Q2 - What will the robot do after a “closed door” alarm?

O A:it stays next to the closed door to indicate the place to the staff

O B: It continues patrolling

O C:Itleaves and then avoids entering that room until the alarm has been resolved

O D:ltleaves, andif it detects the same alarm again, the intensity of the alarmincreases
O E:None of the above

[Second and third sub-questions as in Q1]

Q3 - How does the robot detect a standing person?

O A:Ituses the laser sensor that has on the base to detect straight legs

(O B: Ituses the thermal camera on the head to find warm bodies in front of it

O C:Itdetects people and then checks if the height of the shoulders is high enough
O D: Ituses artificial intelligence to classify between standing or not standing people
O E:None of the above

[Second and third sub-questions as in Q1]

Q4 - What happens after pressing the “l handle it” button?

O A:Therobot pauses

O B: The robot goes to the charging point

O C:The alarm stops in all other phones

O D: Areal-time image of what the robot’s camera is seeing appears on the screen
(O E:None of the above

[Second and third sub-questions as in Q1]

Q5 - What should be done when the robot is obstructed?

O A: Nothing, the robot will solve it. If this is not the case, | should reboot the robot
O B: Move away the obstacles

(O C:Move therobot

O D: Move away the obstacles, and if not improving, move the robot

O E:None of the above

[Second and third sub-questions as in Q1]

Q6 - How does the robot detect closed doors?

O A: Whenit doesn’t detect any available path to enter the room

O B: Whenit does not see frontally the door handle

(O C:Whenit detects a flat vertical surface in front of it

O D: When the laser reading doesn't fit with what should be detected for a closed door
(O E:None of the above

[Second and third sub-questions as in Q1]

Fig. 4. Distributed questionnaire with question blocks QO to Q6.

a) Tutorial attendance: The questionnaire was dis-
tributed right before and after attending the introductory tu-
torial. Thus, a variable to consider is the pre-tutorial against
the post-tutorial condition.

b) Worked weeks: We compute the accumulated number
of days each participant has worked in contact with the robot
at each measurement time-point. We divide this number by
the weekly mean workdays of a staff member (5 for the
morning and afternoon shifts, 3.5 for the night shift) to obtain
the equivalent worked weeks, after rounding to the higher
integer. This variable is meant to estimate how understanding
is affected by merely sharing the space and witnessing the
robot in action. Because not all the participants started on the
same date, and the extent of holidays was distinct for each of
them, the equivalent worked weeks varied throughout the pilot
differently for participants.

c) Usage hours: The worked weeks variable does not
necessarily mean that participants interact with the system,
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as they are free to interact as much as they want. On the
contrary, the usage hours variable measures the actual level of
interaction. We are aware that in this pilot it is challenging to
obtain an accurate metric for this variable, particularly given
that the robot operates autonomously in the field for 5 weeks,
24 hours a day, without the research team’s presence. We base
this metric on the accumulated logged-in hours in the system.
d) Learnable vs unlearnable features: Based on the par-
ticipant’s interactions with the system, only specific features
can be learned, that is, the information was accessible in some
way and at some point. When assessing the tutorial atten-
dance, the learnable features include only questions QI and
Q4, since these questions address aspects explicitly explained
in the tutorial and that can be further reinforced through usage.
When evaluating the worked weeks and usage hours, questions
Q2 and Q4 are also included in the learnable features for
participants who have been working alongside the system,
as their answers can be acquired through observation of the
robot’s behaviour. Finally, questions Q3 or Q6 are included
in the learnable features only for participants who received a
related explanation to the specific question after pressing the
“explain me more” button. For example, the explanation that
is considered related to Q6 is “The robot assumed the door
was closed because it did not find any available path to go into
the room.”. A summary of the distribution of questions among
learnable and unlearnable features can be seen in Table

TABLE I
CATEGORISATION BETWEEN LEARNABLE AND UNLEARNABLE FEATURES.
learnable | unlearnable

Has the participant attended the yes Ql, Q4 -
introductory tutorial? no - Ql, Q4

Has the participant been working yes Q2, Q5 -
while the robot was operating? no - Q2, Q5

Has the participant requested an yes Q3, Q6 -
explanation related to the question?  po - Q3, Q6

G. Hypotheses

Given the above-mentioned dependent and independent

variables, we define the following hypotheses:

o H1.1: The tutorial attendance leads to an increase of the
subjective understanding for both the learnable features
and unlearnable features.

o H1.2: The tutorial attendance leads to an increase of the
objective understanding only for the learnable features
category.

o H2.1: The subjective understanding increases with the
worked weeks for both the learnable features and un-
learnable features.

o H2.2: The objective understanding increases with the
worked weeks only for the learnable features category.

o H3.1: The subjective understanding increases with the us-
age hours for both the learnable features and unlearnable
features.

o H3.2: The objective understanding increases with the
usage hours only for the learnable features category.

Patrolled hours
[
o o O

o

0 5 10 15 20 25 30 35
Day

Fig. 5. The daily patrolled hours during the five weeks demonstrate the
continued usage of the system with no relevant decay over time.

QO subj. understanding
o o o o m
N » o ® ©

o
o

0.0 0.2 0.8 1.0

0.4 0.6
Q1-Q6 avg. subj. understanding

Fig. 6. Correlation between the average score of the subjective understanding
of questions Q1 to Q6 and the subjective understanding of question QO.

IV. RESULTS

In this section, we report the results of the study, with
a significance level of & = 0.05. In each of the below
evaluations, we report the number of samples n, which will
vary across different tests. A total of M = 105 understanding
questionnaires were completed, with an average of 15 par-
ticipants per questionnaire round. Due to noteworthy holiday
breaks and irregular shifts, not all participants were present
throughout all the study, with varying participation.

In a study in the wild prolonged in time, the system must
be useful and robust to avoid drawing wrong conclusions
caused by low relevance in real-world tasks. The iterative
co-designing process, which we carried out for 7 months
before the deployment, ensured a relevant and functional
system. Observing the patrolled hours’ evolution in Fig. [3}
we verify the robot was practically continuously used for the
deployed weeks with no significant continuous drop. During
the deployment, the robot travelled more than 78km, entering
a total of 7656 rooms.

To verify that the Q1-Q6 Likert questions are well-framed,
we correlate the values of QO with those of QI1-Q6. As
depicted in Fig. [6] we confirm they are strongly correlated
(Pearson correlation, » = 0.80, p < 0.001, n = 105). First,
this assessment validates that the Q1-Q6 Likert statements
effectively reflect subjective understanding as in Q0. Moreover,
the correlation indicates that the perceived complexity of the
individual Q1-Q6 Likert questions is adequate, that is, it is
neither excessively high (otherwise, the general subjective
level of understanding in QO would be high while the mean
score across questions would be low) nor overly simplistic
(which would lead to a high score across Q1-Q6 Likert
questions, while the general subjective understanding in QO
would remain low).

Next, we confirm H1.1 and H1.2 from the results in Fig.
With a sample of n = 19, which is the number of participants
that did both the pre and post-tutorial questionnaires, their
subjective understanding increases for both the learnable fea-
tures (Wilcoxon signed-rank test, mean pre-tutorial pg = 0.14,
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learnable features unlearnable features

1.0 1.0
Objective understanding

0.8 0.8 Subjective understanding
20.6 0.6
S |
wn 0.4 x 0.4

0.2 | I 0.2 |

0.0 " " n

pre-tutorial Post-tutorial pre-tutorial Post-tutorial

Fig. 7. Effect of attending the tutorial, comparing understanding right before
and after the tutorial and separating by features that were explained or not in
the tutorial. Vertical lines indicate the standard error.

mean post tutorial p; = 0.53, effect size Cohen’s d = 1.95,
p < 0.001) and the unlearnable features (Wilcoxon signed-
rank test, uo = 0.16, p; = 0.41, d = 1.21, p < 0.001)
conditions. We also observe an increase in the objective
understanding in the learnable features condition (Wilcoxon
signed-rank test, pg = 0.13, 1 = 0.42, d = 1.21, p < 0.001),
but not for the unlearnable features one (Wilcoxon signed-rank
test, o = 0.24, pp = 0.30, d = 0.29, p = 0.37). We selected
the Wilcoxon test due to discrete data on paired individuals
which did not pass a Shapiro-Wilk normality test.

To evaluate the remaining hypotheses, we shift Q2 and Q4
to the learnable features category, and also Q3 and Q6 for
participants who pressed the “explain me more” button, as
explained in Sec. IILF.

Concerning the hypotheses H2.1 and H2.2, we do find
trends according to the hypotheses, but the results do not
provide enough significance to validate them. We compare the
levels of understanding of the participants who have worked
up to one week (n = 23) with the ones who have worked
for an extended period, which we consider to be at least one
month (n = 28). We exclude the tutorial questionnaires’ data
to validate the hypotheses only based on permanent usage. The
full evolution is represented in Fig. [§] More specifically, we
have obtained the following results: (1) subjective understand-
ing and learnable features (Mann—Whitney U test, po = 0.36,
w1 = 0.58, d = 0.83, p = 0.10); (2) subjective understanding
and unlearnable features (Mann—Whitney U test, pug = 0.27,
p1 = 045, d = 0.77, p = 0.12); (3) objective understanding
and learnable features (Mann—Whitney U test, ug = 0.30,
pw = 037, d = 0.35, p = 0.48); and (4) objective un-
derstanding and unlearnable features(Mann—Whitney U test,
o = 0.20, 1 = 0.17, d = 0.11, p = 0.83). We employed the
Mann—Whitney U test to compare two distributions assumed
to be independent, where the data was discrete and did not
pass a Shapiro-Wilk normality test.

We confirm H3.1 and partially confirm H3.2 by correlating
the logged-in hours on the system with the understanding
scores, as shown in Fig. [0] We exclude the tutorial question-
naires, resulting in n = 67 remaining data points. We verify
H3.1, since the subjective understanding positively correlates
for both the learnable features (Pearson correlation, r = 0.62,
p < 0.001) and the unlearnable features (Pearson correlation,
r = 0.30, p = 0.004) conditions. Regarding H3.2, we find
a non-significant positive trend for the learnable features
(Pearson correlation, » = 0.10, p = 0.42) while for the
unlearnable features condition there is a significant negative

learnable features unlearnable features

1.0 1.0
Objective understanding
Subjective understanding

o
©

0.8

o
o

0.6

o
IS

0.4

understanding score

°
N

0.2

0.0 1 2 3 4 5 0.0 1 2 3 4 5

equivalent worked weeks equivalent worked weeks

Fig. 8. Evolution of the objective and subjective understanding over the
worked weeks, separately for the features that users can and cannot learn.
Vertical bands indicate 95% confidence intervals.

learnable features unlearnable features
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Fig. 9. Correlation between the number of accumulated logged-in hours in
the app, which is a measure of the usage of the system, with the levels of
understanding. The left and right plots include questions related to features
that users can and cannot learn given their usage, respectively. Vertical bands
indicate 95% confidence intervals.

correlation (Pearson correlation, » = —0.40, p < 0.001).

As a complementary analysis, we also evaluated the justi-
fications behind the participant’s answers, i.e. the source of
their knowledge gathered in the understanding questionnaire
“I know this answer thanks to..” from Fig. ] The results
are summarised in Fig. segmented by answers where the
reported subjective understanding was either low, middle or
high (1-2, 3-5 and 6-7 in the Likert, respectively).

V. DISCUSSION
A. Objective vs subjective understanding

The main finding from the above-reported results is that
the subjective understanding of a robot can increase while the
objective understanding does not, meaning that the two types
of understanding can be decoupled. This supports the need
to measure both metrics to correctly track both what humans
think they know and what they actually know.

When assessing the unlearnable features category, our re-
sults reveal that when the information to acquire knowledge
about specific features was not available, the subjective un-
derstanding significantly increased (for the tutorial attendance
and usage hours), while the objective understanding did not.

The results for the worked weeks variable point in the same
direction, although with not enough statistical significance.
This fact could imply that using the system (usage hours) has
a stronger impact compared to merely working more hours in
the same space as the robot (worked weeks).
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We corroborated that the objective understanding does not
increase for the unlearnable features, but we did not foresee
that it could decrease, as we observe in the results. We attribute
this fact to robot behaviours that are not aligned with what the
participants intuitively expect. In those cases, the user’s beliefs
are never corrected as they refer to information about features
that have never been disclosed, either because the user has
not experienced them or asked for information about them.
In any case, we exclusively aimed to verify there is not an
increase in the objective understanding for the unlearnable
features category, which our results do support.

Regarding the learnable features category, we aimed to
verify that both types of understanding do increase when infor-
mation is available. We have statistically verified that for the
tutorial attendance, and for the usage hours only for the sub-
jective understanding, while finding positive trends in the rest
of the cases. Moreover, the fact that for the usage hours and
the learnable features category the subjective understanding
significantly increases while the objective understanding shows
only a positive trend could be a further sign of decoupling
of the two types of understanding. One implication would be
that, for aspects that have been explained, humans believe they
understand them better than they actually do. This trend is also
observable for the worked weeks evolution.

B. Participants’ reported reasoning

Results from Fig. indicate that before the tutorial, the
main reasoning behind their answers is “I guess it”, while
right after the tutorial, the tutorial itself becomes the main rea-
soning, except for the low subjective understanding category.
Over the weeks, we can observe how participants associate
with “using the robot” aspects that were before attributed to
the training, especially for the middle and high subjective
categories. This trend is not present in the low subjective

understanding category, where the “I guess it” reasoning
remains the main choice. However, we did not expect the
constant and relatively high share of the “I guess it” reasoning
for the middle category. This implies that many participants
are fairly sure that they know something just because they
are envisioning it, but they still rate to have a middle sub-
jective understanding level. This finding could explain why
subjective understanding increases even for aspects that cannot
be learned, as longer contact with a system might lead to an
increase in the subjective understanding of aspects that humans
know out of their imagination. A possible reason would be that
increased confidence in the usage causes a generalised baseline
increase in the perception of understanding, that will remain
high unless proper system feedback makes users aware of their
real level of understanding, adjusting their illusion.

C. Limitations

On the one hand, we reckon that the level of direct inter-
action with the robot system was limited, as a result of the
high level of the system’s autonomy, where intervention from
the user was partially required to fulfil the tasks. Although
participants shared their workspace with an autonomous robot
for many hours each day, the robot rapidly became integrated
into their daily routines. On the other hand, we could not
monitor a constant set of participants for the whole study due
to changes in shifts and holidays, and we might have missed
some significant effects due to the relatively reduced average
number of participants per questionnaire round.

However, an autonomous system in a real-world context also
adds greater value to the results, as they are based on partici-
pants’ genuine interactions and understanding of a system they
were free to use, and that was co-designed according to their
needs. This is not common in the HRI community, and we
would like to stress that part of the contribution of this work
is the outcome of a controlled experiment of an autonomous
robot deployed in the wild for an extended period.

D. Future research directions

First, our findings demand a more detailed study of the
impact that objective and subjective understanding have on
other desiderata, such as trust, usability and performance.
We expect that other desiderata are going to be unevenly
affected by the two dimensions of understanding. For example,
trust might be more influenced by subjective, self-perceived
understanding, while human-robot performance in a certain
task would be more impacted by objective understanding.

Apart from investigating how understanding impacts other
desired effects on users, research should illustrate how both
dimensions of understanding can be shaped. On the one hand,
sufficient explainability should be provided to leverage the
objective understanding according to application, user and
context-specific targets. On the other hand, future research
should clarify how subjective understanding can be influenced
not only by the objective understanding itself but also by
feedback from the robot. This feedback would tune the per-
ception of understanding, but could also provoke changes in
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expectations, which would modify the internal scale that users
maintain to assess their degree of understanding.

Nevertheless, although actively manipulating subjective un-
derstanding may provide benefits, we foresee issues if sig-
nificant understanding illusions suddenly vanish, which could
result in frustration, mistrust and, ultimately, abandonment of
the system. Therefore, we anticipate that robots should aim at
maintaining a low mismatch between objective and subjective
understanding. The other extreme, where the objective under-
standing is significantly higher than the subjective one, could
imply that the benefits of a higher subjective understanding,
such as satisfaction or confidence, are missed.

VI. CONCLUSIONS

This work sought to enhance the comprehension of the
dynamics of user understanding in HRI. To this end, we
conducted a user study with a robot deployed in a real-
world healthcare facility. Our evaluation examined changes in
objective and subjective understanding after a tutorial session,
considering the time spent working in the shared environment,
and for different levels of interaction with the system. The
findings reveal that objective and subjective understanding
can evolve independently. Notably, subjective understanding
may increase even when objective understanding remains
unchanged. We advise exploring sufficiently how to shape both
the objective and subjective understanding with explainability
measures and investigating how they influence other desiderata
such as trust, usability or performance.
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