Colour Image Segmentation Solving Hard-Constraints on Graph Partitioning
Greedy Algorithms

Jaume Vergés-Llahi
IRI (UPC-CSIC)

jverges(@iri.upc.es

Joan Climent
ESAII (UPC)
climent@esaii.upc.es

Alberto Sanfeliu
IRI (UPC-CSIC)
asanfeliu@iri.upc.es

Abstract

In this paper a graph partitioning greedy algorithm is
presented. This algorithm avoids the hard-constraints of
others similar approaches such as the impossibility for
some regions to grow after certain step of the algorithm
and the uniqueness of the solution. Nevertheless, it
allows attaining global results by local approximations
using a generalised concept of not over-segmentation,
which includes an energy function, and eliminating the
not sub-segmentation criterion using a probabilistic
criterion similar to that of annealing. ‘

The high-variability region problems such as borders
are also eliminated identifying them and distributing
their pixels among the other neighbour regions. Thus, it
is possible to keep the time complexity of usual graph
partitioning greedy algorithm and avoiding its high-
variability region problems, obtaining better results.

1. Introduction

Segmentation is the first essential and important step
of low-level vision. Segmentation is a process of
partitioning the image into some non-intersecting regions
such that each region is homogeneous and the union of
two adjacent regions is not homogeneous. Hundreds of
segmentation techniques are present in the literature [1],
but there is still no single method that can be considered
good for all images.

In this paper, we have selected the graph-theoretical
approach to cope with image segmentation because it has
good mathematical basements and some segmentation
problems are easily translated into graph-related
problems by analogy. Moreover, in the graph theoretical
approach, image region extraction and finding region
edges are dual problems, and the edge thus extracted is
always closed. The worst disadvantage of this approach,
as can be seen in [4], [5] and [6], is that sort of
algorithms are very time consuming, which avoid their
implementation in some on-line application.

For this last reason, we have chosen the sort of graph
partition greedy algorithms, which are faster than any
other one, as can bee observed in [3]. Nevertheless, after
the analysis and implementation of this algorithm, two
type of problems arose: One sort of problems are caused
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by its hard-constraints which produce segmentations that
are not good enough. The other sort of problems was
related with high-variability regions, which were not well
segmented. We have tried to solve these difficulties by
breaking the constraints and identifying high-variability
regions, and then distributing the wrong-segmented
pixels to other neighbour regions.

2. Framework

In this section we give the basic definitions needed
along this paper. In the graph-based approach to image
segmentation, undirected weighted graphs (UWG) are
used to represent both intensity or colour images. An
UWG G=(V,A) is defined from the set of pixels P={p,} of
an image /={/(p) : pe P} in the following way: To each
pixel peP corresponds a vertex veV and a
neighbourhood N,={qeP | 0<d,(p,q)<8}, with N={N, :
peP} and d,:PxP—Jt" a distance between pixels, which
define the set of arcs A={a,,;=(p,q), g€N,}. A weight
funtion @ defined among arcs gives a measure of
similarity between two vertexes:

w:A4A >R
a,y @ w(apq)=d1(1(p)’1(q))=wpq
where d; is a distance for image values, which can be

intensity or colour. For intensity images, the distance is
as follows:

d,:(I,.1,)e |I, -1,
and for colour ones:
d, (I,,1,)a

A
a blllrer
"

HSI
where RGB or HSI means we use this system of
coordinates and its particular metrics. 2={a(a) : aeA4} is
the set of all weights of the arc set of G.

A segmentation of G is defined as a subgraph S=(C.F)
where C={C;} is the set of components which form a
partition of V and F={F} is a canonical forest. A
component C; is a set of vertexes that are connected one
another by a path of arcs of 4. C, is the component where
the vertex p belongs to. A canonical forest F is a set of
trees where each one F,eF is a spanning tree of C;eC.
We can now define the set X of all the segmentations S of

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on October 26, 2009 at 17:09 from IEEE Xplore. Restrictions apply.



G and an equivalence relation, <, between its elements
which is reflexive, anti-symmetric, and transitive:
T<S&TeR(S)

where R(S)={QeX : VCeQ, 3C’eS | ccC?) is a
refinement of a segmentation SeX. The set (£<) is an
partially ordered set because T and T”’e R(S) do not imply
that 7e R(T’) or T’eR(T). Because of that, (£,<) is a
reticulum and for any 7=(C.F) and T'=(C’,F’), TNIT’<T
and T°, T and T’<TUT’, where TNT’=(CNC’,Fc¢) and
TUT’=(CC’ Fcc). The maximum element of (£ ) is
(P, Fp), the minimum one is (Z,&2) and the atomic one is
({peP},2). If we follow an algorithm that in every step
join two components C and C’ together, the resultant
segmentations will be in ascendant order in (X <). This is
the case of the class of greedy algorithms that uses an
ordering of the set of arcs 4; for example, the Kruskal
and in [3] algorithms.

3. Algorithm analysis

With these definitions, the segmentation of an image /
can be translated into finding a proper segmentation S
from a graph G among the set of all possible
segmentations X. As a starting point to find a
segmentation which fulfil a global property only carrying
out a local search by a greedy algorithm, we follow the
definitions of what is a not over-segmented and a not
sub-segmented image given in [3].

We consider an image is not over-segmented if all the
components fulfil that the differences between any two
adjacent components is greater than its similarities, thus
we say:

S € X is not over — segmented

vVC,,C,e Sand C, # C,

then Dif (C,,C,)> sim (C,,C,)
where Dif is a function that measure the difference
between two adjacent components and Sim measure the
similarity of these two components. Be NOS={TeZX | T
is not over-segmented}.

In a same way, we define to be a not sub-segmented
image any segmentation for which there is a proper
refinement such that this refinement is not over-
segmented. If 7<S means that 7<S and 7S, we define
the following set A;={TeX and T<S | T eNOS}. Then:

S is not sub — segmented = A; =

The algorithm proposed in [3] (from now on, F&H
algorithm), a modification of that of Kruskal -a greedy
algorithm-, use these two definitions to attain to a
segmentation S that fulfil them. Moreover, it is proven
that this segmentation is unique. Nevertheless, what is
important of this algorithm is that makes decisions based
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on local properties of image, as could be pixel
differences, and yet the resulting segmentation reflects
global properties of the image —not over-segmentation
and not sub-segmentation-. But, as we will see, these
constraints are too hard, causing growing defects in
components of the resultant segmentations. The growing
defects are of two natures, one is related with the
theoretical approach, and the other one has to do with its
practical result. '

3.1. Theoretical approach

Starting from the facts that in F&H algorithm causes a
resultant segmentation S that fulfils both not over-
segmented and not sub-segmented constraints and that
two successive segmentations S; and S;.; are S<8;.;, we
deduce that:

A; =D ASe NOS < S = min{T}
Te NOS

This means that F&H algorithm stops at the first
segmentation S that is not over-segmented, which is in
some way a quite arbitrary and hard constraint, overall, if
we face the fact that visually the segmentation S has still
too many components, i.e., is still over-segmented. If not
sub-segmented constraint would be eliminated, it could
be possible to attain segmentations S’ with less
components (S<S°). If S’ is over-segmented, the
algorithm will follow its process until a not over-
segmentation S°’ (S’<S’’). In the contrary, if S’ is not
over-segmented, we can break again the constraint by
joining two components as above, or just stop at that
segmentation, which will be, of course, greater than §
and also not over-segmented, as we were looking for.

In order to manage this leap over the constraints
avoiding arbitrariness, we have reformulated the concept
of not over-segmented as a problem of minimising a
certain function of energy U in the following way:

S e X is not over — segmented

VC,,C,e Sand C,#C,

then AUg_, ¢ >0 58
i.e., § is not over-segmented if a S’ has more energy U
than S; otherwise, we could go to S’ and minimise the
energy U. Moreover, a not over-segmentation S is also a
global minimum of energy function U. AUs_s- means the
energy of system involved in this transition between two
different segmentation S<S’. If we must join C; and C;
together, AU;_,s-AU(C;,C). In the particular formulation
of F&H algorithm:

AU(c,,c,)=Dif(c,.C;)-Sim(C,,C,)

which shows its equivalence. The resultant algorithm
differs only with that of F&H in the following condition:

where
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if a’=a, |(cr = crt)alavler,cit)<0)
citocy
Frpt UFp, U f}

Now we need a condition to be fulfilled for a certain
energy function U that will make possible to attain this
global minimum by means of this greedy algorithm,
which is only capable of finding local minimum. We
found that if for any arc a=a’=a; such that C;=C;, and
C#' cC; and G cC; is true that:

AU(cr,cr)> 0= AU(C,.C,)> 0
then the segmentation produced by our algorithm is not
over-segmented.

Proof. Be a=ay; any arc such that C;zC;, i.e, a’¢S. It
occurs at position g in the ordering, then a=a?. C;=C;
implies that a’eS,, because then a’eS, which is false.
Thus the first condition, 7/ #C,—"" , is true, which means

then

the second one must be false, ie., AU(CS’,C/')>0.

Which implies that AU(C;,C)>0 and, thus, § is not over-
segmented, Q.E.D. As an example of that, if we use
AU(C, C)=DifiC;,C))-Sim(C;,C)), in [3] it is proven that
C#'=C; and Cﬂ"’ =C;, which carry out the above property
about the energy function.

Using this new definition we can compute a
probability of the event S—S” or of joining C; and C; in a
similar way it is computed a certain step in a simulated
annealing process using the Metropolis dynamics [2]:

-max{au(c, .c, ),o}]

P[c,.ucj]=e( ’

If AU(C,,C)<0 then P[C;UCjJ=1, otherwise P[C;UC]] -

is compared to a random number to decide whether to
joint or not. Thus, it is possible to find other not over-
segmentations S’ such that S<§”, with a great probability
of being not over-segmented. Moreover, both the
probabilistic and not probabilistic algorithms breaks the
uniqueness of the solution claimed in [3].

3.2. Application approach

When using the function Sim(C)=max{w(a) : acF¢}
[3], one can realise there is a great problem: due the fact
that a component C will not grow for any arc a that
w(a)>Sim(C), and that Sim(C)2 w(a’), Va’'eFg, it is only
possible that all of arcs in F¢ have the same weight.
Thus, a huge number of regions are formed, which is
critical in homogeneous regions (small Sim(C)) because
can never get joined. To solve this deffect, a correction
function can be used to compute Sim(C) [3]:

Sim(C) = rzletgc{w(a)}+ fau

€]
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in such a way that Sim(C) is greater in small components
and decrease as these components grows. This helps
homogeneous regions to grow, but dissimilar regions also
grow, creating fictitious border regions or leaving
textured regions badly segmented -unless it is greatly
filtered, which expand even more the borders-.

The reason of the following: max{w} of homogeneous
regions is relatively small and |C| grows rapidly because
these regions tend to be great ones. Thus, the correction
functions effect over them disappears quickly. But in
dissimilar ones, max{®} is relatively greater and tend to
be small regions, and thus the correction functions effect
takes place longer, allowing them to grow too much. The
correction functions threshold controls region measure,
whatever be homogeneous or not.

To cope with this pemnicious effect, we identify all
pixels that belong to these dissimilar regions -we only
take under consideration in this paper fictitious border
regions, not textured ones- by means of a coefficient Ic
computed over every region C, which is directly
proportional to the compactness, K¢, —border-shaped-
and max{w} —high-variability regions-, and inversely
proportional to the area, A¢,—small regions-:

K. -max{w(a )}
- acC
C AC

Once these regions have been identified, their pixels
are joined randomly to the region with most neighbour
pixels:

peC, & C, =argmaxfit{ge N(p)lqe Cl}
CeS

Because the previous step can cause some border
distortions due the pixel distribution, it is useful a
previous step to have as few pixels as possible to
distribute. This can be obtained inhibiting for some steps
the over-segmentation constraint in the algorithm. Thus,
it is granted that, at least, Sim(C)=Threshold, avoiding
the case Sim(C)=0, which do not let the homogeneous
regions to join together without a correction function.

By combining these two steps, it is possible to let grow
homogeneous regions, but not the dissimilar ones,
without using the correction functions.

4. Results

In the following images, we show some partial results
obtained with our algorithm and what is obtained using
the F&H one, because the lack of space, using a single
colour 384x264 pixel image that was not smoothen, and
we use RGB Euclidean distance between colours.

Figure 1 has been obtained using the probabilistic
algorithm inhibiting the over-segmented constraint up to
arc weights are greater than 2.0. It seems more realistic
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than that of F&H segmentation, but still has many
fictitious border regions and needs a second step to
eliminate them. In figure 2 a threshold of 0.5 to identify
fictitious border regions has been used. In the final result
(figure 3), 29 regions have been detected. Instead, figure
4 is the result of F&H algorithm using a fau value of 300,
and the final result is 2021 regions. If we use a smoothen
version of the original image, this algorithm can obtain
664 regions, with wider fictitious border regions, or 55 if
we eliminate them.

ey

> < |
Figure 2. Fictitious Borders Identification

Figure 3. Pixel Distribution Result
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Figure 4. F&H Segmentation

It can be seen in figure 2 how borders are detected and
how they have disappeared in figure3. Moreover, figure 1
is visually better than figure 4, which has still too many
regions.

5. Conclusion

We have shown in this paper how to solve the hard-
constraints in a graph-partition greedy algorithm, as can
be F&H one, generalising the concept of not over-
segmentation and the elimination of that of not sub-
segmentation with a probabilistic condition. Moreover,
we have solved some problems related with high-
variability regions as borders are. As a result of this, we
have improved image segmentations.
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