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ABSTRACT Pedestrian Detection and Tracking (PDT) plays a pivotal role in enabling autonomous
robots to navigate safely and efficiently in dynamic, human-populated environments. This paper presents
a comprehensive survey of PDT methods, structured according to the sensing modalities employed:
RGB cameras, LiDAR, thermal imaging, RGB-D sensors, and multi-modal fusion systems. For each
category, we analyze representative techniques, synthesize their strengths and limitations, and discuss recent
advancements including deep learning approaches and cross-modal fusion strategies. We highlight persistent
challenges such as handling occlusions, achieving real-time performance, and ensuring robustness across
diverse environments. In addition to this structured review, we provide two practical examples using the
Ona autonomous robot platform (see Figure 1) to illustrate how PDT techniques can enhance robotic
capabilities in real-world scenarios. These examples focus on improving SLAM consistency and enabling
proxemic-aware navigation strategies. Through this survey, we aim to clarify the current state of the art, iden-
tify emerging trends, and suggest future research directions for robust and socially-aware robotic navigation.

INDEX TERMS Human-aware navigation, multi-sensor fusion, pedestrian detection, robot navigation,
people tracking.

I. INTRODUCTION
Autonomous robots are playing a growing role in society,
operating in environments frequently shared with humans.
As robots begin to navigate shared spaces-from public
venues to private residences-it is essential for them to
possess robust capabilities for localizing people in their
vicinity. Accurate human localization is critical, not only for
enabling effective and natural human-robot interactions but
also for ensuring safe coexistence. Robots equipped with
precise human-awareness can better interpret social cues,
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avoid collisions, and operate seamlessly alongside people,
significantly enhancing their utility and acceptance across
diverse application domains [1], [2]. Robots should be able
to navigate with and around people in a socially acceptable
and efficient way, making traditional navigation algorithms,
which focus solely on finding the shortest path and treat
humans as simple dynamic obstacles, obsolete [3].

In this context, the task of Pedestrian Detection and
Tracking (PDT) emerges as a key enabling technology for
autonomous robots and vehicles. PDT refers to the detection,
localization, tracking, and sometimes prediction of human
movements in the robot’s surroundings. These capabilities are
crucial for enabling robots to maintain continuous awareness
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of their environment, to anticipate human actions, and to
navigate dynamically and safely through shared spaces.
Despite significant advances in recent years, PDT remains a
challenging problem due to a wide range of factors: sensor
limitations, dynamic and cluttered environments, frequent
occlusions, and the inherent unpredictability of human
behavior. Researchers have proposed a broad spectrum of
approaches for PDT, leveraging different sensing modalities
such as RGB cameras, LiDAR, RGB-D sensors, thermal
cameras, and multi-modal fusion. This paper provides a
comprehensive and structured survey of these methods,
analyzing their strengths, weaknesses, and applicability to
robotic navigation. In particular, we organize this review
according to sensing modality and critically assess each
category in terms of detection performance, robustness to
challenging conditions, and computational demands.

Real-world applications highlight the necessity of robust
PDT methodologies, especially in diverse environments
beyond conventional roads, including crowded public spaces,
airports, hospitals, commercial zones, and urban pedestrian
areas. In these contexts, frequent human-robot interactions
demand high standards for operational efficiency and safety.
Beyond surveying the state of the art, we also illustrate
how PDT can concretely benefit robot navigation through
two practical examples using the Ona autonomous platform,
shown in Figure 1. These examples are not presented as
core contributions but serve as case studies demonstrating
how established PDT techniques can improve navigation
performance in realistic settings. The first example shows
how PDT facilitates cleaner and more reliable SLAM
mapping by effectively mitigating the negative influence
of dynamic elements on map generation, allowing us to
successfully identify and remove 3D sensed points belonging
to people from a static 3D mapping point cloud of the
robot’s surroundings, meant for robot localization. The
second example demonstrates the integration of pedestrian
tracking into a proxemic-aware navigation framework,
enabling robots to respect personal space and anticipate
human motion for safer, socially-aware planning. These
examples underscore the significant benefits of PDT for
robots operating in environments characterized by continuous
pedestrian activity, which traditionally complicates accurate
mapping and efficient path planning.

In the next section, we provide an exhaustive literature
review on pedestrian detection and tracking, presenting
a classification of the various PDT approaches one can
explore based on different sensor modalities (i.e., observation
models). Section III outlines the advantages of accurately
localizing pedestrians and Section IV describes how such
information can significantly enhance robot navigation
performance through real-world experiments. Finally, con-
clusions are drawn in Section V.

II. LITERATURE REVIEW
PDT has evolved significantly over the last two decades,
driven by advances in sensing hardware and learning-based

FIGURE 1. ONA, the robot used in our experiments.

algorithms. This section organizes the current state-of-the-
art according to sensing modality: vision-based (RGB),
LiDAR-based, RGB-D, thermal, and multi-modal systems.
Within each category, we compare detection and track-
ing techniques, discuss their strengths and limitations,
and highlight recent trends and gaps. Each observation
model, summarized in Table 1, presents trade-offs in
terms of accuracy, computational cost and environmental
adaptability. As a result, sensor fusion remains a domi-
nant trend in pedestrian detection and tracking, maximiz-
ing robustness and reliability across different operating
conditions.

A. VISION-BASED METHODS (RGB)
Early vision-based methods relied heavily on handcrafted
features and classical classifiers. Histograms of Oriented
Gradients (HOG) combined with Support Vector Machines
(SVM) were among the earliest successful methods for
pedestrian detection [4], [5]. For instance, [7] used HOG
and Local Binary Patterns (LBP) for detection, with Kalman
filtering for tracking. Similarly, [4] proposed a cascade
of boosted classifiers for faster inference. These methods,
although foundational, suffer from sensitivity to lighting and
occlusion. Reference [6], improved the detection robustness
by combining sparse-stereo ROI extraction, shape-based
detection, and texture classification using neural networks.
The tracking task was performed leveraging the Hungarian
algorithm in [6]. In later works, Aggregate Channel Features
(ACF) [8], [9], [10] provided a strong baseline for pedestrian
detection before the deep learning era. The initial use of
ACF later evolved into hybrid frameworks integrating deep
learning to enhance detection accuracy [11], [12].
The rise of CNNs dramatically improved detection perfor-

mance. Detectors such as YOLO [13] and Fast R-CNN [14]
offered real-time, high-accuracy detection even in cluttered
environments. Coupled with tracking-by-detection methods
like Deep SORT, recent approaches using YOLOv5 and
YOLOv7 have enhanced data association accuracy [15], [16].
However, RGB-based systems remain limited by their lack of
depth perception and susceptibility to occlusion.
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TABLE 1. Comparison of observation models used in pedestrian detection and tracking systems.

To address such challenges, [17] proposes a saliency-aware
tracker that jointly reasons about human attention and
motion cues to improve temporal consistency. Similarly, [18]
introduces a language-grounded visual tracker that incorpo-
rates natural language specifications, enabling context-aware
pedestrian tracking in complex scenes. These methods
suggest a promising direction where multi-modal semantic
understanding enhances classical vision-based PDT.

In terms of tracking strategies, Kalman Filtering remains
a prevalent technique for pedestrian state estimation [19],
often used alongside CNN-based detectors [20] and
multi-pedestrian tracking is basically achieved by identifying
the same pedestrians across frames based on motion and
appearance.

B. LIDAR-BASED METHODS
LiDAR-based pedestrian detection methods leverage 3D
geometric features, offering accurate spatial localization and
robustness to illumination. For instance, [21] filters and
projects 3D point-cloud data onto a 2D occupancy grid,
clusters it into blobs, and classifies pedestrian candidates
using an RBF-SVM, followed by Kalman filtering for pose
prediction. Approaches such as [22] use region-of-interest
(ROI) mechanisms to down-sample point clouds, followed by
classification using handcrafted features (shape, normals and
shade). Others like [23] employ convolutional autoencoders
and connected-component algorithms to segment and track
pedestrians in 3D LiDAR data.

Unlike image-based systems, LiDAR methods handle
cluttered environments and dynamic occlusions more effec-
tively. However, they are computationally expensive and
often require specialized point cloud processing pipelines.
Techniques such as Kernel Density Estimation (KDE) [24]
and Doppler LiDAR [25] have further improved tracking by
enhancing pedestrian segmentation and estimating velocity
profiles. Reference [26] proposes a quality-aware 3D tracker

with shape completion, enabling better pedestrian association
even when partial occlusions occur in sparse LiDAR scans.
This approach bridges a known gap in traditional 3D
tracking pipelines, particularly for long-range or edge-of-
sensor scenarios.

Further, using 3D LiDAR sensors also implies lower
update rates (10-20 Hz). Alternatively, 2D laser scanners
enable faster processing due to the nature of the 2D point-
cloud they capture (consisting of way fewer points with
respect to its 3D counterpart), but often require integration
with other sensors for reliable pedestrian detection. For
example, [41] integrates LiDAR and RGB data with optical
flow estimation for collision avoidance.

C. RGB-D METHODS
RGB-D sensors offer a compelling trade-off between
appearance and depth, commonly used in indoor scenarios.
Affordable sensors like the Microsoft Kinect1 or Real Sense2

depth cameras have popularized their usage in robotics.
In PDT, RGB-D cameras enhance scene segmentation and

spatial relation assessments. For example, [27] proposes a
three-stage cascade method that transforms RGB-D data into
a Point Ensemble Image (PEI) for unsupervised detection
and classification, followed by trajectory generation. Sim-
ilarly, [28] use tracking-by-detection on 3D point clouds
constructed from the depth data, while [29] classify 3D points
into fixed structures, ground, and objects, followed by depth-
based upper-body detection and tracking using an Extended
Kalman Filter (EKF). Additionally, [30] employs u-depth and
v-depth maps for obstacle detection and tracking, while [20],
[23] integrates YOLO for RGB-based segmentation and
depth data for positional tracking. Despite the advantages of
incorporating depth to RGB images, RGB-D sensors have
a narrow field of view and use infrared light, which is

1https://azure.microsoft.com/en-us/products/kinect-dk
2https://www.intelrealsense.com/
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affected by the existence of sunlight and thus limits pedestrian
localization in most outdoor environments.

Works like [20], [40] integrate leg detection from 2D
LiDAR with human pose estimation from RGB-D cameras
to improve reliability. Even though recent methods have
improved depth-based detection pipelines by fusing 2D
image features with 3D spatial cues, RGB-D systems remain
limited by narrow field-of-view and sensitivity to sunlight
or reflective surfaces. Reference [32] addresses resolution
limitations in RGB-D systems by proposing a multi-scale
structure-enhanced super-resolution framework. It improves
the clarity of low-resolution pedestrian data captured by
budget sensors, boosting detection rates in dense indoor
settings.

D. THERMAL-BASED METHODS
Thermal cameras capture infrared radiation, making them
effective for low-light conditions where traditional cameras
fail. These models typically use shape and appearance
features for detection and tracking. Classical works such
as [27] combine HOG and DCT (Discrete Cosine Transform)
descriptors for thermal ROI classification. Similarly, [33]
uses ROI extraction and classification with SVM trained
on HOG and DCT features, followed by optical flow-
based tracking. Reference [34] proposes a joint shape-and-
appearance-based method combined with shot segmentation
for tracking, formulated as a weighted bipartite graph match-
ing problem. Recent approaches leverage deep learning; for
instance, [35] uses two RetinaNet [36] models to process
thermal images and saliency maps, combining features for
classification and regression. While tracking is not explicitly
addressed in this work, standard algorithms can be integrated
post-detection.

Thermal cameras are particularly advantageous in dark
environments but may struggle with temperature variations
and occlusions. Further, existing commercial thermal cam-
eras are of very low resolution. Hence, thermal-only systems
suffer from low resolution and false positives due to envi-
ronmental heat sources. To overcome this, [37] introduces a
cross-modality proposal-guided feature mining method that
jointly learns features from registered and unregistered RGB-
thermal pairs. The fusion enhances detection reliability in
variable lighting.

E. MULTI-MODAL AND SENSOR FUSION APPROACHES
Combining multiple sensing modalities increases robustness
and there is an increasing trend in integrating hybrid
approaches that combine multiple sensor modalities. For
instance, [38] fuses leg and face detections obtained from
LiDAR-based and RGB-based observations, respectively,
using a sequential UnscentedKalman Filter (UKF). Similarly,
[39] integrates laser scans with stereo vision, employing
polyline-based feature extraction and pattern recognition for
accurate position estimation and pedestrian identification.
Tracking and position prediction are achieved through
statistical validation gates and confidence regions.

Other hybrid methods combine 2D LiDAR with RGB-D
data, like [40] in which they process 2D LiDAR scans
to detect pedestrian leg positions, followed by RGB-D
data for human skeleton pose detection. Here, tracking is
performed using a Kalman filter with global nearest-neighbor
data association. Additionally, [41] fuses 2D LiDAR and
RGB imagery, employing optical flow estimation and object
detection to compute obstacle and pedestrian positions and
velocities.

Thermal and visible-light camera fusion is another effec-
tive hybrid strategy. Works such as [42], [43], and [44]
exploit thermal and visible spectra for robust pedestrian
localization under varying environmental conditions. Deep
learning-based hybrid approaches are also gaining traction.
For example, [45] converts LiDAR data into depth images,
which are processed alongside RGB images through deep
neural networks for pedestrian detection. Tracking combines
Kalman filter predictions with optical flow techniques.
Finally, [46] demonstrates a unique fusion of LiDAR and
millimeter-wave radar, where radar detects moving obstacles
via Doppler shifts, and LiDAR localizes and segments them,
improving dynamic obstacle handling in SLAM scenarios.

Fusion methods face challenges in sensor synchronization,
calibration, and real-time processing. However, they yield
more robust performance in complex scenes. Notably, [47]
and [48] demonstrate that fusing vision and language in a
time-evolving latent state improves contextual understanding
and long-term tracking, even under partial observability.
Overall, a key trend across modalities is the shift towards
hybrid and cross-modal architectures, where learning-based
fusion outperforms handcrafted pipelines. Nevertheless, real-
time constraints, occlusion handling, and transferability
across environments remain open challenges.

III. ADVANTAGES OF DETECTING AND TRACKING
PEOPLE
By integrating PDT into navigation systems, robots can
better anticipate collisions, adjust their paths dynamically,
and interact with pedestrians in a socially acceptable manner.

A key advantage of PDT is its ability to enhance situational
awareness. Accurate pedestrian localization allows robots to
react in real-time to human motion patterns, reducing the risk
of collisions. Studies such as [12] highlight the importance
of real-time pedestrian tracking for human-aware navigation.
Tracking modules further improve reliability by smoothing
detection noise and handling short-term occlusions using
probabilistic models such as Kalman Filters and IMM
filtering [20], [23], [33]. Related to this, a key aspect of
path planning in crowded environments is the ‘‘freezing
robot problem’’ that occurs when the planner perceives no
safe path and the robot is thus forced to stop dead. In a
PDT pipeline, the tracking component helps mitigate this
issue by enabling the robot to anticipate pedestrian motion.
Furthermore, assuming a certain level of human cooperation
can enhance navigation even more. As explained in [49],
in crowded environments where people naturally adjust their
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trajectories to avoid each other, robots can leverage tracked
pedestrian paths and improve their navigation success by
assuming that humans will also make room for them in shared
spaces.

Despite these benefits, PDT remains challenged by occlu-
sions, crowded scenarios, and the computational demands
of maintaining real-time awareness in unstructured environ-
ments. These limitations, noted across many works in the
literature [23], [25], [26], [37], directly impact the reliability
of downstream tasks such as navigation and interaction.
Addressing these issues remains a key priority for future PDT
research.

Beyond detection, PDT plays a crucial role in
socially-aware motion planning. In crowded environments,
global and local planning must take into account human
presence. Treating people as mere moving obstacles does not
suffice and a good planner should also consider the personal
space and visibility (line-of-sight) of each person, in order to
keep a safe distance from people, and comply with general
social rules, such as approaching a person from behind [50].
In addition, Robots that actively detect and track humans
can infer pedestrian intentions, such as whether a person is
walking towards or away from them.

By leveraging pose estimation techniques and velocity
tracking [40], robots can adjust their movement in ways that
align with human expectations, improving social acceptance
in shared spaces. Other social norms such as keeping to
one side or not barging through a conversation should be
taken into account too, as done in [51], where the authors
exploited reinforcement learning to teach the robot which
social rules it should follow. In addition to planning around
predicted motion, PDT also contributes to the legibility of
robot behavior, i.e., making its intentions clear to nearby
humans. Furthermore, PDT enables richer reasoning over
social contexts when fused with additional modalities, such
as language grounding [18] or attention modeling [17]. These
extensions offer pathways toward more socially-intelligent
navigation strategies, although practical deployment remains
limited by current computational constraints.

In addition to immediate (short-term) avoidance, PDT
also enables proactive path planning based on predicted
pedestrian trajectories. Works such as [41] demonstrate how
integrating pedestrian motion prediction into velocity-based
planners allows robots to select safe, collision-free paths
in dynamic environments. In recent years, the advent of
Long Short-Term Memory (LSTM) ( [52]) and Generative
Adversarial networks (GAN) ( [53]) have further propelled
this PTD field. By using a history of a pedestrian’s motion,
these models predict where a person will be in the immediate
future. An example of this technique is [47], where an
LSTM-based predictor is integrated so that the robot can
‘‘imagine’’ where up to 5 bystanders will move, therefore
planning safe paths accordingly. Instead, [54] combines
Recurrent Neural Networks (RNN) and Mixture Density
Networks (MDN) into a Probabilistic Crowd GAN, where
the generator’s MDN solves for probabilistic multi-modal

FIGURE 2. Advantages of leveraging pedestrian detection and tracking in
the navigation pipeline.

predictions from which likely modal paths are found (which
are compared with the ground truth by the discriminator in
the adversarial training process).

PDT also assists mapping and localization tasks by
filtering out moving obstacles from the environment model.
Traditional SLAM systems struggle with dynamic objects,
leading to mapping inconsistencies [20], [23]. By segmenting
and removing pedestrians from the mapping pipeline (i.e.,
disregarding their point cloud data) robots can gener-
ate more stable maps, therefore improving localization
accuracy. Emerging works such as [32] also demon-
strate how enhancing the quality of sensing data, e.g.,
through super-resolution techniques, can indirectly benefit
PDT-driven SLAMpipelines in low-resolution or challenging
conditions.

In summary, the integration of pedestrian tracking
into robotic navigation systems enhances safety, effi-
ciency and human compatibility. The diagram in Fig-
ure 2 summarizes the key concepts of leveraging PDT
on the navigation stack of a robot. Whether for dynamic
obstacle avoidance, socially-aware behavior or improved
mapping, PDT remains a fundamental component in
enabling robots to operate seamlessly in human-populated
environments.
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IV. PRACTICAL EXAMPLES ON HOW TO LEVERAGE PDT
IN THE NAVIGATION OF A ROBOT EQUIPPED WITH A
MULTI-MODAL SENSORY SUITE
In this section, we provide two illustrative examples
demonstrating how Pedestrian Detection and Tracking (PDT)
techniques can be integrated into the navigation pipeline of
a robot equipped with a multi-modal sensory suite. These
examples serve to contextualize the methodologies reviewed
earlier and show their practical relevance in real-world
scenarios. They are presented not as novel contributions but
as application vignettes that align with established findings
in the literature on the benefits of integrating PDT into
navigation.

A. ROBOT SETUP
The robot used in our experiment is ONA [55], shown in
Figure 1. Ona is an all-electric, last-mile autonomous delivery
vehicle with an autonomy of more than 5 hours of continuous
operation. It weighs around 200 kilos and is roughly 1.8 ×

1.1 × 1 meters considering the outer shell. Ona is also
equipped with six wheels: four front, traction-only, and two
rear, traction and steering, wheels. Further, it exploits the
following sensors:

• Wheel encoders.
• Inertial Measurement Unit (IMU), providing an estimate
of its (3)-axis) angular velocity and (3)-axis) linear
acceleration.

• Global Navigation Satellite System (GNSS), to provide
global positioning.

• 3D LiDARs: two 3D lasers of 16 beams are installed in
the opposite corners of the robot (front-right and back-
left corners).

• RGB Cameras: two RGB cameras are mounted at the
front and rear sides of the vehicle.

• Bumpers, as last resort hardware safety feature.
In the following experiments we have a ROS-based3 nav-

igation pipeline. We couple Fast-LIMO4 with Cartographer
( [56]) to perform Localization and Mapping, respectively.
Pre-processing steps must be carried out to refine the
raw data captured by the sensors. Specifically, we first
merge the point clouds captured by the two LiDARs into
a single, unified, cloud. Next, following common practices
in autonomous driving applications, we perform a one-shot
traversability analysis to remove ground points from the
point cloud, so to exclude them from further analysis.
To achieve this, we employ our probabilistic graph-based
ground segmentation algorithm, as outlined in [57]. Instead
of using dedicated laser sensors to produce a 360-degree scan
around the robot, we take a simpler approach by picking the
nearest point to the robot in each angular bin from the merged
point cloud. This effectively generates a planar scan of the
surrounding environment, enabling us to use laser-based
detection methods on the resulting data. Additionally, the

3https://www.ros.org
4https://github.com/fetty31/fast_LIMO

RGB image data is processed by the YOLO-detection
architecture to return the bounding boxes, and corresponding
centroids, of the pedestrians in the surrounding. After these
pre-processing steps and once the sensing data has been de-
noised, we are ready for the PDT.

B. SPENCER PEOPLE TRACKING
The Spencer People Tracking (SPT) framework ( [58], [59])
was selected for these examples due to its established robust-
ness in multi-sensor environments and its alignment with
PDT approaches discussed in the literature. Our adaptations
are minor and practical, focused on integrating available
sensory data streams rather than proposing methodological
innovations. SPT robustly integrates data from multiple sen-
sor modalities to identify and continuously track individuals
within dynamic environments. Through a chain-merging
mechanism, the framework effectively combines diverse
sensor inputs to produce reliable pedestrian trajectories. Our
approach to detecting and tracking people builds upon this
system, which was originally designed to integrate multiple
RGB-D and 2D laser detectors into a unified framework.
In our pipeline, however, we adapt this framework to a
different set of sensors: 3D point clouds, 2D laser scans, and
RGB images. Each sensor stream is processed separately to
extract relevant detections, which are then passed to the SPT
system.

• 3D Point-cloud detections: After merging the two
3D point clouds and removing the ground plane,
we cluster the remaining points to identify potential
person-associated clusters. Given the vertical sparsity of
such sensors, our clustering algorithm tends to produce
outliers, making necessary additional refinement steps
by leveraging data from other sensors, hence improving
the detection quality.

• 2D scan detections: As an alternative detector using
the unified LiDAR point cloud, we extract a 2D laser
scan and processes it using a simple blob detector that
identifies regions likely to correspond to people [60].
This approach has proven alternative to the 3D point-
cloud clustering although it still produces a number of
outliers that we need to disregard.

• RGB-based YOLO detections: One of the most innova-
tive elements of our implementation is the integration
of YOLO [13] within the Spencer pipeline. The robot’s
two RGB cameras provide front and rear views of the
environment, which are then analyzed by YOLO (i.e.,
YOLOv11) to detect key objects. We treat YOLO as a
‘‘high confidence’’ detector, using its accurate results
to help filter out outliers of the previous point cloud
processors. The main limitation, however, is the absence
of distance (depth) information, which means YOLO
detections are valuable for identifying objects but less
useful for precise localization. Also, in order to detect
people with YOLO, pedestrians must stay within the
field of view of the two cameras, which can eventually be
limiting when you want to detect and track all the people

VOLUME 13, 2025 158931



N. Picello et al.: Leveraging PDT in Robotics Navigation: A Survey with Practical Illustrations

in the surroundings. Thus, we will rely on LiDAR-based
observations when pedestrians appear out the cameras’
field-of-views.

After obtaining all detections from all the modalities we
convert them into a standard format and fuse them to initialize
or update existing tracks. Here, two fusion mechanisms are
employed:

• Euclidean Fuser: Merges multiple detections by cal-
culating the Euclidean distance between composite
detections in the X and Y dimensions. It then computes a
joint position by averaging the X, Y, Z coordinates (and
corresponding covariances) of the two detections.

• Polar Fuser: This method merges multiple detections
using polar coordinates. The fused pose is determined by
the polar distance between composite detections. Since
the Polar Fuser is applied only to YOLO detections,
which lack localization (camera depth) data, the final
pose relies on other sensors fused with the YOLO
outputs.

The tracking component utilizes the Extended Nearest-
Neighbor (ENN) Tracker outlined in [59]. This method
leverages a nearest-neighbor (NN) data association strategy
to match new sensor detections to existing tracks efficiently.
In practice, the greedy NN algorithm identifies the closest
detection for each existing track, updates the track state,
and iterates continuously, ensuring robust performance,
especially when multiple sensor modalities are employed.

The tracker incorporates a track initiation logic to mitigate
false-positive track formations and rapidly establish reliable
tracks when new individuals enter the scene. To further
bolster tracking performance, particularly for predicting
human movements, an Interacting Multiple Models (IMM)
filter is integrated. The IMM filter combines three distinct
motion models:

• Constant Velocity (CV) model: Effective for predicting
steady pedestrian motion at near-constant speeds.

• Coordinated Turn (CT) model: Handles smooth, curved
pedestrian trajectories.

• Brownian Motion (Wiener Process) model: Captures
irregular pedestrian movements, including sudden stops,
abrupt direction changes, or stationary states.

Integrating these models significantly enhances the robust-
ness and accuracy of the tracking system across diverse
pedestrian behaviors and dynamic environmental conditions.

C. EXAMPLE 1: REMOVING PEDESTRIANS FROM POINT
CLOUD
This first example illustrates how existing PDT tech-
niques can improve Simultaneous Localization and Mapping
(SLAM) robustness by removing dynamic elements such as
pedestrians from LiDAR point clouds. The rationale aligns
with prior works such as [46] or [26], and demonstrates the
value of filtering dynamic objects to achieve cleaner maps
and better localization.

Current autonomous robots rely on accurate SLAM to nav-
igate and interact effectively with their environment. How-
ever, despite continuous advancements in SLAMmethodolo-
gies, the accuracy and reliability of these algorithms remain
highly dependent on environmental conditions. First of all,
most SLAM algorithms assume a static scenario, so moving
objects violate this assumption and can cause mapping errors
or localization drift [46]. Unfiltered moving pedestrians
often leave ‘‘ghost’’ artifacts in accumulated point-clouds or
contribute spurious features that may confuse scan matching.
This results in degraded SLAM performance, with maps
becoming inconsistent and worse robot-pose estimation.

The problem of removing dynamic obstacles from
point-clouds can be tackled in different manners, depending
on the processing strategy used within the SLAM framework,
such as online real-time filtering, post-processing after the
mapping, or long-term SLAM. In our set-up we investigated
the early removal of dynamic points from the point-cloud,
so to pass the already filtered sensor data to the SLAM
algorithm. Reference [46] demonstrates how this procedure
yields cleaner maps and more reliable loop closures, and how
they managed to reduce the localization error by 30% or more
in highly dynamic environments.

In this example, we propose to leverage the detection and
tracking of the SPT together with a point remover node that
filters out their associated points, so as to remove the negative
effect in SLAM of dynamic points belonging to pedestrians.
To do so, we investigated three different methodologies:
Cluster-based; KD-tree-based; and cylinder-based removal.
Each method achieved comparable results, but each has its
own strengths and weaknesses:

• Cluster-based: Using the clusters identified in previous
nodes, we label points in the cloud based on their asso-
ciated cluster ID. By checking the cluster ID for each
detection and determining the nearest cluster centroid,
we can identify and remove all points belonging to that
cluster. This methodology is the least robust to outliers,
since the presence of a centroid may remove big parts of
the point-cloud that do not belong to people. Hence the
necessity to have a precise tracker for pedestrians.

• Kdtree-based: Starting from the centroid of a person’s
detected position, we use a KD-tree search to find
points within a certain radius and remove them from the
point cloud. However, this approach has the drawback
of removing points in a spherical region, which can
sometimes eliminate nearby points that should remain.

• Cylinder-based: This is the simplest and arguably the
most effective approach. In this method, people are
treated as cylindrical volumes, and any points falling
inside the cylinder are filtered out. Because the ground
plane is already removed, this technique only considers
the X and Y coordinates, making the method less
sensitive to variations in height.

To show the validity of our example, we compare the
occupancy grid maps obtained from projecting to a 2D plane
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FIGURE 3. Comparison of Occupancy grid maps generated. Left: Occupancy grid map generated from the original point cloud (i.e., unfiltered LiDAR
scans). Right: Occupancy grid map generated from the processed point-cloud, without considering the points we clustered as belonging to people.

FIGURE 4. Occupancy grid map (gray-scale background) with overlapped
local cost map (red-blue-scale obstacles) and the original global path
(green); the detected person (orange path); and the modified path (red)
using the proxemic layer to predict the trajectory of the person as an
obstacle in the local path planner.

the resulting map of the SLAM system with and without
removing the points belonging to pedestrians. In particular,
we can observe map consistency, clarity in narrow passages
and reduction in artifact noise as key indicators of improved
SLAM performance when leveraging PDT. We tested the
implementation in the Barcelona Robot Lab, an outdoor
scenario within the North Campus of the Universitat Politèc-
nica de Catalunya5 [61], which encompasses an outdoor
pedestrian area of 10.000 sq m. and is provided with 21 fixed
cameras, full coverage of wifi and partial GNSS coverage.
The area has moderate vegetation and intense cast shadows,
making computer vision algorithms challenging. Further,
it is freely occupied by the campus students. In terms of

5https://www.iri.upc.edu/research/webprojects/barcelonarobotlab

occupation, the density of population in these examples
is high enough to interfere with the navigation of the
robot although without producing dead ends or blocking
situations.

Figure 3 shows a comparison of the 2D occupancy grid
maps (OGM) obtained inside the Campus Nord of UPC,
generated using the unfiltered point cloud captured by the
LiDARs (left); and using the processed version that excludes
the points using PDT (right). Considering that these OGMs
are then commonly exploited for path planning, the enhance-
ment in the processed OGM is quite clear (right in Figure 3).
For instance, we can visually notice a significant reduction in
the number of grey-colored points in the occupancy grid map,
which correspond to unknown areas. The processed maps
exhibit clearer and more defined pathways, especially in
narrow streets, with fewer outliers (in dark-grey/black). These
outliers are typically caused in the original point cloud by
individuals remaining stationary longer than Cartographer’s
dynamic obstacle filtering can effectively manage. This
noise reduction contributes to a more accurate and reliable
environmental representation. Consequently, it decreases the
complexity of optimizing the motion path in the robot’s
local planner. Note that limitations in our example include
the reliance on prior pedestrian detections from the SPT
framework, which may not generalize to all sensor modalities
or more challenging environments with high occlusions.
The choice of removal strategy (e.g., cluster vs. cylinder-
based) also reflects practical trade-offs rather than optimized
solutions.

D. EXAMPLE 2: PEOPLE TRAJECTORY PREDICTION
The second example demonstrates how integrating tracked
pedestrian trajectories into a proxemic-aware local plan-
ning layer can facilitate socially-aware navigation. This
aligns with concepts reviewed in Section III, includ-
ing adaptive proxemics [62], [63] and trajectory-based
planning [47].
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FIGURE 5. Path planning considering proxemic areas around a pedestrian.

Accurate pedestrian trajectory prediction is essential for
improving the local planning capabilities of autonomous
robots, ensuring safe navigation in dynamic urban envi-
ronments. By accurately anticipating pedestrian movements,
robots can proactively adjust their paths, minimizing the
risk of collisions and enhancing the overall fluidity of
movement within crowded spaces. Effective trajectory pre-
diction directly contributes to smoother interactions between
autonomous vehicles and pedestrians, facilitating safer coex-
istence in shared environments.

Collision avoidance strategies, usually integrated as reac-
tive strategies, generally fall into four main categories:
rule-based, force-field-based, model-based, and AI-based
methods [2]. Rule-based methods utilize predefined rules and
metrics, such as Time-To-Collision (TTC), to evaluate and
prevent potential collisions. Force-field-based approaches,
including potential field methods and elastic band tech-
niques, apply attractive and repulsive forces to dynamically
adjust robot paths and avoid obstacles [2]. Model-based
strategies employ mathematical representations of pedestrian
and vehicle dynamics to predict and navigate interactions,
while AI-based methods utilize artificial intelligence tech-
niques, such as neural networks and fuzzy controllers,
to effectively handle complex and unpredictable pedestrian
behaviors [64].
Trajectory prediction is commonly considered within the

high-level path planning pipeline and can take advantage
of similar families of methods, being more predominant
those based on models and on learning [65]. In this case,
model-based approaches can also incorporate physiolog-
ical behaviors and environmental contexts to anticipate
movements accurately. Learning-based methods, in contrast,
are trained using historical pedestrian trajectory data to
generate predictions of pedestrian paths, proving particularly
advantageous in scenarios with complex or highly variable
pedestrian behavior patterns [65], [66]. Furthermore, inte-
grating social dimensions into trajectory prediction greatly

enhances navigation efficiency and pedestrian comfort.
Concepts like adaptive proxemics, which dynamically adjust
robot-pedestrian distances based on comfort and social
conventions, allow robots to navigate more naturally and
respectfully in human-populated environments [62], [63],
[67], [68]. This adaptive behavior, coupled with robust col-
lision avoidance and accurate trajectory prediction, ensures
more effective, socially acceptable, and reliable navigation
outcomes.

In this work, we leverage a proxemic layer [69] to generate
adaptive proxemic zones around pedestrians based on their
predicted trajectories, which eventually falls into force-field
methods category. By utilizing the capabilities of the PDT
(based on the Spencer People Tracker), we provide real-time
pedestrian poses (i.e., position, orientation and velocity in
the xyz plane) as input to the proxemic layer node. This
layer employs a Gaussian function to dynamically adapt
the shape and size of the proxemic zones around each
individual.

The behavior of the proxemic layer is formally defined
by two zones. The more restrictive one, the intimate zone,
is defined as the region where the Gaussian value exceeds a
certain threshold l (i.e., g(x, y) > l in Eq. (1)). This region is
treated as a critical obstacle, which the robot must never enter
(i.e., we force a value close to 255 in the OGM). In contrast,
the personal zone corresponds to values where g(x, y) ≤ l
and is treated as a soft constraint, i.e., the robot attempts to
avoid it but may traverse it if necessary.

h(x, y) =

{
g(x, y) ifg(x, y) ≤ l
253 else (i.e., obstacle)

(1)

where the personal zone is defined as

g(x, y) = e−(A(x−x0)2+2B(x−x0)(y−y0)+C(y−y0)2) , (2)
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Here, (x0, y0) represent the displacement of the Gaus-
sian center with respect to the pedestrian’s position. σ

represents the covariance and 2 is a rotation parameter
allowing the orientation of the proxemic zones to align with
individual-specific motion patterns.

Figure 4 shows the visualization of an experiment with the
Ona robot and the proxemic layer in action. Here, a bystander
is walking in the vicinity of the robot, which is detected and
tracked (see the orange person track). In this Figure 4, we also
show the colored local costmap, computed from the OGM’s
information. This costmap uses a pseudo-color code where
red cells indicate an obstacle perimeter after applying a safety
inflation radius (cyan). Purple regions are the proxemic area
corresponding to the prediction of the pedestrian’s motion.
The local planner with an obstacle avoidance controller then
computes a path avoiding this proxemic area (see the red path
of the modified trajectory). Hence, Figure 5 illustrates how a
pedestrian’s proxemic zone can directly influence the robot’s
trajectory planning, requiring it to dynamically modify its
planned path to safely circumvent the pedestrian and avoid
interference.

Overall, the combined approach of precise pedestrian
trajectory prediction and sophisticated collision avoidance
techniques significantly improves local robot planning,
facilitating safer, smoother, and socially compliant nav-
igation in dynamic, pedestrian-rich environments. This
example highlights the practical application of PDT outputs
in shaping robot behavior but also illustrates ongoing
challenges in robust prediction and real-time integration,
especially in complex or cluttered urban environments. Such
challenges align with those identified in recent literature
[18], [48].

V. CONCLUSION
In this work, we explored how the task of Pedestrian
Detection and Tracking (PDT) can be approached based on
the types of sensors mounted on a robot and the intended
application of the PDT system. We present in a didactic
manner the state of the art for various sensing modalities and
categorize the observation models a robot can employ to per-
ceive its environment regarding PDT. Finally, we discussed
the key advantages that a PDT pipeline offers to autonomous
robots navigating in crowded environments, supported by
two examples of real-world experiments performed with our
robot Ona in the Barcelona Robot Lab (north campus of the
Universitat Politècnica de Catalunya, Barcelona).

This paper positions itself as a survey consolidating current
knowledge on PDTmethods and their integration into robotic
navigation pipelines. The practical examples included serve
as illustrative cases to contextualize the reviewed techniques,
rather than as novel contributions.

Our study reaffirms the potential of using PDT frameworks
within navigation pipelines to enhance robot performance
in spaces shared with people. Potential applications include
package delivery, search-and-rescue operations, and pub-
lic transportation assistance, among others, as discussed
throughout the literature.

In our examples, filtering the point cloud using pedes-
trian tracking qualitatively improved the clarity of SLAM-
generated maps. Additionally, by predicting pedestrian
trajectories and generating proxemic comfort zones, the
robot adapted its path to avoid collisions and maintain
socially acceptable distances. These outcomes are aligned
with findings reported in related works but are presented
here as qualitative demonstrations rather than benchmarked
advancements.

Despite these positive results, several avenues for improve-
ment remain.While the Spencer People Tracking system pro-
vides an efficient and lightweight solution, its performance
can be affected by outliers. Integrating more robust clustering
algorithms capable of distinguishing pedestrians directly at
the clustering stage, rather than relying solely on overlapping
detections, could increase reliability. Similarly, incorporating
leg detectors for 2D laser scans may enhance the system’s
ability to differentiate between generic clusters and actual
human detections. Extending the system with a panoramic,
multi-camera setup that offers 360-degree coverage could
also improve robustness by leveraging YOLO-based object
detection across the full field of view.

In summary, this survey highlights the critical role of
PDT for enabling safe, efficient, and socially-aware robot
navigation, specially considering the imminent advent of
mobile robots (e.g., humanoid, legged or wheeled platforms)
being deployed in scenarios alongside pedestrians. While
challenges remain in terms of robustness, scalability, and gen-
eralization, PDT continues to be a foundational component
in the design of autonomous systems intended to operate in
human-populated environments.
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