Learning in Categorizable Environments

Josep M Porta

Enric Celaya

Institut de Robotica i Informatica Industrial
Gran Capita 2-4, Edifici NEXUS, Planta 2, 08034, Barcelona
Phone: +34 93 401 57 91 Fax: 434 93 401 57 50
E-mail: {jporta,celaya}@iri.upc.es

Abstract

Reinforcement learning constitutes a promising
approach to achieve the adaptation of an animat’s
behavior to its environment. However, existing
algorithms tend to be too time and space consum-
ing, and become useless when the number of sen-
sors and actions reach the typical sizes of a realis-
tic animat situation. Existing generalization tech-
niques mitigate somehow the problem, but they
are still insufficient. In this paper, we suggest
that the efficiency of learning observed in animals
is possible, in part, because they capture impor-
tant regularities, existing in the dynamics of its
interaction with the environment, that are not ex-
ploited enough by the generalization algorithms.
We characterize a kind of regularity that is plau-
sible to hold for many animat environments, that
we call categorizability, and propose an algorithm
that takes advantage of such regularity. The main
features of the algorithm are: a competitive eval-
uation of actions through different partial views
of the same situation, and the on-line generation
of new partial views to improve the accuracy of
action evaluation. The described algorithm is ap-
plied to the task of learning to walk with a simu-
lated six-legged robot.

1. Introduction

Probably, anyone working in automatic learning has
been puzzled by the extraordinary ability exhibited by
animals to learn. We are still far from understanding all
the important aspects that contribute to their incompa-
rable performance but, no doubt, one of the factors of
their success is that they use restricted forms of learn-
ing. Animals are not able to learn arbitrary things in
arbitrary conditions. It is well known, for example, that
some species are able to learn to associate certain re-
wards with the percepts of certain sensorial modalities,
but not with others. It is also clear that no animal can
learn arbitrarily complex mappings or correlations be-
tween inputs and rewards: there are limitations in what
can be possibly learned by each leaving being. From

a computational point of view, we could say that their
learning abilities are not general, but tailored to their
available resources and specific needs for their survival.

In contrast, generality has been for longtime a require-
ment for most approaches to automatic learning. This
generality is not without a cost. It gives rise to combi-
natorial explosion that makes learning problems become
intractable as soon as their size approaches a realistic
animat situation. This can not be avoided if we have
to face completely arbitrary problems, as is the case in
many synthetic learning situations. Hopefully, the in-
teraction of an animat with its environment will present
many regularities that can be capitalized by a learning
agent, so that specific learning approaches can be de-
vised that are much more efficient for these particular
situations than a completely general one. The problem
remains to identify which regularities can be assumed
in a learning situation and how can they be taken into
account by a specific learning algorithm.

In the context of Reinforcement Learning (RL)
(Kaelbling et al., 1996), the regularity imposed to the
environment is kept to a minimum, assuming that it can
be characterized as a Markov process with a finite num-
ber of possible states and constant transition probabili-
ties between them for each possible action executed by
the animat. Often, the animat is not able to differentiate
between all possible states with its sensorial apparatus,
so that the environment, as experienced by the animat,
turns out to be non-Markovian and must be formalized
as a Partially Observable Markovian Decision Process
(POMDP), what makes things even worse.

In non-toy environments, that is, environments with
a large number of different states, the assumption of
a (partially observable) Markovian environment is not
enough to allow learning in acceptable amounts of time.
The reason is that, even in the strictly Markovian case,
the animat can not guess the result of an action in a
given state before it has been experienced a number of
times, and therefore, in general, it is necessary to explore
a huge number of situations.

For efficient learning to be possible, in addition to
the Markovian property, the environment must present
some kind of structure, so that the effect of an ac-

tion can be predicted well enough by attending to
only a small fraction of all the information contained
in the whole state. The process of interpreting the
world in terms of a reduced number of observable fea-
tures constitutes a categorization of it. Plain Rein-
forcement Learning algorithms, as Q-Learning, ignore
completely the problem of categorization, that is left
as a designer’s responsibility. Indeed, different exten-
sions of Reinforcement Learning have been proposed to
automatically generalize between states by clustering
techniques (Mahadevan and Connell, 1992) or by suc-
cessive subdivisions of the state space (McCallum, 1996),
(Chapman and Kaelbling, 1991), so that states that are
equivalent for the purposes of the learner are treated as
a single state, thus simplifying the learning task. For-
mally this corresponds to a redefinition of the states of
the Markovian process, so that its number is reduced
substituting them for classes from which similar rein-
forcement can be expected.

We think that further improvements in the efficiency
of learning can hardly be achieved by designing still more
clever generalization algorithms, but what is needed, in-
stead, even at the risk of losing generality, is to make
stronger assumptions on the structure of the environ-
ment so that we can use more specialized algorithms that
take advantage of such a structure. It seems that there is
still plenty of room to make plausible assumptions on the
environment in addition to the Markovian property and
the feasibility of using simplified descriptions or cluster-
ings of states.

We observe that, in many realistic situations, most of
the sensor inputs are just irrelevant to predict the effect
of a particular action in a given situation, that is, that
the effect of a given action does not depend on the whole
state of the world, nor on the full sensory information
available to the animat, nor even on all the features that
are actually relevant in other situations. Thus, for exam-
ple, the value resulting from the action of “grasping the
object in front of me” will depend on the object being
food, the tail of a wild animal, or an unimportant object.
However, the result will probably be the same no matter
if it is day or night, if I am standing or lying down, or if
I can see a red light nearby or not (aspects, all of them,
that may become important in other circumstances).

This observation leads us to enunciate what we call the
categorizability hypothesis, that is plausible for many ani-
mats, based on which we have developed a reinforcement
learning algorithm whose main difference with previous
approaches is that the result of each action is not asso-
ciated with each state, but with selected partial views
of the world. As we will see, when the categorizability
hypothesis is fulfilled, the method becomes much more
efficient in time and space than the usual, state-based,
reinforcement learning algorithms. The rest of this pa-
per is organized as follows: In the next section, the cat-

egorizability hypothesis is introduced and an approach
to reinforcement learning based on what we call partial
views, alternative to the usual state-based reinforcement
learning, is analyzed in the context of the categorizabil-
ity hypothesis. In Section 3, a learning algorithm based
on partial views is presented, and it is applied to the
task of learning to walk with a six-legged robot in Sec-
tion 4. In Section 5, we compare our approach with
other related works, and in Section 6, we present some
conclusions and point to some directions in which this
work could be extended.

2. Categorizability of Environments

We assume that the learning agent perceives the world
through a set of binary feature detectors f;,i = 1...n
triggered by stimuli received from its interaction with
the environment. We say that the agent perceives a
partial view of order m v(fi,, ..., fi,,);m < n whenever
features f;,,..., fi,, are all simultaneously active. Note
that many partial views can be perceived at the same
time, for example, if fi, f2, and f3 are active, then the
agent perceives the partial view v(f1, fa, f3), but also
U(fl),v(fz);v(fS),U(flaf2);'U(f17f3), and U(f27f3)‘

If, in a given situation, some of the features are irrel-
evant to predict the effect of a given action, this means
that the perception of the partial view defined by the re-
maining features (the relevant ones) is enough to make
the prediction. Our hypothesis that most features will
be often irrelevant for predicting the effect of a given
action implies that predictions can be made using only
low order partial views. Then, we say that the environ-
ment is categorizable with respect to a learning task, if
the reward obtained from the execution of each action
depends only on low order partial views (that may be
different for each action).

Note that categorizability is not a binary property but
a graded one. An extreme case, in which we would say
that the environment is completely categorizable, would
be one in which the result of each action could be pre-
dicted from a number of (mutually exclusive) partial
views of order one. On the other extreme, if the effect
of each action could only be predicted by taking into
account the value of all feature detectors, we would say
that the environment is not categorizable at all. The cat-
egorizability hypothesis states that the actual situation is
much closer to the first case than to the second.

2.1 Action evaluation with partial views

As far as we can tell, at the core of all existing reinforce-
ment learning algorithms is that the state of the system
must be used to predict the expected reward of all possi-
ble actions. Existing generalization techniques are based
on the following consideration: If two states coincide in
their reward predictions for all actions, then these two

states do not need to be differentiated and can be consid-
ered as a single state. Clustering techniques, as well as
feature-based approaches, simply provide different ways
to joint or split states based on this equivalence prin-
ciple. This implies that, as soon as two states differ in
their reward predictions for just one action, they must be
kept as different states, no matter how coincident they
are in the predictions for the remaining actions, so that
many opportunities of useful generalization are lost. As-
sociating the expected reward of an action to a partial
view permits such generalization. The drawback, in the
general case, is that the number of possible partial views
is much larger than the number of states. However, if
the environment is categorizable, we will need to consider
only the partial views of lower order, and it will be ad-
vantageous to store the expected reward of an action for
each partial view instead of for each state.

We define the value g¢,(a) associated with action a
and partial view v as the mean discounted accumulated
reward received after executing action a while v is ob-
served. This is an averaged value that provides no infor-
mation about the distribution of values taken around this
mean value in different situations. Distributions with
low dispersion are indicative of coherent reward, or as we
say it, high relevance of the partial view for this action,
meaning that g,(a) is a very accurate prediction of the
reward that will be obtained. Non-relevant partial views
with high dispersion value distributions provide little re-
liable estimations of the future reward. Thus, we will
maintain an estimation of the relevance of each partial
view for each action, and use the relevance in addition
to the mean value of each partial view to determine the
expected reward of each action in a given situation.

The estimation of g, (a) is in many aspects similar to
that of the value of an action in a state of Q-learning,
but there is an important difference that prevents the di-
rect use of the Q-learning algorithm as is. The difference
is that while in Q-learning only one state is observed at
a time and the value of each action can be determined
from it, in our approach, many partial views can be si-
multaneously observed, each one providing a different
evaluation for the same action. The problem is then,
how should the value be obtained? Two possible solu-
tions come to mind: using a weighted sum of the values
predicted by all the observed partial views, or using a
competitive approach, in which only the most relevant
partial view for each given action is used to determine
the predicted value. As we explain next, both solutions
may produce better or worst results depending on the
relationship existing between partial views.

We say that two partial views are redundant if they re-
spond to alternative views of the same source of reward.
Redundant partial views are predicting essentially the
same and, though they can increase the confidence on the
prediction, it would be misleading to add up both value

predictions. Conversely, we say that two partial views
are independent if they predict rewards associated with
different aspects of the situation, each corresponding to
a different source of reward, so that their value predic-
tions should be added. An example will serve to clarify
this: Consider the action of reaching for an object and
two features of the object: smell and temperature. They
define independent partial views: warm objects provide
warmth and smelly food provides aliment, and both are
independent. We should evaluate the action with the
sum of the values predicted by each partial view. How-
ever, if we had also the possibility to taste the food, it
only would confirm the information provided by smell,
making the reward prediction more certain, but it can-
not be added to the reward already well predicted by
smell only.

If we could know if two partial views are redundant or
independent, we could use the appropriate composition
rule for reward prediction, but the problem is that we
have no way, in principle, to guess it. In the lack of the
necessary information, we must adopt one of the com-
position rules: weighted sum, as if partial views were
always independent, or winner-takes-all, as if they were
always redundant. In both cases, it is possible to com-
pensate the effect of unwanted-type partial views: In the
weighted sum solution, the over-evaluation arising from
redundant partial views could, in principle, be compen-
sated for by introducing an additional partial view corre-
sponding to the simultaneous observation of the redun-
dant ones and providing opposite compensatory reward,
so that if two redundant partial views were observed, the
result would be the same as if only one of them was ob-
served. With the winner-takes-all solution, the problem
arises when the contributions of several independent par-
tial views must be added up. This can be solved in a sim-
ilar way, by introducing a new partial view corresponding
to the simultaneous observation of the independent ones
and providing the accumulated prediction. In this case,
since the new partial view is more specific (a conjunction
of the independent ones), it will become more relevant
than both of them whenever the two independent partial
views are active, and will win the competition to give the
correct result.

However, there is an advantage of the competitive so-
lution over the weighted sum one. Since redundant par-
tial views provide robustness to the system and excessive
redundancy degrades efficiency, we may want to create
or remove redundant partial views at our convenience.
Then, when the competitive solution is used, adding or
removing redundant partial views has no effect on the
evaluations. But, if a weighted sum is used, the dis-
tributed nature of the evaluation means that the removal
of a partial view must be followed by a consistent modifi-
cation for many partial views, making the system main-
tenance more complex and unstable. This is the main

Learning Algorithm
(Initialize)
F + Set of features detectors
PV « {(f)|f € F}
For each v in PV
For each action a
gv(a) < 0
ey(a) « 0
iy(a) < 0
endfor
endfor
gmaz < —OO
Qmin < +00
V « {v € PV|v is observed}
Do forever:
a + Action Selection
Execute a
(System Update)
r, + Reward generated by a
Vant 4
V « {v € PV|v is observed}
Statistics Update
Partial View Management
enddo

Algorithm 1: Top level sketch of the learning algorithm.

reason why we choose the competitive, winner-takes-all
solution for the evaluation of action values.

3. The Learning Algorithm

We assume that the animat is provided with a set of bi-
nary feature detectors! and a set of actions. The feature
detectors are used to define an initial set of partial views
(PV) including all the partial views of order 1. After the
initialization phase, the algorithm enters in a continuous
loop consisting in choosing an action to be executed (us-
ing the Action Selection procedure detailed in section
3.1), executing it, and updating the system so that its
performance improves in the future. The system update
includes the statistics update (see section 3.2) and the
partial view management (section 3.3).

We store three values for each partial view v and action
a:

e Reward estimation: g,(a).
e Error estimation: e,(a).

o Confidence index: i,(a).

! Feature detectors (f) with multiple values {b1,...,bx} can be
binarized using k predicates of the form (f = b;).

10
091 B
081 —F B
07+ B
06 B
051 B
041 B
031 B
021 B
01 B

(@

1 2 3 4 5 6 7 8 9 10

Figure 1: Confidence function with n=7 and $=0.8.

The reward estimation ¢,(a) approximates the aver-
age discounted reward derived from the execution of ac-
tion a when partial view v is perceived. The error es-
timation e,(a) approximates the average absolute value
of the error in the previous statistics. To estimate the
confidence in the reward and error statistics we use a
confidence index i,(a) that keeps track of the number of
times action a has been executed after observing the par-
tial view v. The confidence is derived from i,(a) using a
confidence_function in the following way:

¢y(a) = min{ B, confidence_function(i,(a))},

where the confidence_function is a strictly increasing
function, and 3 is a top value for the confidence. The
confidence is used to weight the influence of new col-
lected data on the reward and error statistics (the lower
the confidence, the higher the weight). In general, 8 is
less than 1 so that the statistics are always under revi-
sion. Different confidence schemas can be implemented
in our system by changing the confidence_function. We
use a sigmoid-like confidence function (see figure 1) that
increases slowly for low values of i,(a) reducing the im-
portance of the first obtained rewards which, in general,
are very noisy. A parameter (n) determines the point at
which this function reaches the top value (3.

Finally, ¢nin and gmq. are the extreme values of ¢, (a)
effectively observed up to now. These bounds are up-
dated with the procedure described in section 3.2, and
are used in the action selection procedure (section 3.1) to
estimate the possible effects of an action when no reliable
information is available.

3.1 Action Selection

As mentioned above, to evaluate an action in a given
situation, instead of combining the reward predictions
provided by each observed partial view, we use a com-
petitive approach. Two factors are taken into account
to select the winner view for each action (i.e., the view
that provides the best guess for reward prediction):

e The relevance p,(a): The lower the average error, the
more reliable the reward prediction. So, we define the
relevance (py(a)) of the partial view v with respect

Action Selection
For each action a
v < Winner(V,a)
guess(a) « ¢y(a) + random(—2e,(a),2e,(a))
noise < random(qmin, maz)
guess(a) + c,(a) guess, + (1 — ¢, (a)) noise
endfor
return(arg rr%/%x{guess(a)})

Algorithm 2: Action Selection procedure. The
random(a, b) function generates a random number in the
interval [a, b].

to action a mapping the error measure in the interval
[0,1]:

pv(a) =1/(1+ ey(a))

e The confidence ¢y(a): The higher the confidence on
a reward prediction, the more reliable the prediction.

The winner view is the one that maximizes the product
of these two factors:

Winner(V, @) =arg max{p(a) - co(a)}

The winner view v for each action a is used to get
a guess of the effects of that action. This guess results
from the combination of the corresponding reward and
the error estimations (g, (a) and e, (a), respectively). As-
suming, for simplicity, a uniform distribution, the reward
derived from action a when v is perceived can be any
value inside the interval

I,(a) = [gu(a) — 2e,(a), gu(a) + 2e,(a)]

with the same probability.

This guess is altered according to the confidence (i.e.,
certainty) of the reward and error statistics used to de-
rive it: if the animat does not know much about an
action, its effects could be quite different from the pre-
dicted ones. For this reason, the guess for each action is
modified with a noise signal weighted by the confidence
(the lowest the confidence, the higher the effect of the
noise). This noise favors exploration of the non well-
tested actions and automatically adapts the exploration
rate.

Finally, the action to be executed is simply the one
that produced the highest guess.

3.2 Statistics Update

The system update uses the effects of the last executed
action (a) to update of the statistics of all observed par-
tial views.

Statistics Update
g&<rety H\}ax{qv(a’)w = Winner(V,a')}
al

dmin < min{qmz’na Q}
Gmaz MaX{Gmaz,q}
For each v in V,,;;
aw(a) « co(a)gu(a) + (1 — cu(a))q
ev(a) < co(a)ey(a) + (1 - co(a))lgu(a) — g
if ¢ € I,(a) then
if ¢,(a) < B then
iy(a) < iy(a) +1
endif
else
iy(a) « iy(a) — 1
endif
endfor

Algorithm 3: Statistics Update procedure.

The effects of an action a when a given partial view v is
observed can be defined (using a Bellman-like equation)
as

q: (a) =T+ ZP('U, a, V) q (V)7
2%

where 7, is the average reward obtained immediately af-
ter executing a, 7y is the discount factor used to balance
the importance of immediate with respect to delayed re-
ward, ¢*(V') represents the goodness of the situation V,
and p(v,a,V) is the probability of reaching that situa-
tion after the execution of a when v is perceived. The
goodness of a situation is assessed using the best action
executable in that situation

¢"(V) = max{g;(a)jv = Winner(V, d')}

since this gives us information about how well the animat
can perform (at most) from that situation.

In the statistics update procedure (algorithm 3), ¢, (a)
is adjusted for all observed partial views, using a tempo-
ral difference rule, so that it progressively approximates
g:(a). At the same time, e,(a) is adjusted using a iden-
tical rule, so that it estimates the average absolute value
of the error of g,(a). Observe that both statistics are
updated using the confidence as a learning rate, which
initially is 0, and consequently, the initial values of ¢, (a)
and e, (a) have no influence on the future values of these
variables. These initial values become relevant when us-
ing a constant learning rate, as many existing RL algo-
rithms do.

If the observed effects of the last executed action agree
with the current estimate interval for the reward (I,(a)),
then the confidence index is increased by one unit until
the value 8 is reached. Otherwise, the confidence index
is decreased allowing a faster adaptation of the statistics
to the last obtained, surprising values of reward.

Partial View Management
(Partial View Elimination)
PV « PV —{v € PV |redundancy(v) > A}
v < Winner(Vynt,a)
if |g,(a) — q| > d and ||PV|| = u then
WYV <« The 7 partial views from PV with:
- Lowest creation_error(v), and
- creation_error(v) < |g,(a) — q|
PV « PV -WV
endif
(Partial View Generation)
if |gy(a) — g| > ¢ then
t«0
while |PV||<pand ¢t <T
Select two different views vy, vg from V,,,;
preferring those that minimize
c |qUi (a’) - Q| + (1 - C) (Qmaz - sz'n)
with ¢ + ¢y, (a)
Create a new view v’ = (v1 @ v9)
creation_error(v') + |gy(a) — ¢
PV « PV U {2}
t+t+1
endwhile

endif

Algorithm 4: Partial View Management procedure. The
value of ¢ is calculated in the Statistics Update proce-
dure.

3.8 Partial View Management

This procedure (Algorithm 4) includes the generation of
new partial views and the removal of previously gener-
ated ones that proved to be useless.

A situation needing better categorization than that
provided by the current set of partial views can be iden-
tified because actions executed in that situation have an
effect (¢) too different from the expected one (g,(a)).
The larger the difference between the predicted and the
observed values, the more critical is to improve the cate-
gorization of this situation. In our implementation, new
partial views are generated when this difference exceeds
a given threshold (4). 4 is determined so that the in-
trinsic noise in the reward signal does not produce the
generation of new partial views.

Every time a wrong prediction is made, at most 7
new partial views are generated by combination of pairs
of observed partial views. The combination of two par-
tials views vy @ vy consists in a new partial view that
includes all the features included in either v; or va. Ob-
serve that the combination of two different partials views
is of a higher order than its components, and it will be
observed in those situations in which both components
are simultaneously observed.

We favor the combination of views with high confi-
dence, so that the combinations of the recently created
ones are discouraged. Additionally, we bias our system
to favor the combination of those views (v;) whose re-
ward prediction (g, (a)) is closer to the observed one (g),
since they are more likely to be active in situations sim-
ilar to the one we are trying to categorize. Finally, the
generation of views syntactically equivalent to already
existing ones is not allowed.

Observe that, if necessary, a specific view can be gen-
erated for each different situation, in which case our al-
gorithm would end up working like a usual state-based
RL algorithm. However, according to the categorizabil-
ity hypothesis, this extreme possibility can be discarted.
For this reason, to improve efficiency, we limit the num-
ber of partial views to a maximum of u. To keep this
limit, we must eliminate the less useful partial views.

A partial view v = v; vy can be removed if its reward
predictions are too similar to those of the component
views vy, Vs.

The similarity between two reward distributions, that
we have assumed to be uniform, can be computed as
the normalized degree of intersection between the corre-
sponding reward intervals:

I1o(a) N Iy (a')|]
max{|| L, (@), |7 (a")II}°

similarity(I,(a), I (a')) =

Based on this similarity measure, we define the redun-
dancy of a partial view v = (vy ® v2) as:

redundancy(v) = rr\;in{max{simz'larity([v (a), I, (a)),
similarity(I,(a), Iy, (a))}}.

Partial views with a redundancy above a given threshold
(M) are eliminated. Since the redundancy of a partial
view can only be estimated after observing it a number
of times, the redundancy of the partial views with low
confidence index is set to 0 so that they are not removed.

Additionally, if it is necessary to generate new views
but the maximum number of views has been reached,
those partial views with lower creation error than the
current one are eliminated.

4. A Test Example: Gait Generation for
a Six-Legged Robot

4.1 FEzxperiment Setup

We applied our algorithm to the task of learning to walk
with a simulated six-legged robot (figure 2). The sim-
ulator allows to command each leg of the robot in two
independent degrees of freedom (horizontal and vertical)
and provides a mechanism that automatically compen-
sate the forward movement of stepping legs by moving

Figure 2: The Genghis IT walking robot.

backward all the legs on ground (the alpha-balance be-
havior described in (Brooks, 1989)). With this mecha-
nism, the task to be learnt consists in deciding at every
moment which legs must step (that is, leave the ground
and move to an advanced position), and which must de-
scend (stay on the ground to support and propel the
body). The sequence of executed steps is known as the
gait of the robot. The simulator is able to detect when
the robot is in an unstable position.
We defined a set of 24 feature detectors:

e On_the_air(x): Active if the leg = is on the air.

¢ On_the_ground(x): Active when the On_the_air(z)
feature is not active.

e Advanced(x): Active if leg z is ahead the reference
position.

e Behind(x): Active when the Advanced(z) feature is
not active.

With this set of features the number of possible differ-
ent situations is 4096.

The set of actions consists of all the combinations of
the two possible actions available to each leg. This in-
cludes from touching the ground with all legs to stepping
all legs simultaneously.

The reward signal includes two aspects:

e Stability: If an action will cause the robot to fall
down, a reward of -50 is given and the action is not
executed, so that, actually the robot never falls down.

¢ Efficiency: A reward equal to the distance advanced
by the robot is given.

It is well known that the most efficient stable gait is the
tripod gait (Wilson, 1966) in which two sets of three legs
(leg sets (L1, R2,L3) and (R1,L2, R3) in figure 3) step
alternatively. Using this gait, the robot would obtain a

Advance .
Direction
® o (]
R3 R2 R1

o
:
o
<8}
B
3
IS
E
[«B)
e
o5}
>
<C
| | | | | | |
500 1000 1500 2000 2500 3000 3500 4000
Action
—— Our Algorithm ~ ------ Q-Learning - --- Hand-Coded

Figure 4: Performance of our algorithm compared with Q-
Learning and a hand-coded behavior.

reward of 50 (when one group of three legs steps) fol-
lowed by a reward of 0 (when those legs recover contact
with ground), so that the optimal average reward is 25.

In the experiments, the robot is set in an initial pos-
ture with all the legs in contact with the ground but in
a random advance position. For these experiments, we
use the following set of parameters: v = 0.9, 8 = 0.99,
n=10,6 =10, 7 = 3, p = 124 and, A = 0.95.

4.2 Results

Figure 4 shows the results obtained with our learning
algorithm compared with those obtained using standard
Q-Learning (Watkins and Dayan, 1992). For this algo-
rithm we use a learning rate @ = 0.1 and an action selec-
tion that performs exploratory actions with probability
0.1. The states used by Q-Learning are the 4096 pos-
sible situations identifiable by the 24 feature detectors
described before, and the set of actions is the same as
the one used in our algorithm. As a reference, we show
the results using a hand-coded gait generation rule previ-
ously developed by ourselves (Celaya and Porta, 1998).

Figure 4 shows that our algorithm converges to a so-

Average Immediate Reward

500 1000 1500 2000 2500 3000 3500 4000
Action
—— OurAlgorithm =~ ------ Q-Learning - --- Hand-Coded

Figure 5: Performance of our algorithm compared with Q-
Learning when there are irrelevant features.

lution much more close to the optimal value (25) than
Q-Learning (that gets an average immediate reward close
to 0) and its performance is much more stable. More-
over, if we consider the amount of space used by each
algorithm we find that Q-Learning stores one value for
each state and action (4096 - 64 = 262144) and our algo-
rithm stores three values for each partial view and action
(3-124-64 = 23808). This supposes that our algorithm
uses less than 10% of the memory used by Q-Learning.

Observe that the performance attained using our algo-
rithm is even superior to that of the hand-coded strategy.
This is because there is a restricted set of initial postures
(that can appear when choosing initial postures at ran-
dom) from which our rule does not perform optimally
(Porta and Celaya, 1998).

The advantage of our algorithm with respect to state-
based ones is increased in problems in which some of the
sensors provide information not related with the task. To
test this point, we set up an experiment in which six fea-
ture detectors (that get active randomly) were added to
the 24 initial ones. With these new features, the num-
ber of possible combinations of feature activations in-
creases, and so does the number of states considered by
Q-Learning. Figure 5 shows the comparison between our
algorithm and Q-Learning for this problem. Q-Learning
is not able to learn a reasonable gait strategy, while the
performance of our algorithm is equivalent to the one
obtained without irrelevant features. This means that
our algorithm is able to detect which sets of features are
relevant and use them to determine the robot’s behavior.
It is remarkable that, in this case, the ratio of memory
used by our algorithm with respect to that used by state-
based algorithms, drops below 0.15%. This exemplifies
how the performance of the state-based algorithms de-
grades as the number of features increases while this is
not necessarily the case using the partial view approach.

o
%
o
(5]
=B
IS
E
@
o5}
>
<<
| | | | | | |
500 1000 1500 2000 2500 3000 3500 4000
Action
—— With Generation ~ ------ Without Generation ---- Hand-Coded

Figure 6: The performance with and without the partial view
generation procedure.

The importance of the generation of partial views in
the improvement of the categorization can be seen com-
paring the results obtained for the same problem with
and without this mechanism (figure 6). While the re-
sults show that the task can be learnt acceptably well
with partial views of order 1, the learning is faster when
higher order views are generated, and the final perfor-
mance is improved in a significant way. The generated
partial views are specially useful for the efficiency aspect
of the gait generation problem. In general, the reward
obtained when executing a given action is higher if the
stepping legs are behind than if they are advanced. If
more than one leg is to be stepped simultaneously (as
for instance happens in the tripod gait), then the behind
and advanced features of these legs should be combined
to identify whether or not it is appropriate to execute
the corresponding action. For instance, a partial view
generated by our system in a typical run is:

v(Advanced(L1), Advanced(R2), Advanced(L3))

This feature identifies situations in which the three legs
of one of the tripods are simultaneously advanced (prob-
ably, because they have stepped recently). Of course,
in this situation, stepping these three legs does not pro-
duce a great advance of the robot. The observation of
the above partial view predicts a low reward for the ac-
tion that makes a step with legs of one of the tripod (L1,
R2 or L3) and a high one for the action that makes a
step with the legs of the other tripod.

5. Related Work

The idea of using feature detectors as a base of the RL
algorithms is not new (see (Boutilier et al., 1999) for a
survey). In general, previous work on feature-based RL
aims at finding state definitions from features detectors.
A decision tree is used to classify each situation accord-

ing to some of the features active in that situation. The
information stored in each leaf of the decision tree is used
to predict the effects of all actions for the situations that
are classified in that leaf.

In (Chapman and Kaelbling, 1991), the decision tree
is constructed assuming that each feature detector is
individually relevant and, consequently, this approach
has problems when a given situation has to be catego-
rized paying attention to more than one feature simul-
taneously. In our approach, the partial view composi-
tion procedure avoids this inconvenience. By its side,
(McCallum, 1996) tries to find features that make utile
distinctions between states with the result that situa-
tions that are equivalent with respect to a given action
must be classified in different leafs of the tree if they are
not equivalent with respect to other actions. In our par-
tial view approach, the relevance is independently esti-
mated for each view and action, and a given partial view
only include features that are relevant for a given action.

It is remarkable that McCallum includes the use of fea-
tures active in previous time slices to build the decision
tree so that non-Markovian problems can be tackled. A
similar technique could be included in our algorithm so
that it could also deal with this kind of problems.

The system described in (Wilson, 1995) is similar to
our partial view approach, since it also aims at determin-
ing the relevance of classifiers (that are combinations of
features and an associated action), without referring to
a global state. Moreover, Wilson also proposes a mea-
sure of relevance of the classifiers based on the error of
the reward prediction. The main difference between this
approach and ours is that Wilson’s work uses a genetic
algorithm to find the relevant classifiers, while we ad-
vocate for the use of an incremental strategy in which
the rate at which new partial views are created depends
on the situations the animat encounters and not on the
dynamics of a search mechanism (the genetic algorithm)
that works independently of the animat’s experiences. In
this way we do not lose any chance of learning and the
animat behavior can adapt to new situations more effi-
ciently. Furthermore, Wilson’s approach uses a weighted
sum of the predictions of the classifier advocating for
each action to determine the expected effect of that ac-
tion, while we propose to use a winner-takes-all strategy.

Another approach related to ours is described in
(Maes and Brooks, 1990). They also confront the prob-
lem of step coordination with a six-legged robot and try
to find a precondition for the execution of each action in
the appropriate moment. However, their method is re-
stricted to problems with immediate reward only, while
our algorithm is able to deal with delayed reward. Fur-
thermore, they limit the precondition to be a conjunctive
predicate of binary perceptual conditions (i.e., binary
feature detectors), while we allow disjunctions of con-
junctive predicates (many partial views can be relevant

for a given action, and each partial view can be seen as
a conjunctive predicate).

6. Conclusion and Future Work

The approach taken in this paper owes a lot to a reflec-
tion about how biological animals learn and behave. It
is difficult to think that animal behavior is produced by
means of the permanently running cycle typical of rein-
forcement learning: observe the current state, compute
and execute the most promising action for the current
state, get the resulting reward, update the policy. On
the contrary, animals seem to follow a “minimum effort
policy” whenever possible, and try to avoid acting when
this is not necessary. The behavior of animals is per-
haps best explained as a sequence of reactions to relevant
stimuli (either caused by external inputs or by internal
motivations), instead of as a constant involvement about
the problem of ”"what to do next”, which appears to be
an artifact problem produced by the way we design our
animats, in which the output of the control process must
be explicitly specified at any time.

These thoughts yielded us to a subtly different view
about which should be the goal of learning: While in Re-
inforcement Learning it is assumed that the agent must
learn a policy, i.e., a mapping from states to actions, we
propose learning ”"to what stimuli is it worth to react
with a given action”. There are situations for which act-
ing is not clearly correlated with reward, and it is prob-
ably not worth the effort to learn the exact outcome of
each possible action in such situations. It is much more
useful to concentrate the efforts in discovering those sit-
uations in which the execution of a given action really
matters. This is, in a rather informal sense, what our
partial view-based algorithm tries to do.

In this paper we have introduced the notion of environ-
ment categorizability. It is not possible to know a priori
(except for trivial cases) whether or not an environment
is categorizable by a given animat. The state-based RL
implicitly assumes that all possible combination of fea-
tures have to be taken into account separately. Our ap-
proach assumes just the opposite: that the environment
is categorizable and consequently only reduced combi-
nations of features need to be taken into account. The
drawback of using the state-based approach is that re-
alistic problems become intractable since the number of
possible combinations of features is exponential in the
number of features. This is known as the curse of di-
mensionality. Since our approach limits the use of com-
binations of features, it is not affected by this problem.
Of course, our approach is less advantageous as the envi-
ronment is less categorizable. However, the preliminary
results obtained with our algorithm suggest that in real-
istic situations our hypothesis is valid and consequently
our approach can work much more efficiently than exist-
ing ones in many cases.

The particular mechanisms used in the presented al-
gorithm could be extended in several ways. Aspects that
deserve special consideration are:

e Confidence estimation: Given that the action selec-
tion, statistics update, and partial view generation
procedures are dependent on a correct estimation of
the confidence, any improvement in this measure will
have an important repercussion. It would be inter-
esting to adjust the confidence in a more adaptive
way: up to now, we modify the confidence in fixed
steps, but it would be sensible to do it proportion-
ally to the difference between the predicted and the
actual reward.

e Partial view management: The partial view genera-
tion mechanism can be improved incorporating new
heuristics to select the views to be combined. By its
side, the partial view elimination mechanism could
be based on preserving those views actually useful
(not those potentially useful as we do now) allowing
a reduction in the size of the set of partial views.

The work presented in this paper makes a step towards
the adaptation of the RL framework to animats. In this
paper we review the assumptions about the environment
and how the animat perceives it, moving from a state-
based perception of the environment to a feature-based
one. However other aspects of the RL framework de-
serve also consideration (Porta and Celaya, 1999). For
instance, RL supposes that the actions the animat can
execute are mutually incompatible and, from the point
of view of an animat with a complex motor apparatus
that can execute parallel actions, this is not adequate.
Additionally, RL assumes that the direct effects (or what
is the same, the direct reward) of an action is perceived
immediately after its execution but in real animats this is
not always true: the effect of an action can be perceived
by the animat many time steps after its execution. This
poses a temporal credit assignment problem not usually
considered in RL. New RL algorithms more suited to the
animat problem are necessary to overcome the challenge
of controlling increasingly complex animats in increas-
ingly complex environments. These new control systems
will improve our knowledge about how adaptive behavior
is possible in complex environments.

Acknowledgements

We would like to thank the useful comments of two
anonymous referees that greatly contributed to improve
the quality of this paper.

This work has been partially supported by the
Comisién Interministerial de Ciencia y Tecnologia (CI-
CYT), under the project “Navegacion basada en vision
de rTobots autdmomos en entornos mo estructurados”
(TAP97-1209).

References

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-
Theoretic Planning: Structural Assumptions and
Computational Leverage. Journal of Artificial In-
telligence Research, 11:1-94.

Brooks, R. A. (1989). A Robot that Walks: Emergent
Behaviors from a Carefully Evoled Network. Neural
Computation, 1(2):253-262.

Celaya, E. and Porta, J. M. (1998). A Control Structure
for the Locomotion of a Legged Robot on Difficult
Terrain. IEEE Robotics and Automation Magazine,
Special Issue on Walking Robots, 5(2):43-51.

Chapman, D. and Kaelbling, L. P. (1991). Input Gen-
eralization in Delayed Reinforcement Learning: An
Algorithm and Performance Comparisons. In Pro-
ceedings of the International Joint Conference on
Artifical Intelligence.

Kaelbling, L. P., Littman, M., and Moore, A. W.
(1996). An Introduction to Reinforcement Learning.
Journal of Artificial Inteligence Research, 4:237-
285.

Maes, P. and Brooks, R. A. (1990). Learning to Coor-
dinate Behaviors. In Proceedings of the AAAI-90,
pages 796-802.

Mahadevan, S. and Connell, J. (1992). Automatic Pro-
gramming of Behavior-Based Robots Using Rein-
forcement Learning. Artificial Intelligence, 55:311—
363.

McCallum, A. K. (1996). Reinforcement Learning with
Selective Perception and Hidden State. PhD the-
sis, Department of Computer Science, University of
Rocherter, New York.

Porta, J. M. and Celaya, E. (1998). Gait Analysis for
Six Legged Robots. Technical Report IRI-DT-9805,
Institut de Robotica i Informatica Industrial.

Porta, J. M. and Celaya, E. (1999). Reinforcement
Learning and Automatic Categorization. In Pro-
ceedings of the Tth IEEE International Conference
on Emerging Technologies and Factory Automation,
pages 159-166.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.
Machine Learning, 8:279-292.

Wilson, D. M. (1966). Insect Walking. Annual Rev. pf
Entomology, pages 103-122.

Wilson, S. W. (1995). Classifier Fitness Based on Ac-
curacy. Evolutionary Computation, 3(2):149-175.

