Chapter 4

Graphs of kinematic
constraints

Federico Thomas

When a set of kinematic constraints are imposed between several rigid bodies,
finding out the set of configurations that satisfy all these constraints is a matter
of special interest. The problem is not new and has been discussed, not only in
Kinematics, but also in the design of object level robot programming languages
for assembly tasks.

This chapter deals with the problem of finding out how constrained move-
ments, or kinematic constraints, are propagated and how some workpieces in
an assembly reduce their degrees of freedom after this propagation, and how in-
consistencies between constraint movements can be found. Special attention is
paid to those problems which can be solved using a simple topological analysis
derived from the Theory of Continuous Groups of Transformations.

Part of the material presented herein has already appeered in [16]. Here impor-
tant points have been clarified and some modifications have been introduced.
Also, an important part of this chapter is devoted to the propagation of kine-
matic constraints using part of the material appeared in [17].

This chapter is structured as follows. Section 4.1 shows the important role of
kinematic constraints in the assembly domain. Secticn 4.2 provides all basic
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theory about kinematic constraints needed in this chapter. Section 4.3 essen-
tially deals with the basic operations to be carried out on a graph of kinematic
constraints, namely composition, intersection and star-polygon transform. Sec-
tion 4.4 introduces a basic algorithm for constraint propagation, which avoids
the application of the star-polygon transform when obtaining the equivalent
constraint between any two bodies in a graph of kinematic constraints with
arbitrary topology. Section 4.5 presents an example and, finally, Section 4.6
gives a brief summary of the main points in this chapter.

4.1 The role of kinematic constraints in
the assembly domain

In the assembly domain, it does not suffice to make the workpiece models
produced by a CAD system available in the programming environment, but
a description of the way the different pieces should be fitted together is also
required. This description can be provided in full detail by either the designer
or the programmer, or rather be automatically inferred, at least in part, from
constraints derived from both the shapes of the workpieces involved in the as-
sembly, after trying to find matings of complementary subparts between them,
and the mechanics of the assembly operations themselves.

Matings of complementary subparts of different workpieces have a direct trans-
lation into constrained movements, or kinematic constraints. In general, this
translation assumes that the legal motion for compatible pairs of predefined
subparts, or features, is provided by the user and thus already known. Al-
ternatively, it would be possible to infer legal motions directly from geometric
models of predefined features. This problem has been reduced to find local
symmetries [9] or, when working with polyhedral workpieces, to find cycles of
edges [18]. The recognition and extraction of expected patterns of geometry and
topology, corresponding to particular engineering functionality, as described in
[20], will play an important role in this area in a near future.

In the assembly domain, kinematic constraints are not only relevant when
mating complementary subparts, but also when specifying relative locations
between workpieces, specially when using an interactive graphics system. Let
us look at a simple example. In order to specify the location of the block with
reference to the box in fig. 4.1, we impose that faces P, and P of the block be
against Py and P; of the box, respectively. Then, we might ask: Is there any
configuration satisfying both constraints? In other words, are they consistent?
If the answer is yes, how many degrees of freedom remain between the block
and the box? Which are the values of the constrained degrees of freedom? It
will be shown that a directed graph of kinematic constraints, that is, a graph
whose nodes correspond to workpieces and whose arcs are labeled with a set of
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Figure 4.1: Specifying the location of a block with reference to a box using a
set of kinematic constraints.

legal transformations linking the coordinate reference frame of the correspond-
ing workpieces, is a proper data structure to represent these problems.

If we want to deal with graphs of kinematic constraints with arbitrary topology
and constraints, then we must be able to find a solution to any inverse kinematic
problem. Nevertheless, no general satisfactory solution, convenient for practical
use, has been found for the general inverse kinematic problem. This problem is
highly complicated because of its non-linearity, non uniqueness of the solution
and existence of singularities. Fortunately, most kinematic graphs arising in the
assembly domain are quite simple, since most planes and axis of symmetry of
the involved geometric features are parallel and orthogonal in the final assembly.

The automatic manipulation of kinematic constraints has attracted a lot of
attention not only in Kinematics, but also in the design of object level robot
programming languages, such as RAPT [14] or LM-Geo [12]. Several algebraic
symbolic approaches have emerged, among which we will mention a system of
rewriting rules [14] and a table look-up procedure [8].

Algebraic symbolic (as opposed to a numerical) methods for dealing with kine-
matic constraints can shed light on basic aspects of the problem. For example,
as it is shown in [17], the way they propagate provide useful information on
the sequence of assembly.
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The algebraic symbolic method used by the RAPT interpreter can be factored
into a solution for the rotation which will determine angles, followed by the for-
mation of real equations involving variables representing linear displacements
and sines and cosines of the angle variable, which, in general, are difficult to
deal with.

The approach presented herein distinguishes between topologicael and geometri-
cal analysis of a set of kinematic constraints. The described topological analysis,
well suited for the assembly domain, is derived from the Theory of Continuous
Groups of Transformations, and it was essentially devised by Hervé in [7] for
obtaining the number of degrees of freedom in mechanisms (see [1] for a revi-
sion). This analysis takes advantage of the fact that the legal relative motions
resulting from mating two complementary subparts, such as pegs and holes or
grooves and tongues, constitute cosets of subgroups of the Euclidean group,
leading to a procedure based on a set of look-up tables.

4.2 The Euclidean group and
kinematic constraints

It is well known that a rigid body in 3-dimensional space has 6 degrees of
freedom, and, given a reference frame, any displacement can be obtained by a
pure rotation about the origin followed by a pure translation.

The set of all displacements of a rigid body, with the composition operation, is
isomorphic to the Special Euclidean group SE(3). The decomposition SE(3) =
¥ x SO(3) shows the aforementioned fact that for any D € SE(3),

D = Trans(v)Rot(u,8),

where Trans(v) is a translation along the vector v € ®* and Rot(u, §) € SO(3)
is a rotation of angle # about the axis u. Rotations about the axes x, y and
z are denoted by Twix, Twiy and Twiz, respectively. An arbitrary rotation
can be written, using Euler’s decomposition, as:

Rot(u, §) = Twix(p)Twiz(¢) Twix ().

A rotation can also be expressed using only the Twix operator and constant
rotations as follows:

Rot(u, ) = Twix{a) XTOY Twix(8) XTOY Twix(v)

where the constant rotation XTOY is defined as Twiz(r/2).
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While the results presented below do not depend on a particular representation
of SE(3), we will use the well known 4 x4-matrix representation of homogeneous
transforms {13], which has become fashionable because its simplicity. Let us see
a brief overview to this representation (see {2] for alternative representations
such as screw coordinates, quaternions, dual numbers, etc.)

4.2.1 Homogeneous transformations. An overview

The representation of objects in an mn-dimensional space using homogeneous
coordinates needs a space of dimension n + 1 from which the original space is
recovered by projection. For example, the vector v = z;i + y1j + 21k, where
i,j, k are unit vectors along the Cartesian coordinate axes, is represented using
homogeneous coordinates as a column vector:

e

v = Y

zZ

t

so that

T =z/t
n=y/t
z = z/[t

Henceforth we will normalize £ = 1.

A transformation H is a 4 x 4-matrix so that, the image of a given point v
under this transformation is represented by the matrix product u = Hv.

Translations

A transformation H representing a translation by a vector d = ai+ bj + ck will
be:

1 0 0 a
H = Trans (d) = Trans (a,b,c) = g (1) (1) 2
0 0 0 1

Thus, given a vector v = (z,y, z, 1)}, its image u under H will be

T+ a
y+b
z2+c
1

u=Hv=
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It is easy to prove that the set of all translations constitutes a group under the
matrix product operation, which will be denoted by T.

Rotations

The transformations representing rotations about the z, ¥, and z axes by angles
Y, & or ¢, respectively, are:

1 0 0 0
. 0 cosy —sinygy O
Rotx(y) = 0 sinyY cosy O
0 0 0 1
cosf 0 —sin@ O
0 1 0 0
Roty@ =1 16 0 st o
0 0 0 1
cos¢p —sing 0 O
Rotz(¢) = 813 4 c°;¢ (1) g
0 0 0 1

Each element ij of the 3 x 3 upper left submatrix is equal to the cosine of the
angle between the i-axis of the original coordinate frame and the j-axis of the
rotated one.

These matrices, as well as their products, are orthogonal matrices with deter-

minant equal to +1. They also constitute a group under matrix multiplication
which will be denoted by S,.

Displacements

The transformations representing rotations and translations can be multiplied,
and the resulting matrices are said to describe displacements.

The following properties must be emphasized:

- Decomposition of a displacement. Every displacement H can be decom-
posed into the product of a translation and a rotation, so that

H = Trans(d) H = Trans(q, be) H , VH € SE(3)

where H is the rotation component of the displacement H or, in other
words, is the matrix resulting from setting the first three elements — a, b
and ¢ - of the last column of H to zero.
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- Composilion of n displacements.
H, --H;---H, = Trans (d;) H;--- Trans (d,) H, =
Trans (d; + Hido + ... + HiH,---H,_,d,) H; Hy--- H, |
VH, ---H, € SE(3)

If a transformation is postmultiplied by another transformation, the latter
is applied with respect to the transformed frame described by the former.
Conversely, if a transformation is premultiplied by another one, the latter
is applied with respect to the reference frame [13]. Other authors {14], in
using the transposes of the above defined transformations, adhere to the
inverse rule.

- Inverse displacement. Because of the properties of orthogonal matrices,
the inverse displacement of H is:

H™! = H' Trans (—a,—b,—c) , VH € SE(3)
where H! denotes the transpose matrix of H.

A given displacement has been denoted using a upper case bold letter. Here-
after, sets of displacements, possibly subgroups, will be denote using just an
upper case letter.

4.2.2 Subgroups of the group of displacements

It is well known that a group is a set of elements closed under an associative
operation with an identity and inverse elements, as is the group SE(3) of
displacements. A subgroup S C SE(3) is a subset of SE(3) which is itself a
group under the same operation. The composition of elements of SE(3) can
be extended to the composition of elements and subgroups. If S C SE(3) and
D € SE(3), then the right coset S-D is theset {H-D | H € S§}. The left
coset D - S and the two-sided coset Dy - S - Dy can be similarly defined. More
generally, the composition of two subgroups S - S is defined as {D;-D; | D; €
Sl, D, € Sg}.

Definition 1 (Conjugation classes of subgroups of SE(3)) Every such
class is an equivalence class with respect to the relation:

S~ 8« 3IAD e SEB) | S, =Ds5D!

S1 and Sy being subgroups of SE(3).
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Table 4.1: Classification of the subgroups of SE(8) into conjugation classes

Dimension Conjugation class | Geometric
(d.c.f.) Notation and associated elements Canonical subgroup
lower pair of definition
0 I Identity 1
displacement
1 Tv Rectilinear A direction of {Trans (x,0,0) | x € R}
translation translation given
(P) Prismatic by a vector v
Ry Rotation around | An axis of
an axis revolution u {Twix (¢) | ¢ € (-7, +7]}
(R) Revolution
Hy, Helicoidal An axis of {Trans (x,0,0)Twix(px) |
movement revolution u and x € R, p = constant }
(H) Screw a thread pitch p
2 Tp Planar A plane P {Trans (0,y,2z) | x, y € R}
translation
Cu Lock movement An axis u {Trans (x,0,0) Twix () |
(C) Cylindrical x € R, € (-, +n]}
3 T Spatial {Trans (x,y:2) | x, y, 2 € R}
translation
Gp Planar sliding A plane P {Trans (0,y,z) Twix () |
(E) Plane vzeERYe (—n+n]}
S, Spheric rotation A point o in {Twix (¢) XTOY Twix(€)
(S) Sphetrical the space XTOY Twix (n) ]
¥,€,n € (-, 'HT]}
Yv, Translating A direction of {Trans (x,y,z) Twix(px) |
screw revolution v and x,y,2 € R, p=constant }
a thread pitch p
4 Xy Translating A direction of {Trans (x,y,z) Twix(y)
gimbal revolution v x,y, 2 ER, ¢ € (-, +nl}
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There exists infinite subgroups of SE(3), but they can be classified into a
finite number of conjugation classes. This suggest that we can represent each
conjugation class by a canonical subgroup, so that all subgroups of the same
class can be expressed as a conjugate of it.

An exhaustive classification of the continuous subgroups of SE(3) into con-
jugation classes can be carried out using classic methods of analysis of finite
dimension continuous groups [3]. A list of the classes thus obtained and a
canonical subgroup for each of them is shown in table 4.1 (adapted from [7])-
Note that all lower pairs are included in this classification. Let us recall that
a lower pair exists when one element is coupled to the other via a wrapping
action and contact takes place along a surface.

The notation used for these conjugation classes appears in the second column
of table 4.1. Each class can be characterized by a set of geometric elements of
definition which appear as subindices in the notation of the class. A geometric
element of definition of a given subgroup is an affine space of R3 of dimension
0, 1 or 2 (a point, line or a plane) which characterize the subgroup. A scalar is
also required to characterize the Hup and Yy subgroups. An instance of this
elements leads to a subgroup belonging to the class. Instances will be denoted
using numerical subindices. For example, Tp denotes the conjugation class of
planar translations and T, denotes a given subgroup belonging to this class.

The canonical subgroups are chosen in such a way that their geometric elements
of definition satisfy the following conditions:

- if it is a point, it coincides with the origin of the reference frame;

- if it a line, it passes through the the origin of the reference frame and the
T axis is aligned with it; and

_ if it is plane, it passes through the origin of the reference frame and the
z axis is orthogonal to it.

The election of canonical subgroups is thus arbitrary. If S; is a canonical sub-
group, it will be denoted S;. Given a subgroup Si, (81)€ denotes the canonical
subgroup in the same class.

The degree of freedom of a kinematic chain is defined as the necessary and
sufficient number of variables that define uniquely the position and orientation
of all the workpieces involved. The dimension of one of the foregoing subgroups
is defined as the degree of freedom of the constrained motion it allows. A set of
variables is thus associated with every subgroup. The dimension of a subgroup

is indicated as dim(-), where (-) denotes one of those subgroups. Obviously,
dim(SE(3)) = 6.

When the geometric elements of definition of two different subgroups satisfy
some kind of spatial relationship — such as parallelism, collinearity or perpen-
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Table 4.2: Conditions of inclusion of one subgroup of SE(3) into another

uy L Py =+ ug perpendicular to P,
u; M ug = u; and ug collinear
W || vo = up and vq parallel

Tr Cuy, T GR Sop Yvon Xv,
Ty, u || Po | wgllu | Vug w || A ug_Lvy Vug
Ry, up M uy wlP, | e w w || vi
Hug po up My W =vo,po=p | wf v
TR VPR | Bl A Pylvg VB,Vv; H
Cu, u || vy
T Vv
Gr, Pylwy ﬂ}
Yvo.p0 u || vy
Ko ]

dicularity —, one may become subgroup of the other. The conditions of inclusion
of one subgroup into another appear in table 4.2 (adapted from [7]).

Now, we can introduce a forma) definition of kinematic constraint,

Definition 2 (Constraints and linking displacements) A constraint R is
a set of displacements which can be expressed as a composition of cosets of
canonical subgroups. That is,

R=Lo$LiS3Ly - Ly S,Ly, (4.1)

where Ly, ... ,L,_; are defined as linking displacements. A constraint is said
to be trivial when it can be reduced to a single coset.

The interest of most mechanisms is to provide a constrained motion which
cannot be expressed as a constraint in the way it has been defined here. Nev-
ertheless, we are not interested in analyzing mechanisms, but reasoning about
constrained motions in the assembly domain.
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Hereafter, we will assume that our constraints are trivial. In this particular
case, if ; = LoS,L;, then R,-G will denote the canonical subgroup S, thus
extending the notation introduced for subgroups.

Constraints will be denoted by R;, where 7 is a subindex that identifies it. If
R; is the set of legal transformations from the reference frame of B; to the
reference frame of By, R’ denotes the set of legal transformations in the way
around, i.e. from B; to B;. Note that R,-G = (R{l)c for all R;.

A constraint R; has the variables and geometric elements of definition inher-
ited from S;. Given a reference frame, the subgroup with the same geometric
elements of definition as a given constraint R; will be called its associated
subgroup, which will be denoted by R{f. Obviously, RA ~ RS.

4.3 Operations on a graph of
kinematic constraints

A directed graph of kinematic constraints — or GR graph, for short — is defined
as a graph whose nodes correspond to workpieces and whose directed arcs are
labeled with constraints. The two basic operations on a graph of kinematic
constraints are composition and intersection of constraints. The former (fig.
4.2a) involves finding the constraint between bodies 8; and Bs that results from
composing the constraint between B; and B, — say R; — with that between B,
and By - say R; -, which will be denoted by R; - R;. The latter operation
(fig. 4.2b) permits combining two given constraints, R; and R;, between the
same two workpieces into a single resulting constraint, which will be denoted by
RiNR;. Let us analyze both operations in terms of composition and intersection
of subgroups.

4.3.1 Composition

Let us assume a universe of three bodies — B,, B, and B - linked by two trivial
constraints

R = A1S1A,
Ry = B, S,B..

Then, the equivalent constraint between bodies B; arnd Bj, that results from
composing Ry and Rps, is:

Ri3 = RisRpy = A151A3B15,B; = A1A,S,5,B, B, (4.2)
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(a) Ry R,
O./"_\\O/f—\ :.">

Bl 5'3
Rl (b) Rl N R2
Bra " Tso B => Bro— w0 B,
R
R, (c)
Ry-R _
R => 1482 R;y' R,
R;
Ry - R,

Figure 4.2: Operations on a graph of kinematic constraints: (a) composition;
(b) intersection; and (c) star-polygon transform.
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where
Sy~ 8 and Sy ~ S

We will denote (Ry2Rp3)¢ = $1.5, according to 4.2.

Thus, the problem of composing two trivial constraints can be reduced to the
problem of composing two subgroups, and the outcome of the composition of
two continuous subgroups of SE(3) can be tabulated as shown in table 4.3
(adapted from [7]).

Clearly, the composition of two trivial constraints needs not be a trivial con-
straint itself, and the only information we need to find it out is the spatial
relationships between their geometric elements of definition of both constraints.

When we compose two constraints expressed in terms of canonical subgroups,
the linking displacement (A2B; in (4.2)) captures the information about the
spatial relationship between their geometric elements of definition. Taking
advantage of this fact, we can check the linking displacement to find whether
the composition of two trivial constraints can be reduced to a trivial constraint.

4.3.2 Intersection
If body Bs, still in the same example above, is rigidly linked to B, forming a

closed kinematic chain, the intermediate body B; will only have the possibilities
of motion given by Rjp N Ry

We can write,
RN Ry = A151A: N B S,B = (S] N SyB; BT AT ATHALA, =
= ($] N S,CIA 1 Ay

If S} and S} are subgroups of SE(3), then (S]NS3C) is either null or is a coset
of S| NS4 (proposition 2 of [15]). Then, we have

Ry N Ry = (S, NSHDAA, iff RisNRy #0 (4.3)
where
D=EC, Ec S}, DeSj, (4.4)

S] being a conjugate subgroup of S, and S} of S,.
We will denote (Ry2 N Ry ) = S{ NS according to 4.3 and 4.4.
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Table 4.3: Intersection and regular representation for the composition of all
pairs of subgroups of SE(3) whose intersection is different from the identity

displacement or one is not subgroup of the other

Groups to be Conditions on the | Conditions on the Regular
composed geometric linking Intersection representation
elements displacement
Ty - Tpl TVO T
vg=Fyn Py
Th - Gr Ty, XVO
vo = Po NPy Vo J_.Pl
Gr G Tv, Ry, - T Ry,
vo=Fnhkh ugLFPy,u LA
Yvom - Thy vg AR iy #£1 Iy, Xv,
vill Py, vilvy
YVD-PO . GPO h{1] ,A_J% tll 7(: +1 Tvl Xvo . Ruo
Vi R, vilvg ug LRy
Yvomo - Yvi vo [f vy I # %1 Iy, Rug - T Ry,
volvg, valvy | uglvg, wufivy
Yvom - Cu, ugLvp {1 =0 Ty, Yvomo - Ruy
Cuo ' Cul uy II uj []_1 ==l Tuo Cuo : Rul
log #0orlay #0
Try - Cuy u [ P 1y =0 Tug Tr - Ru,
T-Cu, Ty, Xv,
vo lluy
GPO 'Cuo w || P 11 =0 Ty, Gpo - Ry,
Kvg Cuo g [f vp 1 # %1 Tu, XVO Ry,
Yoo - Cug ug [ vo h1 =+1 Hyy oo Xv, i
Gh, - Cu, uy LFPy &1 ==%1 Ry, Xv,
volFy
SQD'CuO op € axis g 1 ==%1 Ry, SOO'Tuo
log =0 h
i34 =0
Son Gry Ru, 5'.,0 'TFb
og € axis uy
ulhP
Sop Xvy Ru, SE(3)
o) € axis 1y
w [ vo
Sq; * So-l Ru Sm . Ruo - Ru]
w =g 0] € axis up H
0] € axis m;
Yvomo - Yvy 0 vp || vi i1 =1 Th, Polwvg Xv,
# 1
Yvapy - Xv, vo vy Iy # £1 T, PoLlvp Xvo - Ru,
ug |[ vy
Gr - Yu,; 5, voLlFy I =1 Tr, Xvg
Gpy - Xv, vo LR f11 # £1 Te, Ru, - T Ry,
uO-L‘POi uj " vo
Gr, - T Tk, Xvy voLPy
Yvom - T T, Xv,
XVO ' le Vo u’Vl 111 ?’-‘ +1 T Ruo -T. Rul W
ug || vo, up || vy
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Note that, although the intersection of two subgroups is at least the identity
displacement, the intersection of two constraints may be the empty set.

When the intersection of two constraints is null, i.e. it is not possible to find a
set of displacements satisfying (4.4), it implies that both kinematic constraints
can not be simultaneously satisfied. This situation can not be detected through
the intersection of subgroups. Roughly speaking, if we state our problems
of kinematic constraints purely in terms of compositions and intersections of
subgroups, we will be unable to detect inconsistencies. As it has been pointed
out in [1], Group Theory provides the means for a topological analysis of the
behavior of a set of bodies linked by a set of kinematic constraints, but a
geometric analysis is required if we care about dimensions.

Thus, the problem of intersecting two constraints, say A; S1 A, and B, 1§2B1“ L
can be expressed, if their intersection is different from null, in terms of the
intersection of two subgroups, and the information about the spatial relation-
ships between their geometric elements of definition can be obtained either
from As-B; or By - A;. Obviously, both information must be consistent.

The outcomes of the composition and intersection of two continuous subgroups
of SE(3), for all those cases in which the intersection is different from the
identity displacement or one subgroup is a subgroup of the other, have also been
tabulated in table 4.3. l;; denotes the element (%, j) of the 4 x 4 homogeneous
transformation representation for the linking displacement.

See [9] for deeper prospects on the intersection of, possibly not continuous,
subgroups of SE(3).

As a summary, we can say that: (a) the composition of two trivial constraints is
sometimes a trivial constraint; (b) the intersection of two trivial constraints is a
trivial constraint or null; and (c) the intersection of two non-trivial constraints
is not necessarily a constraint, as defined here.

Definition 3 (Independence and inconsistency) Two trivial constraints,
R1 and Ry, are said to be independent iff (RiNR2)! is the identity displacement,
and they are said to be inconsistent iff Ry N Ry is the empty set.
Let us suppose that we want to find out the dimension of Rj3 = Rj3 - Rps3 or,
in other words, the number of d.o.f. of the body B3 with respect to B;. It can
be stated that:

dim(ng) = dim(ng) + d‘im(Rzg) - dim(R12 M Rzg)

This formula can be extended to the composition of n constraints, leading to
a variation of the Chebyshev-Griibler- Kutzbach formula

n n
dim(Ryp1) =Y dim(Ri;) — Y dim(Ryy N Ryg) (4.5)
1 =2
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where

-1
R = H Ry
I

There are many examples of kinematic chains whose degree of freedom cannot
be determined from its sole topology, i.e., they are elusive to the application of
4.5 [1, page 86].

Definition 4 (Regular representation) The composition of two trivial con-
straints, R3 = Ry Ry provide a regular representation for Ry iff (Ri N Ry)! =1.
Then, dim(Rg) = dz'm(Rl) + dim(Rz)

Notice that regular representations are not unique.

4.3.3 Examples

Firstly, let us analyze the composition of two constraints whose associated
subgroups are Gp, and Xy,. This composition can be expressed as:

R, = ASLSB
= A Trans(0,y, z) Twix(6) L Trans(z', ¢/, 2’) Twix(y) B

where L is the linking displacement between both constraints. On the other
hand, Gp, and Xy, can be decomposed into composition of subgroups as fol-
lows:

GPo - Tpo ’ Rux = Rul 'TPU
Xu°=T-Ru,=Ru2-T

with ul.J_Po and 112”1.10.

If ug LB, then ly; # £1 (see table 4.3) and the only possible simplification for
R is:

R. = A Trans(z",y", 2") Twix(6) L Twix(z)) B

The simplified term, Trans(0, y, z), corresponds to the intersection of G p, and
Xu,- In terms of subgroups (table 4.3), we have

Gp, - Xu, = Xu, - Ru, = Ry, - T+ Ru, = Ru, - Xu,

Gp, N Xu, = Tp,
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with u; LPy and uy || ug.

If ugl P, then u; || ug, {5 = £1, and Gp, becomes a subgroup of Xu, (ta-
ble 4.2). Consequently, R, can be expressed as

R; = A Trans(z" y"”,2") Twix(6)L' Twix(y) B
A Trans(z",y", 2") Twix(0 + I'11v) L' B

where L = L' Trans(0, lag, l34).

Notice that the necessary and sufficient condition for the equality
Twix(6,) L Twix(f;) = Twix(y)) L

to hold is that {;; = 1, lsy =0 and l34 = 0. In this case ¥ = @ + {;,0,.

Let us see another example. Imposing that the axes of the cylinders be aligned
with the axes of their corresponding holes for the workpieces in fig. 4.3, the
following expressions for both constraints will be obtained:

Rip = A1 Trans(z;, 0,0)Twix(6;) Ao, Rﬁz = Cu,

Ro3 = A Trans(zz,0,0)Twix(6) Az, RA = Cu,
The composition of both constraints yields:

RypRa3 = A1) Trans(z,0,0) Twix(6;) L Trans(zg, 0,0) Twix(f) A
where the linking displacement is:

L =AjpAy.

Since ug and u,; are parallel, and according to table 4.3, {;; = =1; therefore,
the composition of both constraints can be simplified leading to:

RyaRo3 = Ay Trans(z; + l1122,0,0) Twix(0;) L Twix(6;) Ag (4.6)
or, in other words,
RigRps = Ay S L S Ay

where S € Cy and S, € Ry. Expression (4.6) is a regular representation for
the composition of both constraints.

If, in addition to l;; = +1, lps = 0and iy =0 (up X u,), a further simplification
could be carried out and Rj3Ry; becomes a trivial constraint. In this case
(ngRzg)G € Cu.
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u,

Figﬁre 4.3: Insertion of a clamp. Geometric elements of definition, kinematic
constraints and canonical subgroups involved.
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Let us suppose that now we want to obtain B3N Ii’%], the equivalent constraint
between By and B;. Then, (R12N R,3 ) can be easily obtained using table 4.3.
Observe that the simplified term in 4.6, Trans(zz,0,0), is (Ry2 N R, This
term encompasses the remaining d.o.f. of body By with respect to B;, when Bj
is kept rigidly linked, as in this case, to B;.

We have proved that the above constraints are not independent, but we have not
checked their consistency. Depending on the relative dimensions of the involved
workpieces, they may be inconsistent. The only thing we can say using this
kind of symbolic manipulation is that, if (R;3 N R;1) # 0, then B, only have
one translational degree of freedom with reference to B;. Checking consistency
requires a geometrical analysis which requires, in turn, solving a kinematic
equation. In our example, we would have to decide whether RjoRy; = I has
a solution. Thus, although the previous ideas provide a theoretical framework
within which it is easy to justify, for instance, when the composition of two
constraints can be simplified, they must be complemented with an al gorithm to
obtain numerical values for the constrained d.o.f. if we care about dimensions.
See [4] for new developments in this area.

4.3.4 Star-polygon transform

The above two basic operations are not enough for obtaining the equivalent
constraint between any two bodies in an arbitrary graph of kinematic con-
straints. This fact can be easily proved by drawing a fully connected GR graph
with four nodes and trying to obtain the equivalent constraint between any two
of them through the iterative application of compositions and intersections of
constraints.

The star-polygon transform is included here to provide a complete set of op-
erations which make possible to obtain the equivalent constraint between any
two bodies in an arbitrary GR graph.

The star-polygon transform consists in removing one node of the GR graph by
fully connecting all the nodes connected to it with the equivalent constraint
between them (fig. 4.2c). This operation can be seen as a generalized compo-
sition. Actually, when this transform is applied to a node of degree two, the
result is the composition of two constraints.

The problem with this operations is that, once it has been applied, the involved
constraints share variables. Thus, when a variable is assigned somewhere in the
graph, it is necessary to take into account that it may be shared by another
constraint. In the next section, an algorithm, which represents a way around
this difficulty, is introduced. This algorithm is able to find the equivalent
constraint between any two bodies without resorting to this operation.
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4.4 Propagation of constraints

[f, as the result of intersecting two constraints between the same two workpieces,
the empty set is obtained, we say that they are inconsistent. The goal is
now to verify the consistency of entire GR graphs. This can be stated as a
problem of consistency in networks of relations. As it is pointed out in [10],
any representation of the constraints that allow composition and intersection
is sufficient for this purpose.

Informally, a GR graph is consistent if there exist configurations between work-
pieces whose defining coordinate transformations belong to the corresponding
constraints. Obviously, a GR graph without cycles is always consistent; thus,
it is easy to realize the important role of cycles in GR graphs.

Next, before introducing a general algorithm for propagating kinematic con-
straints, some few concepts on cycles in graphs are reminded.

4.4.1 Preliminaries on cycles

Two basic operations with cycles are the union and the ring sum. The union
of two cycles C) = (W, Ey) and Cy = (Vy, Ey) is a graph G = € + Cy with
node set V3 = VUV, and arc set E3 = E, UE,. The ring sum of two cycles C}
and C; (written C) @ C») is another cycle or a set of disjoint cycles consisting
of the node set V; UV; and of arcs that are either in C; or Cs, but not in both.

A set of cycles H in a graph G = (V, E) is said to be a complete set of basic
cycles if (i) every cycle in the graph can be expressed as a ring sum of some or
all cycles in H, and (ii) no cycle in H can be expressed as a ring sum of others
in ‘H. The cardinality of a complete set of basic cyclesis p =| E | — | V | +1,
which is called the cyclomatic number. Hence the maximum number of cycles
is 2# — 1,

4.4.2 Isolation of blocks

When a kinematic constraint is posted, it can affect other workpieces different
from those it is incident to, but, in general, a constraint is limited in its scope.
In order to isolate subgraphs within which the effect of a constraint is limited,
the following operations are applied:

1 Elimination of cutlines or bridges. This includes the elimination of pen-
dant constraints (fig. 4.4a).

2 Split cutpoints or articulation nodes into two nodes to produce two dis-
joint subgraphs (fig. 4.4b).
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(a) (b)

Figure 4.4: Operations applied for the isolation of blocks: (a) elimination of
cutlines; and (b) splitting cutpoints.

As a result of these operations a set of subgraphs, or simply blocks, are obtained.
A GR graph is consistent if each of its blocks is consistent.

Now, we can introduce a definition for an important subclass of graphs of
kinematic constraints.

Definition 5 (Trivial GR graph) A GR graph is said to be trivial iff the
equivalent constraint between any two nodes in any of its blocks can be expressed
a trivial constraint.

It is obvious that a GR graph without cycles is always trivial.

Let us assume that the obtained blocks are planar graphs. This assumption,
while not very restrictive, simplifies the treatment given below. Anyway, the
provided results can be extended to non-planar graphs.

A plane representation of a graph divides the plane into regions. A region is
characterized by the set of arcs forming its boundary. In a plane representation
of a planar connected graph the set of cycles forming the interior regions, or
region cycles, constitutes a complete set of basic cycles. The set of region cycles
is not unique. Actually, there are (“:1) different sets of region cycles. This can
be easily seen by noting that a planar graph can be embedded on the surface
of a sphere. The number of region cycles in the surface of a sphere would be
£+ 1, which are also the shortest cycles for a planar graph.
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Let X be the set of region cycles in a planar block . The cycle graph of X
is the graph with vertex set X and arcs joining two distinct nodes if and only
if the corresponding cycles have an arc in common. This graph is denoted by
D(G) and it can be easily proved that D(G) is a subgraph of the dual graph
of G (see [6, page 106]). Nodes in a D(G) graph stand for cycles and arcs in
D(G), for shared arcs in G. For extension, constraints labeling a shared arc are
called shared constraints. Note that an arc can only be shared by two region
cycles.

Let C; be a region cycle whose arc set is labeled with the constraints
{R1,Ra,...,R;,...,R;)}

according to fig. 4.5. Then, the constraint R; can be substituted by
R; = RJ'D(R_;El"'Rl_l 'Rgl"'Rj_-&l)

without modifying the consistency of the corresponding GR graph (fig. 4.5b).
In order to simplify the notation, we will write

] Gp.
R;-=ﬂ R_.,.

This is the basic mechanism for constraint propagation as it is shown below.

4.4.3 A filtering algorithm for
propagating kinematic constraints

A general procedure to propagate the effect of constraints in GR graphs has
been devised, either to characterize the set of configurations that satisfy all the
constraints or to find out that there exist no such configurations.

The propagation process consists in filtering all constraints, that is eliminating
from the constraints those displacements which cannot appear in any solution.
Eventually, if all constraints are reduced to only one element, a single solution
is obtained.

Global consistency in a block G is checked by eliminating local inconsistencies;
that is, by eliminating inconsistencies in region cycles ~ which is equivalent
to ensure node inconsistency in D(G) —, and by eliminating inconsistencies
between adjacent region cycles — which is equivalent to ensure arc consistency
in D(G) (see [10] or [11]). The following procedure implements this idea.
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Figure 4.5: The basic mechanism for constraint propagation. A constraint R;,
labeling an arc in a cycle C;, can be substituted by N% R;.



104

procedure filter_constraints;

input: G; /* a block of a GR graph*/
output: G;

repeat

stop:= true;
/¥ check node consistency */

forall region cycles C; do
forall constraints R; in C; do
/*1*/ R} :=N%R;
[¥2*/ if R} == 0 then exit();
enddo;
enddo;

/* check arc consistency */

forall shared constraints R; do

/*¥3%/ Ry := N RF;
J¥4*/ if Ry == 0 then exit();
if Rr # R; then
stop:= false;
R; := Ry;
endif;
enddo;
until stop;
end.

Geometric inconsistencies can be found either when % R; or when N R* be-
come the empty set. In the first case, the cycle C; becomes inconsistent; in
the second one, all the cycles sharing the constraint R; do. The problem of
obtaining the minimum set of constraints that made a given GR graph become
inconsistent is addressed in [17].

The above algorithm can be easily modified for its application for a topological
analysis, stating the problem in terms of composition and intersections of asso-
clated subgroups instead of constraints. Then, sentences /*2*/ and /*4*/ can
be removed and, if the outcome /*1*/ is not a subgroup for a particular C, it
is not taken into account when computing /*3*/. In this case, the algorithm
will halt when no progress is made, either because the graph is not trivial,
or because all possible filterings have already been carried out. An example
illustrating this idea is shown in the next section.
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If the corresponding GR graph is planar, it is presumable that the complexity
of the above algorithm is polynomial in the number of constraints [11].

The significance of the described algorithm is that it only needs to repeatedly
handle a set of short cycles. Because of domain specific attributes, node and
arc consistency provide a sufficient guarantee that there is a complete solution,
in the same way the celebrated Waltz’s filtering algorithm provides a complete
solution for polyhedral scene labeling looking only for arc consistency [19].

4.5 Example

Let the workpieces in fig. 4.6a be elements of an assembly. The matings between
complementary features of workpieces B;, B; and B3 lead to the GR graph in
fig. 4.6b, which only contains one block with one cycle. Thus, the equivalent
constraint between any two workpieces can be obtained by simply reduction of
the graph to a single edge linking them. For example, the equivalent constraint
between B9 and Bj, if different from null, will be a coset of

(’I‘u1 -Tu,)nTua =Tu‘f_]7‘u3 =1,

i.e. By will remain fixed with reference to B3. This suggest that By and Bs
must be put together before B; is assembled, providing valuable information
about the assembly sequence.

Now, let us consider all the workpieces in fig. 4.6a. Given the matings between
their complementary features, the problem consists in deciding whether these
matings are enough for fixing the relative location of these four workpieces.
The corresponding GR graph appears in fig. 4.6¢c. Neither composition nor
intersection of constraints can be applied to reduce it.

Using the algorithm proposed in the last section, we can write the following
table:

RA C, | C | G || results 15t il ¢, | ¢, Cs results 204
iteration iteration
R, Ty, Ty, Tu, I I
Ry || Tu, Tu, I I I I I
Rz || Tu, I I I I I I
Ry {| Cu, ? 7 Cu, Cu, | Cu, Cu,
Rs || Cu, / Cu, Cu, Cu,
Rs {| Cu, 7 Cu, Cu, Cu,

taking into account that:
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(a)

B,

(b) (c)

B,

R,

By

Figure 4.6: (a) A set of workpieces to be assembled; (b) the corresponding GR

graph involving workpieces B, B; and B;; and (¢) the GR graph involving all
workpieces.
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up || up uy M us
u) Lug uy M ug
u Ly us X ug
usluy uy lug
1.13_L115 111_1_115

which can be directly inferred from the linking displacements.

The outcomes of (N“R;)# appear in row R; and column C;. In the first iteration,
some of this subgroups cannot be obtained since the corresponding constraint
is not trivial. In the third iteration no new progresses can be carried out
and, since it was possible to compute (ﬁC*RJ—)A for i = 1..3 and j = 1..6, the
algorithm finishes after propagating all the constraints. Then, it can be said
that, if all introduced constraints are geometrically consistent, then the bodies
By, By and B; will remain fixed and, if they are considered as a subassembly,
then the body By will have two d.o.f. with reference to it.

4.6 Summary

A kinematic constraint has been defined as a set of displacements which can be
expressed as a composition of cosets of Euclidean subgroups. A constraint is
said to be trivial when it can be reduced to a single coset. Trivial constraints
include all kinematic lower pairs.

A characterization of the spatial relationships between bodies in assemblies as
trivial kinematic constraints, as well as a tabulation of the outcomes of the
composition and intersection of the corresponding subgroups has been given.
The theoretical foundation for this systematization has been taken from [7].

A graph of kinematic constraints has been defined as a graph whose nodes
correspond to workpieces and whose directed arcs are labeled with trivial kine-
matic constraints.

It has been shown that it is not always possible to obtain the equivalent con-
straint between any two bodies in a graph of kinematic constraints by simply
composing and intersecting constraints, so that the graph is reduced to a single
arc linking both bodies. An algorithm that provides a way around this diffi-
culty has been proposed. This algorithm filters all the constraints in a graph of
kinematic constraints. This process consists in eliminating from the constraints
those displacements which cannot appear in any solution.

It has been shown how — relying on the composition and intersection of sub-
groups — it is possible to carry out a topological analysis of the motion possi-
bility for a set of bodies linked by a set of trivial kinematic constraints. It has
also been shown that it is not possible to derive geometric inconsistencies from
this analysis.
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