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Abstract 

Different data acquisition methods are tailored at ex- 
tracting particular characteristics from a scene and by com- 
bining their results a more robust scene description can be 
created. A method to fuse perceptual groupings extracted 
from color-based segmentation and depth information from 
stereo using supervised classification is presented. The 
merging of data fi-om these two acquisition modules allows 
for a spatially coherent blend of smooth regions and detail 
in an image. Depth cues are used to limit the area of inter- 
est in the scene and to improve perceptual grouping solving 
subsegmentation and oversegmentation of the original im- 
ages. The complexity of the algorithm does not exceed that 
of the individual acquisition modules. The resulting scene 
description can then be fed to an object recognition module 
for scene interpretation. 

Keywords: data fusion, color-based segmentation, 
depth from stereo. 

1. Introduction 

The fusion of 3D information from different acquisition 
methods allows for more robust scene descriptions. The 
shortcomings of individual low level processing modules 
can be overcome in an integrated environment. However, 
the inherent variability of the acquisition methods and the 
data formats and noise levels they produce make sensor fu- 
sion a challenging task. In the field of computer vision sev- 
eral attempts have been made at coupling data from differ- 
ent sensors. Integration models proposed in the literature 
vary in the number and type of sensor inputs, in the level 
at which fusion takes place, and in the rules used for data 
fusion. 

In [ 101 an integration framework that encompasses four 
vision modules is presented. The merging of data from 
stereo, shape from shading, perceptual organization, and 
line labelling is used to estimate accurate depth maps of a 
scene. Other contributions consider the fusion of 2D and 
3D data in the form of intensity images and stereo or range 

data [ 1,9], or only 3D data acquired from stereo and range 
data [7, 81. Methods that merge data from stereo and shape 
from shading include [2, 3, 51. 

Most of the methods that fuse depth information are 
designed to work at a point or pixel level, whereas those 
methods that include perceptual grouping in 2D images are 
mostly directed towards fusing higher level primitives [IO], 
or more specifically, at labelling primitives such as contours 
or edges based on their low-level properties, i.e., depth es- 
timates. In [l, 81 emphasis is made in that an integration 
architecture should be made at both the pixel and higher 
perceptual grouping levels. 

The methods used for fusing different types of data 
vary extensively, from ad-hoc implementations that use 
empirical thresholds to select which sensor contributes to 
scene formation, to the more elegant techniques of Ex- 
tended Kalman Filtering to update depth estimates [7, 81, 
or Bayesian networks to integrate top-down and bottom-up 
visual processes [ 1 I]. Some exploit the fact that one of the 
data acquisition modules can be viewed as a multiresolution 
system and have embedded their data fusion techniques in 
between each level of resolution [lo]. 

We present a method to fuse perceptual groupings ex- 
tracted from color-based segmentation and depth informa- 
tion from stereo using supervised classification providing a 
robust solution to the sub- and oversegmentation problems 
characteristic of most color-based segmentation algorithms. 
Our contribution is mostly related to the work presented in 
[9, IO], but has a critical difference. In [IO], segmenta- 
tion results of grey-scale images are used, namely the seg- 
mented boundaries, to limit the enforcement of smoothing 
constraints in the stereo module, and to prevent the propaga- 
tion of depth values across uniform regions. We believe that 
the flow of information should be considered in the oppo- 
site direction. This is, depth cues should be considered as 
an aid to perceptual grouping rather than using perceptual 
boundaries to limit the adjustment of depth estimates. 

The reasoning behind this assumption is based on the 
fact that segmentation of intensity images is prone to illumi- 
nation conditions and surface properties, and the perceptual 

295 0-7695-0750-6/00 $10.00 0 2000 IEEE 

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on November 20, 2009 at 17:31 from IEEE Xplore.  Restrictions apply. 



groupings thus produced by most segmentation algorithm 
might have considerable error. On the other hand, depth 
estimation at scene discontinuities is less sensitive to the 
factors mentioned above and can be used more robustly to 
further group segments into higher level perceptual entities 
that could match an object model, or to discriminate from 
noisy or undesirable segmented regions. 

A description of our data acquisition modules followed 
by their integration is presented next. Experiments on com- 
plicated scenes have been performed and the results are also 
shown. 

2. Low level processing modules 

2.1. Depth from stereo 

Images are taken with a calibrated stereo rig. They are 
further rectified so that image rows correspond to epipolar 
lines in both the left and right image planes. These recti- 
fied images are the ones used in the segmentation module 
also. A stereo matching algorithm based on the sum of the 
absolute differences with left-to-right and right-to-left cor- 
respondence gives the disparity between corresponding pix- 
els at image point (U, w) 

where I(u, v) = w,R(u, w) + wgG(u, w) + wbB(u, v) is 
a function of the color reflectance, and the weights wT,  wg , 
and Wb can be modified to give relative importance to one 
or another color channel. 

To eliminate noise and depth estimation errors due to 
occlusions and reflectance variations, the disparity values 
resulting from matching points in the left image to points 
in the right image are compared to the disparities obtained 
when matching in the opposite direction, i.e., from right 
to left. Only those disparity values that coincide in both 
directions are used for segment characterisation. The re- 
sulting disparity map is a set of points for which a dis- 
parity value di = d(u!, wid) is associated to the image 
coordinates (U:, w!), and is inversely proportional to the 
distance zi at which objects are located from the camera. 
Given both camera calibration matrices, the computation of 
fii = (xi, yi, zi)T is straightforward. 

Disparity maps obtained from stereo methods based on 
the area of local regions (correlation, sum of squared differ- 
ences, or sum of absolute differences) are dense where the 
scene is rich in detail, and sparse in smooth regions. 

2.2. Perceptual grouping 

Color images are segmented via a greedy algorithm that 
uses local variation information [6, 121. A graph G = 
(V, E )  is generated for either the left or right original im- 
age, where the nodes wi E V correspond to each pixel, and 
each edge e j k  E E is weighted by i i  color distance measure 
among neighbouring pixels. 

The segmentation algorithm iterates over an increasingly 
sorted array of the elements in E to separate G into a forest 
of segmented surfaces based on a color smoothness crite- 
rion, where the extemal variation must be larger than the 
intemal variation between regions. Then, a search for the 
maximum spanning trees in the remaining forest is per- 
formed to allow for a compact representation of the seg- 
mented regions. The label of the segment associated to the 
pixel with coordinates (U!, wf) in the segmented image is 
Zj = S(U;, U:). The details of the algorithm are presented 
in [12]. 

3. Integration of depth and color information 
using supervised classification 

The set of regions R = {RI, Ra . . . R3) with good color 
continuity provided by our color segmentation algorithm 
can be expressed as Rj = {(u!,w!)IZj = s(u!,vf)}. Our 
segmentation algorithm differs from the one presented in 
[12] in that regions in R are divided in two subsets. If 
lRjl > t A  andp;/lRjl < tc + Rj E a, otherwise 
Rj E I?. R = C l  U I'. Cl represents the regions with 
area greater than t A  and compactness smaller than tc, I' 
represents the detail in the image, and pj  is the perimeter of 

To solve for subsegmentation, in each region R j  the 
set of points rj = {(xi, yi, z~)](u:, wf) E Rj} is extracted 
from the depth map, and for each point (U!, wf) E R j  a new 
point (xi, yi, zi) is added to r j ,  where the corresponding 
&(U;, wf) is obtained from the average disparity from the 
points in the window (U! - 1..  .U: + 1,w: - 1..  .w: + 1) 
with entry in rj .  The process is repeated iteratively until all 
pixels in R j  have a corresponding entry in rj .  This is, until 
all pixels in R j  have been assigned a depth estimate. 

Smooth surface segments ,$are recursively generated 
by starting at any point p'i E rj and growing outwards 
while meeting the following two criteria for the neighbour- 
ing points & and &: 

Rj . 

llfii - > t~ Jump Edge Criterion (2) 

> tu Curvature Criterion (3) 

The normals ni are computed minimizing the error of 
fitting a local planar patch in the vicinity of p'i [4]. The 

cos-'(fifnk) 
I l f ' i - f 'k  11 
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(a) Original left color image 

(d) Initial pruning 

(b) Initial segmentation results (c) Disparity map 
rsw.19 tdl , .r.z a956 “1, 26 ,arm 

(e) Data fusion results (0 Graphs due for recognition 

Figure 1. Data fusion steps 

region Rj E Cl is then replaced in R by the segments in S j .  

A new division of R into fl and I? is necessary. 
For the case of oversegmentation we first generate a set 

of initial classes wl = { (u t ,  v f ,  di)l (ut,  v f )  E O l } ,  and the 
sets of points to be classified ym = {(ut, w f  , d i )  I (ut ,  v f )  E 

The task at hand is to associate each rm to its parent re- 
gion 01 based on their spatial proximity. This classification 
constitutes the merging of smooth and detail into spatially 
coherent entities. Consider one detail region rm. We must 
compute the distance from the points (U:, vf, d i )  E ym to 
the classes in w. It is clear that the distribution of sam- 
ple points in the classes in w does not follow any typical 
probability distribution, but in those areas where the image 
is rich in detail, the samples resemble a uniform distribu- 
tion if projected on the image plane. The minimum dis- 
tance between points being the pixel width and length. This 
observation suggests the use of a parametric distance mea- 
sure for classification. The normalized distance from point 
(ut,  w f ,  d i )  E ym to class wl is 

r m } -  

dil=tr( c;l ((up , U : , d ; )  -(~:,o;,&))~ ( ( U :  ,U:,di)-  (a:,e;,di))) 

where ( i i f , $ , & )  is the mean vector of class wl, and Cl 
the covariance matrix. The votes = minl(dil) are ac- 
cumulated for each (ut,  u f ,  d i )  E ym,  and the region in fl 
associated to the class wz with most votes is considered the 
parent region for rm. 

The result is a new set of regions a’ where each element 
05 = { O j  U rm . . . Fn}, represents a region in the scene 
where color continuity and depth continuity are merged to 
constitute spatially coherent entities. A set of characteristics 
can be measured on each of these regions, such as position, 
normal orientation, curvature, level of detail, area, compact- 
ness, etc. The immediate step to follow from these results 

(4) 

will be an attempt to learn and recognize these groups of 
segments as objects. 

The time complexity of the depth from stereo module is 
O(dlc2n), where k is the width of the kernel window, d is 
the maximum expected disparity, and n is the number of 
pixels in the image. If the edges in G are sorted in linear 
time, the segmentation module is bounded by O(n).  

The time required to compute equation 4 is bounded by 
O(m2/u2),  where m is the number of points in the dispar- 
ity map associated to regions in a, and a = [al. Given that 
the disparity map is dense in the perimeter of R j  and negli- 
gible inside smooth regions, m M Ea p j k / 2 ,  and from the 
compactness constraint p; < tclRjl. The overall cost of 
the oversegmentation part of the algorithm is bounded by 

O(m2/a)~O(alSj2L2)<0(akZtc1S2jJ)<O(k2tcn). ( 5 )  

The time complexity of our algorithm is linear with re- 
spect to the number of pixels in the image, and is asymptot- 
ically comparable to that of the individual data acquisition 
modules. 

4. Experiments 

Several test cases were performed, and an example that 
best shows the advantages and drawbacks of our algorithm 
is presented. The original left color image from the stereo 
pair is shown in Figure l(a) (its b/w version may appear in 
the conference proceedings). Both the left and right images 
were rectified to meet the parallel epipolar constraint. The 
results of the color segmentation algorithm applied to the 
rectified left image are shown in Figure l(b). Note that la- 
bels assigned to each segment do not resemble the intensity 
values in the original image, as would be expected from a 
color based segmentation algorithm. This was done only 

. 
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to ease visual identification of large segments from small 
or highly compact ones. In this figure, the textured regions 
represent the small segments that need to be classified as 
belonging to the nearby objects. 

Figure l(c) shows the disparity map obtained from the 
stereo module. It is most clear from this image how depth 
information is dense at highly detailed areas in the scene, 
whereas smooth regions are poorly represented. Although 
the left-to-right right-to-left constraint could have been re- 
laxed from equality to similarity when creating the depth 
map, this was not implemented; letting the segmentation 
module overcome the weaknesses of any typical depth- 
from-stereo module. 

An initial pruning of the segmented image is done based 
purely on the mean disparity value of each segment. We 
eliminated from our three-dimensional region of interest 
those segments that fall too close or too far from the camera 
by computing their mean disparity. Also those segments 
with very low points-in-depth-map to segmented-area ra- 
tio were discarded, as they do not contain enough disparity 
information to accurately estimate their depth, and are not 
suitable for later attempts at object characterization. Figure 
l(d) shows how the boxes behind the four objects of interest 
are virtually eliminated, as well as the table and the vertical 
bar in the back. 

Results from the data fusion algorithm are shown in Fig- 
ure l(e). The image shows our four objects of interest eas- 
ily identifiable. These segment groups and their attributes 
can be used to characterize the objects they represent. Fig- 
ure l(f) shows a set of graphs representing the hypothesized 
objects that are due for recognition. 

5. Conclusion 

In this paper, we have shown how the shortcomings of 
two individual low-level processing modules can be over- 
come in an integrated environment. The inherent variability 
of the data formats is tackled by exploiting their individual 
characteristics. While color-based segmentation methods 
are robust in smooth regions and tend to fail in areas where 
detail is prominent, the opposite is true for a depth from 
stereo module. We have provided the necessary framework 
to exploit this situation by relabeling those areas where 
segmentation fails based on depth cues, both in sub- and 
oversegmentation situations. A qualitative example on how 
our algorithm behaves is presented for a complicated scene 
including different textures as well as overlapping objects 
with very similar color reflectance. It is of major relevance 
that the time complexity of our algorithm is linear with re- 
spect to the number of pixels in the image, and does not 
exceed that of the individual acquisition modules. 

The results of our algorithm are expressed as graphs 
with the nodes representing spatially coherent regions in the 

scene where smoothness and detail is blended together, and 
the edges represent spatial connectivity between regions. 
Evidently, the next step is to train a system with these seg- 
mentation results and to attempt recognition of the same 
objects at different positions and orientations and varying 
illumination conditions. 
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